Free Essay

Anatomy and Physiology

In:

Submitted By demilewis92
Words 2512
Pages 11
Throughout this assignment the anatomy and physiology of the central nervous will be examined in relation to the affects a stroke may cause. The causes and symptoms will also be identified along with the various affects a stroke may have on an individual such as physical, emotional, and social impact. Finally, the care and treatments provided will be highlighted and will be referenced throughout according to relevant literature and guidelines such as Infection control, Health and Safety, and various government policies.
According to the National Stroke Strategy 2007, a stroke is a condition in which the brain cells suddenly die due to a lack of oxygen. A stroke is often caused by an obstruction in the blood flow, or the rupture of an artery that feeds the brain (reference). The two main types of stroke which will be referred to throughout the text are hemorrhagic and Ischemic. National Stroke Strategy (2007) states that ‘an Ischemic stroke accounts for around 87% of all strokes and occurs when a blood clot (thrombus) forms that blocks the blood flow to a certain part of the brain’. When a blood clot forms somewhere in the body and breaks off to become free-floating, it is called an embolus (reference). This wandering clot may then be carried through the bloodstream and to the brain where it can then cause an ischemic stroke. A hemorrhagic stroke occurs when a blood vessel on the brain's surface ruptures and then fills the space between the brain and skull with blood or when a malfunctioning artery in the brain bursts and fills the surrounding tissue with blood. Both Ischemic and Hemorrhagic strokes result in a lack of blood flow to the brain. The outcome of a stroke is dependent on where the stroke occurs. Major strokes may lead to paralysis or death. www.nhs.uk/stroke
It is evident that the main body disorder affected by a stroke is the central nervous system. The nervous system is responsible for sending, receiving, and processing nerve impulses through the body. All the organs and muscles inside the human body rely on these nerve impulses to function. The nervous is often considered to be the master control unit inside the body- McKissock, C. (2009). Sense organs provide the nervous system with information about the environment such as senses of sight, hearing, smell, taste, touch, pain, and pressure. Nerves are connected through the whole body to the brain, they carry the information throughout the body in the form of electrochemical signals called impulses. These impulses travel from the brain and spinal cord to the nerves located throughout the body. Unlike other cells in the body, most neurons in the central nervous system cannot renew or repair themselves. So, if and when some of the cells die through illness or damage, the nervous system can permanently lose some of its abilities. www.sciencemuseum.org.uk. The symptoms of disorders of the nervous system depend on which part is attacked for example Alzheimer's disease destroys cells in the memory area of the brain.
The signs and symptoms of a stroke are different for each individual but often start suddenly. Due to the fact that different parts of your brain control different parts of the human body, a person’s symptoms are dependent on which part of the brain is affected. This also determines the extent of the damage the stroke may cause. The most common signs of a stroke are visible on the face, arms, and may affect an individual’s speech-NHS 2009. According to the NHS, individuals that experience strokes have particular physical changes such as- the face may have drop on one side, the individual may find it difficult to smile or move their mouth and their eyes may drop. One or both of the arms are often difficult for the individual to lift due to the arms feeling weak or numb. The speech may be slurred or garbled or failing this the individual may not be able to speak at all. Other symptoms of a stroke include sudden loss of vision, communication problems-difficulty in understanding what others are saying, sudden and severe headache, neck stiffness, difficulty in swallowing, numbness and weakness resulting in complete paralysis of one side of the body, and blacking out in severe cases (NICE 2009). Although there are two different types of strokes that can occur they symptoms are quite similar and often only a healthcare professional can determine the type of stroke it is. According to the NHS, the symptoms of an ischemic are the same as a haemorrhagic stroke it can last from a few minutes to a few hours then suddenly disappear completely. However, it is important to never ignore an ischemic stroke as it is a serious warning sign there is a problem with the blood supply to an individual’s brain and can have a major impact on their health. There is around a one in ten chance that those who have an ischemic stroke experience a full stroke during the four weeks following the stroke. Mass media campaigns are used to raise awareness of the signs and symptoms of stroke more and more, and the need to immediately contact emergency medical services. Stroke awareness campaigns target the general public, including individuals who might experience stroke symptoms and those who might witness stroke. In England the Department of Health has recently rolled-out the first national stroke awareness raising campaign ‘Act FAST’ –(Stephan U Dombrowski) between February 2009 and March 2012. The campaign included television, press and radio advertisements targeting the general public, thus improving the chances of the affected individual’s mental and physical health. This included information of the physical signs to look for such as FACE: has their face dropped on one side, can they smile? Arms: can they lift their arms, and does one arm hang lower than the other? Speech: Can they speak and is their speech slurred? Time: Time to call for assistance, call 999 if you suspect any of these signs and symptoms. www.biomedcentral.com

