...Exam #4 Review Comprehensive and/or early Weeks Know all conditions that cause splenomegaly All associated diseases with EBV Week 1 Mechanisms of Cellular Adaptation Types of necrosis and pathology where most likely found. Apply the definitions of Atrophy, hypertrophy, hyperplasia, hypoplasia, dysplasia, and metaplasia. Week 2 Pain Throughout Organ Systems General anatomy of kidneys, appendix, gallbladder, pancreas, spleen, male and female reproductive organs. Costochondritis vs Angina Pectoris vs Myocardial Infarctions. Rheumatoid arthritis Gout lab findings Week 3 Fluid Balance and Edema Electrolyte imbalances of sodium, potassium, calcium, and magnesium. Intra and Extra cellular concentrations of sodium and potassium as related to osmotic balance. Know the physical signs/symptoms of electrolyte imbalances including hyper and hypo natremia, kalemia, and calcemia. SIADH lab and imaging findings Diabetes insipidus lab and imaging findings Week 4 Topic 4 Acidosis and Alkalosis Know your acid-bases! Week 5 Topic 5 Cardiovascular Causes of Fatigue Cor-pulmonale, cardiomyopathies Week 6 Topic 6 Thyroid, Adrenal, Liver Fatigue Hashimoto’s thyroiditis vs. DeQuervain vs. nodular goiter vs. secondary hypothyroidism Cirrhosis, Addison disease lab tests and hormone responsible. Is it high or low? Week 7 Topic 7 Bleeding as Indicator of Disease Pathophysiology of Disseminated Intravascular Coagulation Pathophysiology of Hemophilia Ulcers Week 8...
Words: 1128 - Pages: 5
...School of Nursing, Midwifery and Interprofessional Studies. With reference to acid-base balance explore the role of the respiratory system in maintaining blood pH? ‘We live and die at the cellular level’ (Reid, 2011). Homeostasis is crucial for normal cellular function. Acid-base homeostasis is the part of human homeostasis and refers to the balance between the production and elimination of H+ hydrogen ions (pH) within the body fluids (William, Simpkins, 2001, p.236). Metabolic reactions within the cells often produce a huge excess of H+. Lack of any mechanism for its excretion would lead H+ levels in body fluids rise quickly to the lethal levels (Tortora, Grabowski 2006, p.1001); therefore the homeostasis of the right H+ levels is crucial for our survival. In a healthy person several systems work interdependently on maintaining blood’s pH (Sheldon, 2001, p.23): buffer, renal and respiratory systems. In this essay I will concentrate on the pH of the blood in relation to the acid-base balance and the role that respiratory system has in maintaining it. Blood pH is a measure of its acidity or alkalinity. A pH of 7.4 is considered neutral in the systemic arterial blood within its narrow range of around 7.35 and 7.45. When the pH is greater than 7.45 the blood is considered to be alkalotic and when the pH is lower than 7.35 then the blood is considered acidotic (Sheldon, 2001, p.23). Fig. 1: Diagram of blood pH scale: (JupiterIonizer, 2004) The acidity or alkalinity...
Words: 2965 - Pages: 12