...Disk Redundancy Research RAID stands for Redundant Array of Inexpensive (or Independent) Discs. A RAID system uses redundancy - meaning that data is written in more than one place - to keep data safe. RAID is extremely useful if reliability and data redundancy are important to you. Even if you take backups, you will need to take the time to restore those backups and those backups could be hours or days old, resulting in data loss. RAID allows you to survive a drive loss without data loss and in many cases without any downtime. RAID is also useful if you are having disk IO issues, where applications are waiting on the disk to perform tasks. Going with RAID will provide you additional throughput by allowing you to read and write data from multiple drives instead of a single drive. Additionally, if you go with hardware RAID, the hardware RAID card will include additional memory to be used as cache, reducing the strain put on the physical hardware and increase overall performance. RAID Level 0 RAID Level 0 provides no redundancy. RAID Level 0 splits or stripes the data across drives, resulting in higher data throughput. Since no redundant information is stored, performance is very good, but the failure of any disk in the array results in complete data loss. Level 0 is only used to increase disk performance. RAID Level 1 RAID Level 1 is usually referred to as mirroring. A Level 1 array provides redundancy by duplicating all the data from one drive on a second drive so...
Words: 736 - Pages: 3
...Unit 2. Assignment 1. Disk Redundancy Research 1. What does RAID stand for? Redundant Array of Independent Disk 2. When would we use Raid? To divide and replicate data into physical drives. 3. Define the following types of RAID: a. RAID 0-is simply data striped over several disks. This gives a performance advantage, as it is possible to read parts of a file in parallel. However not only is there no data protection, it is actually less reliable than a single disk, as all the data is lost if a single disk in the array stripe fails. b. RAID 1-is data mirroring. Two copies of the data are held on two physical disks, and the data is always identical. RAID1 has a performance advantage, as reads can come from either disk, and is simple to implement. However, it is expensive, as twice as many disks are needed to store the data. c. RAID 5-data is written in blocks onto data disks, and parity is generated and rotated around the data disks. Good general performance, and reasonably cheap to implement. Used extensively for general data. d. RAID 6-is growing in popularity as it is seen as the best way to guarantee data integrity as it uses double parity. It was originally used in SUN V2X devices, where there are a lot of disks in a RAID array, and so a higher chance of multiple failures. RAID6 as implemented by SUN does not have a write overhead, as the data is always written out to a different block. 4. Why is RAID 0 of any use if it offers no redundancy? Fast performs and additional...
Words: 352 - Pages: 2
...Disk Redundancy Research The term RAID stands for Redundant Array of Independent Disks. RAID is used for storage in the operating system. As the levels of RAID get higher the disk, split and mirror the information and store it in the operating system. • RAID 0- RAID 0 provides no redundancy, on the other hand you this type of RAID allows you to improve your performance by using multiple disks. With RAID 0 your computers data writes the information onto a hard disk and splits it across two or more hard drives evenly. • RAID 1- With RAID 1 two disks are configured to mirror each other. With this should something happen to one disk you will have that mirrored up-to-date copy • RAID 5- RAID 5 takes three disks to be used. This type of RAID uses what is called stripping to divide the data across all the hard drives, with this process it also has an additional parity data divided across all disks. With this process if one of the hard drives fails the user will not lose any of their data. • RAID 6-This type of RAID is very similar to RAID 5 but offers a parity block, with two parity block for each bit of data stripped across the disk. With RAID 6 you have less storage space than RAID 5 but that is only because RAID 6 offers users with additional protection from data loss. 4. RAID 0 is still of great use because it still improves the performance of your operating system. This can be used by people who are big into gaming. 5. I think that RAID 1 would be the most expensive out...