The NICE guidelines state that life after a stroke varies for each individual some may go through a stroke and recover so that they are able to continue with their daily tasks with no hindrance and/or prevention as a result of the stroke. However, others may be left with various changes which impact how they live their day to day life. These include communication problems such as aphasia which affects an individual’s ability to speak and comprehend words, depression-this can occur for some people as a result of the unfortunate changes to their life which can cause them to feel less dependent and able thus causing depression, Memory loss- this is common after a stroke but is different for every individual. Various ways in which a an individual’s memory can be affected by a stroke include verbal memory, this includes remembering names and stories visual memory can also be affected and so the ability to remember people’s faces, different shapes, and remembering routes from place to place becomes difficult, mobility- many people often experience paralysis and/or balance problems, and neglect- some people may be affected by their stroke on the part/side of the brain which was affected and can cause neglect to the affected side. For example, the individual with left sided neglect may ignore the left side of the face when washing or may not eat food on the left side of the plate. www.nice.org.uk/stroke.
It is important for healthcare professionals to follow guidelines carefully and thoroughly to ensure the appropriate care, treatment and monitoring is given to the individual who has experienced any type of stroke. This is done through following relevant guidelines given such as National Institute of Health and Care Excellence (NICE guidelines), Infection Control, Health and Safety, and National Service Framework. The National Stroke Service published in December 2007, provides a guide to high quality health and social care for individuals that have been affected by a stroke. Experts have set out standards which define appropriate stroke care that can help in preventing lifelong disability and/or permanent illnesses including a quick response to a 999 call for suspected stroke, prompt transfer to a hospital providing special care, an urgent brain scan (for example, computerized tomography [CT] or magnetic resonance imaging [MRI]) undertaken as soon as possible, immediate access to a high quality stroke unit, early multidisciplinary assessment, including swallowing screening, stroke specialized rehabilitation, and planned transfer of care from hospital to community and longer term support (NSS 2007).
According to NICE guidelines, the NHS works towards providing high quality care to patients who suffer from strokes and have published in 2010 a guide quality standards of care to which professionals must adhere to when caring for stroke patients. The quality standard for stroke requires that services should be commissioned from and coordinated across all relevant agencies including the whole stroke care pathway. A combined approach to provision of services is fundamental to the delivery of high quality care to people with stroke. These are given as statements and include guidelines for aftercare such as what type of care people may need as each stroke can cause a variety of illnesses depending on what part of the brain has been affected. Therefore different tests, care, treatment, and aftercare must be given in accordance with what type of stroke the individual has had. For example, Ischaemic strokes can be treated using a 'clot-busting' medicine which is known as alteplase, this dissolves blood clots. However, alteplase is only effective if started during the first four and a half hours after the start of the stroke. According to relevant health studies conducted by Health and Safety officials, if this is given after that time, the medicine has not been shown to have beneficial effects. Even within this narrow time frame, the quicker alteplase can be started the better the chance of recovery. However, not all patients are suitable for thrombolysis treatment. A dose of aspirin is usually given to be taken as a regular dose (an anti-platelet medication), as this makes the cells in your blood, known as platelets, less sticky, thus reducing the chances of further blood clots occurring. However, some may be allergic to aspirin and in this event other anti-platelet medicines are available known as anticoagulants, these prevent blood clots and are often given to patients with an irregular heartbeat. These are most commonly given in the form of heparin, warfarin, and more recently rivaroxaban. Also, if the blood pressure is too high, medicine is given to lower it. Medicines most commonly used include alpha blockers, beta-blockers, calcium channel blockers, angiotensin converting enzyme (ACE) inhibitors, and thiazide diuretics. www.nhs/stroke/treatments

In the event that a hemorrhagic stroke occurs, emergency surgery is often needed to repair any burst blood vessels and to remove any blood from the brain, this is done through a surgical procedure known as craniotomy. A small section of the skull is cut away during this procedure to allow the surgeon access to the cause of the bleeding. The surgeon then repairs any damaged blood vessels and ensures there are no blood clots present that may restrict the blood flow to the brain. Once the bleeding has been stopped, the piece of bone removed from the skull is then replaced. Following a craniotomy, the patient may have to be placed on a ventilator that assists with their breathing. By taking over the body’s responsibilities such as breathing, this gives the body time to recover and also helps to control any possible swelling on the brain. The patient is also be given medicines, such as ACE inhibitors, to lower blood pressure and prevent further strokes from occurring. www.nhs.com/stroke/treatments
The damage caused from a stroke can often be long lasting. Most people need a long period of rehabilitation before they can fully recover. The process of recovery is dependent on what type of stroke the individual has had and type of damage it has done to specific parts of the brain. Professional help is vital in the process of recovery and is given by various healthcare professionals such as including physiotherapists, psychologists, occupational therapists, speech therapists and specialist nurses and doctors. The damage that a stroke can causes to the brain can impact on many aspects of an individual’s life and wellbeing, and depending on personal circumstances, professional help may be requires by a number of different treatment and rehabilitation methods. For example, a physiotherapist may help with the damage to the arms or legs using relevant techniques and may advice the patient to do some at home exercises that will improve the use of his or her body parts. Also, many individuals may require speech therapy depending on the damage done as a result of the stroke. This is usually done by a speech therapist that helps to enable the individual to speak again through use of various techniques. There are various organizations that specialize in the treatment and aftercare for individuals who have suffered from different types of illnesses and conditions. The National Service Framework for Older People (NSFOP) which launched in 2001, designed as a 10-year programme, the NSF contains standards specific to different types of illnesses or conditions which relate to older people’s services covering the full range of care older people need. NSFOP 2001, set up standard 5 with the aim to reduce the incidence of stroke in the population and ensure that those who have had a stroke have prompt access to integrated stroke care services. This also made the improvement of intermediate care a priority. Intermediate care speeds up helps people get better in their own homes or in supported community settings (NSFOP 2001)

In conclusion a stroke is a condition that can potentially cause much harm to an individual. However through the use of correct observation, treatment, and aftercare many illnesses and long term disabilities that may come about as a result of having a stroke can be addressed and improved which then enables the effected individual to continue with their lives with minimal hindrance.

Bibliography

http://www.sciencemuseum.org.uk/whoami/findoutmore/yourbrain/howcanillnessaffectthebrain/howcanthenervoussystembedamaged.aspx http://www.nervous-system-diseases.com/stroke.html http://www.nice.org.uk/ http://www.medicalnewstoday.com/articles http://www.nhs.uk/conditions/Stroke/Pages/Introduction.aspx https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/198033/National_Service_Framework_for_Older_People.pdf Scott, W.N (2011) Anatomy and Physiology made incredibly easy! London: Lippincott Williams and Williams McKissock, C. (2009) Great ways to learn anatomy and physiology. Basingstoke: Palgrave Macmillan
Waugh, A, Grant, A, & Ross, J 2001, Ross And Wilson Anatomy And Physiology In Health And Illness, [N.p.]: Churchill Livingstone, eBook Collection (EBSCOhost), EBSCOhost, viewed 26 June 2014
Wilhelm, P, Rhees, R, & Van De Graaff, K 2001, Human Anatomy And Physiology : Based On Schaum's Outline Of Theory And Problems Of Human Anatomy And Physiology, New York: McGraw-Hill, eBook Collection (EBSCOhost), EBSCOhost, viewed 26 June 2014.

Similar Documents

Free Essay

Anatomy and Physiology

...Summary Week 1 Discussion This discussion we looked at two examples of the heart and its functions. Atrial septal defect (ASD) is fairly common. This was a terrific example to relate structure and function. When the structure of anatomy is disrupted we can see as in this example how normal function is altered. This congenital defect allows blood to flow between atria instead of the normal flow through the ventricles and to the body and the disrupted and limited blood flow can lead to heart failure, stroke and pulmonary hypertension. The larger the hole the more quickly surgery is needed to correct it. Smaller holes may provide enough blood flow to avoid these complications and may heal over on its own. Ventricular septal defect (VSD) is less common. A hole between the ventricles allows mixing of oxygenated blood from the lungs with de-oxygenated blood returning from the body. Heart failure and infections occur rapidly due to the lack of oxygenated blood reaching the body and the baby often presents with a bluish discoloration to the skin as a result of lack of oxygen. Artificial hearts being developed run on batteries to pump the blood and include porting valves to ensure blood flow goes in the correct direction. Essential characteristics of an artificial heart that would make them ideal would be to mimic the real heart in structure and function and resist rejection in the recipient. References Atrial septal defect (ASD). (2014). Retrieved from http://www.heart...

Words: 348 - Pages: 2

Free Essay

Anatomy & Physiology

...Mink Dissection – Laboratory Guidelines 1. BE PRESENT AND ON TIME!! a. The only good reason for missing lab is DEATH (your own). b. You may be given notes or special instructions during the first few minutes of lab. Make special note of any changes in materials to be used or procedures to be followed. 2. BRING MATERIALS/SUPPLIES. a. Bring your laboratory manual and notebook to class everyday. b. Be sure to put your name on everything (including boxes of gloves, if you brought them). 3. COME PREPARED TO WORK. a. Prepare yourself BEFORE lab by reading the assigned exercise. It is important to have some understanding of what you are to do since the class periods are not very long, and some classes are large. b. Be prepared for a poptest on the material covered the day before or material to be covered each day. 4. CHECK IN. a. Use only equipment that is assigned to you. b. Each day you will assemble the following dissection material: dissection tray and specimen, blunt probe, sharp probe, forceps (tweezers), scissors, and a scalpel. c. BEFORE YOU BEGIN EACH DAY, check to see that all dissection equipment is clean and in place. Report any dirty or misplaced equipment to the instructor immediately. Dirty or misplace equipment will result in a daily grade of zero for the prior users. 5. BE SAFE. a. NEVER eat, drink, or chew gum while dissecting in the laboratory...

Words: 3891 - Pages: 16

Premium Essay

Anatomy and Physiology

...Unit 303, Outcome 2, Skin & Hair The skin is the largest organ of the body, with a total area of about 20 square feet. The skin protects us from microbes and the elements, helps regulate body temperature, and permits the sensations of touch, heat, and cold. Skin has three layers: * The epidermis, the outermost layer of skin, provides a waterproof barrier and creates our skin tone. * The dermis, beneath the epidermis, contains tough connective tissue, hair follicles, and sweat glands. * The deeper subcutaneous tissue (hypodermis) is made of fat and connective tissue. The skin’s colour is created by special cells called melanocytes, which produce the pigment melanin. Melanocytes are located in the epidermis. http://www.webmd.com/skin-problems-and-treatments/picture-of-the-skin Functions of the Skin The main functions of the skin include: * Protection of the human body * Sensation i.e. transmitting to the brain information about surroundings * Temperature regulation * Immunity i.e. the role of the skin within the immune system * Enables movement and growth without injury * Excretion from the body of certain types of waste materials * Endocrine function e.g. re. Vitamin D Function of the Skin | Example(s) | How does the skin perform this function? What is/are the mechanism(s) ? | 1. Protection | Of the body from: * ultraviolet (UV) radiation e.g. sun damage * dehydration * microorganisms e.g. bacterial invasion...

Words: 8944 - Pages: 36

Free Essay

Anatomy and Physiology

...Unit 5 Anatomy and physiology Functions of the component of the human cell.( http://www.slideshare.net/kristenaoconnor/cell-organelles) Cell membrane: the cell membrane also known as plasma membrane is the biological membrane that separates the interior cell from the outside environment. It provide support and protection for the cell. It serves as the entrance and exit of the cell. Cytoplasm: cytoplasm is a jelly like material that fill the cell. It contains food and water for the cell. It holds the organelle in place. It is mainly composed of water, salt and proteins. Nucleus : it contains the majority of genetic materials as DNA molecules along with variety of protein to form chromosomes. which makes humans who and what they are. Endoplasmic reticulum: the endoplasmic reticulum serves many functions, it folds protein molecules in sacs cisternae, it transports synthesized proteins in the vesicles to the Golgi apparatus. Golgi apparatus: it is made up of membrane bound sacs .The function of the Golgi apparatus is to process and bundle macromolecules like protein and lipids as they synthesize in the cell. It modifies sorts and package proteins to be secreted. Mitochondria: it is of the referred to as the powerhouse . It breaks down food and release energy to the cell. Lysosomes: they organelle that contain the digestive enzymes. It cleans up the cell’s waste product. Centriole: the main function of the centriole is to help the division in cells. It also helps in...

Words: 1291 - Pages: 6

Premium Essay

Anatomy and Physiology

...Anatomy and Physiology Task 1 1. Discuss your dissection of the sheep heart and the cardiovascular system of the fetal pig by doing the following: a. Describe the similarities and differences between the fetal pig heart and the sheep heart. Differences: 1. Size 2. The left ventricular wall is thicker in the sheep than the fetal pig. Similarities: They both have 2 atria and 2 ventricles. b. Describe the four valves of the heart, including their name, location, and function. The four valves of the heart are the tricuspid valve, the pulmonic valve, the mitral valve, and the aortic valve. The tricuspid valve: It is located between the right atria and the right ventricle. It is comprised of three “flap-like cusps” which when in its closed position, prevents the deoxygenated blood entering the heart from the body, from backing up in the right atrium from the right ventricle (regurgitation). http://www.healthline.com/human-body-maps/tricuspid-valve The Pulmonic Valve: This valve is found between the right ventricle and the lungs. As the deoxygenated blood continues on its journey through the heart from the right ventricle, it makes its exit by way of the pulmonic valve. This structure is a one-way valve with prevents the flow of blood back into the right ventricle once it leaves the heart. http://www.healthline.com/human-body-maps/pulmonary-valve The mitral valve: This valve is located between the left atrium and the left ventricle. As the now oxygenated blood flows...

Words: 2172 - Pages: 9

Premium Essay

Anatomy and Physiology

...GVT Task 2 A. 1. Labels of digestive organs A. 2. The function of digestive organs The mouth is the beginning of the digestive process. As food enters the mouth, the teeth begin breaking down the food and mixing with the saliva. The mouth functions in the beginning of the digestive process. The teeth begins to breakdown the food particles and mixes with the saliva. From the mixture of food and saliva travels to the stomach. The stomach begins to secrete gastric enzymes that combine with the food. As the food continues through the duodenum The stomach receives the food particles and begin to mix with the gastric juices to further breakdown the food. The liver The gallbladder Duodenum Jejenum Ascending Colon A. 3. Summarization of mechanical and chemical digestion Mechanical Digestion - Food is crushed and liquefied by the teeth, tongue, and peristaltic contractions (waves of involuntary muscle contraction) of the stomach and small intestine. This creates a greater surface area for the digestive enzymes to work upon. Chemical Digestion - Many glandular structures, dispersed throughout the body, are involved in breaking food into simple molecules that can be absorbed. In the mouth, the salivary glands produce saliva, which both lubricates food and begins the process of starch digestion. Saliva contains salivary amylase (ptyalin), an enzyme that digests starch to maltose (a disaccharide). As food leaves the mouth, the esophagus conducts it to...

Words: 724 - Pages: 3

Premium Essay

Anatomy and Physiology 1

...BIOL 2010 LEARNING OBJECTIVES 1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17. 2.18. 2.19. 2.20. 2.21. Describe the physical organization of the human body and explain how interaction between body components is critical for the maintenance of homeostasis. Define the terms anatomy and physiology in reference to the human body. (LECT & LAB) Describe each of the following levels of organization of the human body: chemical, cellular, tissue, system, organism. (LECT & LAB) Identify the principal systems of the body. (LECT & LAB) Describe the standard anatomical position of the human body. (LECT & LAB) Compare common anatomical terms used to describe the various regions of the human body. (LECT & LAB) List by name and location the principal body cavities. (LECT & LAB) Define homeostasis and explain the effects of the lack of homeostasis on the body's function. (LECT & LAB) Describe the chemical level of organization of the human body. Describe the interrelationship of matter, elements, and atoms. (LECT) Identify by name and symbol the principal elements of the human body. (LECT) Diagram and label the structure of a typical atom. (LECT) Describe the function of electrons located in incomplete outer energy levels. (LECT) Define the terms isotope and radioisotope and give their functions. (LECT) Describe the three types of chemical bonding (ionic...

Words: 2061 - Pages: 9

Premium Essay

Human Anatomy and Physiology

...HUMAN ANATOMY AND PHYSIOLOGY CONTENT Page Number 1.0 Introduction – Integumentary System 3 2.1 The Importance and Mechanism of Integumentary System 4 2.2 Impacts of dysfunction 5-6 2.0 Introduction – Anatomy Of Skin 7 2.1 Epidermis 7 2.1.1 Layer of The Epidermis 8 2.1.2 Specialized Epidermal Cells 9 2.2 Dermis 9 2.2.1 Layer of The Dermis 10 2.2.2 Specialized Dermal Cells 10 2.3 Subcutaneous Tissues 10 3.0 Tattoo 11 3.1 Types of Tattoo 11 3.2 The Procedure of Tattooing 12 3.3 The Risk Involved in Getting Tattooed. 13 3.4 Tattoo Removal 14 4.0 Conclusion 14 - 15 5.0 References 15 1. INTRODUCTION – Integumentary System The Integumentary system consists of the skin and its associated structures such as hair, nails,nerve endings and the sebaceous (oil) and sudoriferous (sweat) glands (Lindh, Pooler, Tamparo and Dahl, 2010,p.790). It is the largest of the body’s anatomy system and count for 12 to 15 percent of body weight covering 1.5-2m2 of surface...

Words: 3557 - Pages: 15

Premium Essay

Osteoporosis: Anatomy And Physiology

...Osteoporosis Research Paper Ericson Yabut Anatomy and Physiology 200A Dr. Edward Eivers 2/14/16 Introduction: Normal Physiology of the Bone It is important to know the fundamental aspects of the skeletal system and the normal anatomy and physiology of the bone tissue in the system to understand osteoporosis. The skeletal system of the human body is essential in many functions, such as supporting body structure, storing minerals and bone growth factors, and being used as leverage for skeletal muscle locomotion. The skeletal system used to be made of hyaline cartilage, but the cartilage eventually ossifies into bone tissue as the body continues to age develop into adulthood. Bone growth and development is strongly affected by...

Words: 643 - Pages: 3

Premium Essay

Anatomy & Physiology 1

...AP1 Fall 2014 Final Exam Take Home – Due at 5 pm on October 29th. • 1. Homeostasis is an important theme in studying the human body. Discuss homeostatic processes in each of the organ systems we covered this semester. Be sure to include discussion of negative feedback, set points, receptors and effectors. (7 points each) 2. Homeostasis- The tendency of a living body to maintain relatively stable internal conditions in spite of greater changes in its external environment. (Saladin, 2015) a. Integumentary System – Homeostasis is critical for our body function, in order to stay in homeostasis the body goes through a process called negative feedback. Negative feedback mechanism in the integumentary system goes through 4 steps in order to maintain homeostasis; 1. There is a stimulus or change in the body. Example. Change in the body temperature. a. If the body is too cold it will trigger shivering to warm your body. b. If your body is too hot it will trigger sweating to release heat. 2. The sensor or receptor (sensory neuron) detects change in your body. 3. The control center (brain) sends out signals and messages to the effector. 4. The effector (muscle or gland) is in charge of restoring the body back to homeostasis. (Saladin, 2015) The body must regulate its own body temperature. Our normal set point is 98.6.When we are overheating our body responds in numerous ways in an effort to cool itself, such as sweating. Alternatively, if our body temperature...

Words: 2119 - Pages: 9

Free Essay

Reflection on Intro to Physiology/Anatomy

...We started with the introduction to anatomy by defining it as the scientific discipline that investigates the structure of the body. I have discovered that there are two basic approaches to the study of anatomy are systematic (by system) and regional (by area), the latter which is more commonly used in most medical schools. And of course studying the structure is not enough, this is where physiology comes in which is the scientific discipline that deals with the processes or functions of living things. I have known homeostasis as the maintenance of the relatively constant environment in the body but it is only now that I have learned about positive and negative feedback mechanisms which maintain homeostasis and that positive homeostasis can be detrimental at times. I’ve also learned more on the anatomical terms that will be used throughout our course and maybe even in med school. In the study of cells, I was able to recall the things we have discussed in our biological science course in the previous year. I remember the three types of solution namely hypotonic, isotonic, and hypertonic. I also come to know more about the different movements across the cell membrane. However I was new to the transcription and translation that happens in the gene expression of a cell. I was able to associate codons of the mRNA strand with the anticodon of the tRNA. Similar to cytology, I was also able to look back on our discussions about tissues last year. I have refreshed myself on the...

Words: 472 - Pages: 2

Free Essay

D1 Anatomy and Physiology

...Right before the race, Jim was quite stressed and was also feeling nervous; this made his heart rate and respiratory rate to increase. This is due to the breathing centre responses to nervous and chemical signals and changes the rate and depth of breathing to make changing of the body. The activation of sympathetic division had a mutual relationship (corresponded) with arousal and energy generation causing the heart to beat faster, the liver convert glycogen to glucose, bronchi of the lungs dilate and support increased gas exchange, digestion inhibited and secretion of adrenaline from the adrenal medulla is accelerated. The changes that happened in the digestive system and urinary system at this time, is the stimulation of the sympathetic division, this inhibits digestion and urination so that the internal fluid in Jim’s blood would be maintained. For this reason, Jim was sweating. Jim blood glucose level became high because when he is stressed, hormone adrenalin is produced and acraadrenela is release by the ending of sympathetic neuron, this will then activate glycogenolysis to escalate the supply of glucose to the cell. Jim’s mouth was dry because he was dehydrated. This is because the solute concentration in extracellular fluid increases that is tissue fluid becomes hypertonic to cells and the water goes from the cells. However, there is no replacement of the water loss. One minute into the race, Jim needed quite a lot of energy for rowing at full speed. However...

Words: 920 - Pages: 4

Premium Essay

Anatomy and Physiology of Respiratory System

...Anatomy and Physiology of Respiratory System Overview Cells in the body require oxygen to survive. Vital functions of the body are carried out as the body is continuously supplied with oxygen. Without the respiratory system exchange of gases in the alveoli will not be made possible and systemic distribution of oxygen will not be made possible. Thetransportation of oxygen in the different parts of the body is accomplished by the blood of the cardiovascular system. However, it is the respiratory system that carries in oxygen to the body and transports oxygen from the tissue cells to the blood. Thus, cardiovascular system and respiratory system works hand in hand with each other. A problem in the cardiovascular system would affect the other and vice versa. Functional Anatomy of the Respiratory System Nose The nose is the only external part of the respiratory system and is the part where the air passes through. During inhalation and exhalation, air enters the nose by passing through the external nares or nostrils. Nasal cavity is found inside the nose and is divided by a nasal septum. The receptors for the sense of smell, olfactory receptors are found in the mucosa of the slit-like superior part of the nasal cavity which is located beneath the ethmoid bone. Respiratory mucosa lines the rest of the nasal cavity and rests on a rich network of thin-walled veins that warms the air passing by. Important information about nose is the presence of the sticky mucus that is produced...

Words: 1627 - Pages: 7

Free Essay

Biology Anatomy and Physiology

...Chapter 4: Tissues © 2013 John Wiley & Sons, Inc. All rights reserved. Tissues ■ ■ ■ ■ ■ ■ ■ ■ Types of tissues Epithelial tissue Connective tissue Membranes Muscular tissue Nervous tissue Tissue repair: restoring homeostasis Aging and tissues © 2013 John Wiley & Sons, Inc. All rights reserved. Types of Tissues ❑ A tissue is a group of similar cells that usually has a similar embryological origin and is specialized for a particular function. The various tissues of the body are classified into four basic types: epithelial tissue, connective tissue, muscular tissue, and nervous tissue. Epithelial tissue (eṕ -i-THĒ-lē-al) covers body surfaces; lines body cavities, hollow organs, and ducts (tubes); and forms glands. Connective tissue protects and supports the body and its organs, binds organs together, stores energy reserves as fat, and provides immunity. Muscular tissue generates the physical force needed to make body structures move. Nervous tissue detects changes inside and outside the body and initiates and transmits nerve impulses (action potentials) that coordinate body activities to help maintain homeostasis. ❑ 1. 2. 3. 4. © 2013 John Wiley & Sons, Inc. All rights reserved. Epithelial Tissue © 2013 John Wiley & Sons, Inc. All rights reserved. Epithelial Tissue © 2013 John Wiley & Sons, Inc. All rights reserved. Epithelial Tissue © 2013 John Wiley & Sons, Inc. All rights reserved. Epithelial Tissue © 2013 John Wiley...

Words: 2175 - Pages: 9

Premium Essay

Anatomy and Physiology Sci 136

...Anatomy and Physiology 2, SCI 136 Research Project Number 40904000. There are many different types of Arthritis. Some of these types are caused by infections, some by injury, some by aging, and some by entirely unknown causes. Infectious arthritis may follow influenza, typhoid fever, tuberculosis, syphilis or gonorrhea. Arthritis of an unknown cause is common and Rheumatoid arthritis is the worst form. Chronic arthritis is common. It has three main forms: osteoarthritis, rheumatoid arthritis, and gout. Osteoarthritis is an inflammatory condition of one or more joints the main symptoms of arthritis are joint pain and stiffness, which typically worsen with age. This is the most common form of arthritis. This disease is known as a degenerative joint disease. It affects about 80% of all Americans. The pain is caused by the degeneration of the joint. The damage to the cartilage occurs as the disease progresses and degenerates and may form some bony spurs at the end of the bones. The bones may grind against each other. Cartilage normally serves as a shock-absorbing cushion between the bones. When it breaks down it results in bones rubbing directly against one another during movement. This friction between the bones causes the bone to thicken, and spurs develop .As time goes on; these abrasions can cause permanent joint damage. Osteoarthritis is most common in the knees, hips, hands and spine. Rheumatoid arthritis is the worst form arthritis. It is a chronic autoimmune...

Words: 853 - Pages: 4