Words: 437 - Pages: 2
...latest is Redundant Array of Independent Disks. 1 2. When would we use RAID? RAID is used as enhanced storage space, storing the same data in different places. Thus redundancy. 2 3. Define the types of RAID’s? a) RAID 0: This technique uses the Striping technique but has no redundancy. It has no fault tolerance. It offers very good performance though. Good for a backup. RAID 0 can be on home computers.2,3 b) RAID 1: This RAID uses Disk Mirroring. It also uses 2 drives that duplicate the storage of data. There’s no striping. The read performance has been improved since either disk can be read. RAID 1 gives the best performance and fault tolerance. It can be on home computers. 2,3 c) RAID 5: This RAID stores Parity information, but not redundant data. It has a rotating Parity Array, addressing the write limitation in RAID 4. It uses 3 sometimes 5 disks for the array. This RAID is best used for multi-user systems in which performance is not critical. Parity is used to protect the data, so if one hard drive dies, the information that was on that particular drive will be on at least another drive.2,3 d) RAID 6: This RAID is similar to RAID 5, but includes a second Parity Scheme that’s distributed across different drives giving high fault and drive failure tolerance.3 4. Why is RAID 0 of any use if it offers no redundancy? RAID 0 works something like a RAID 5 but only without parity. The data is evenly striped across 2 or more disks. It has good speed and a lot of data storage...
Words: 746 - Pages: 3
...Redundant Array of Inexpensive Disks. Currently it is more commonly known as standing for Redundant Array of Independent Disks. 2. When would you use RAID? Having data on multiple disks helps ensure against data loss in case of a drive failure. If one of the drives fails most levels of RAID allow the user to just replace that one drive while not losing any data. Having multiple drives also allows multiple read and write operations to be going on at the same time, which increases performance. 3. Define the following types of RAID: a. RAID 0 Using two or more disks, RAID 0 utilizes a striped disk array with data broken down and written part to each disk. This increases performance since multiple input / output operations can be carried out at the same time. RAID 0, unlike the other levels of RAID, does not provide any protection against data loss. If one drive goes down, all of the data will be corrupted. b. RAID 1 RAID 1 requires two or more disks to operate, it organizes data into mirrored pairs. When data is written to one of the drives in a mirrored pair, it is automatically written to both drives. That way if one of the two drives fails the user just needs to replace that one drive. It also provides an increase in performance since two read operations can be performed at the same time. Only one write can be performed at a time since the data must be written to both drives. UNIT 2 ASSIGNMENT 1 3 c. RAID 5 Three disks are needed to implement RAID...
Words: 855 - Pages: 4
...1. RAID – redundant array of independent disks; originally redundant array of inexpensive disks. 2. You can use RAID for improved fault tolerance on all of the server hard drives. 3. A. RAID 0 - This technique has striping but no redundancy of data. It offers the best performance but no fault-tolerance. B. RAID 1 - This type is also known as disk mirroring and consists of at least two drives that duplicate the storage of data. There is no striping. Read performance is improved since either disk can be read at the same time. Write performance is the same as for single disk storage. RAID-1 provides the best performance and the best fault-tolerance in a multi-user system. C. RAID 5 - stores parity information but not redundant data (but parity information can be used to reconstruct data). RAID-5 requires at least three and usually five disks for the array. It's best for multi-user systems in which performance is not critical or which do few write operations. D. RAID 6 - This type is similar to RAID-5 but includes a second parity scheme that is distributed across different drives and thus offers extremely high fault- and drive-failure tolerance. 4. RAID 0 – Fast performance without providing fault-tolerance 5. RAID 1 - can be expensive because it requires at least two drives in order to duplicate the storage. People utilize it because of 100% redundancy guaranteeing no lost data 6. It really depends on the reason I would need RAID. If I ran a business from...
Words: 386 - Pages: 2
...Assignment Title Unit 2. Assignment 1. Disk Redundancy Research Assignment Overview: Using the Internet and the ITT Tech Virtual Library, research the following questions, and provide your thoughts on each one. Submit your answers in a Word Document and ensure that you cite any resources you utilized with the proper APA format. 1. What does RAID stand for? RAID stands for Redundant Array of Inexpensive Disks 2. When would we use RAID? 3. Define the following types of RAID: a.RAID 0: Striped Set -- A RAID 0 setup splits data evenly across two or more disks. It is important to note that RAID 0 was not one of the original RAID levels, and is not redundant. If one drive goes down your server will need to be restored from backup b. RAID 1 Mirrored Set -- A Raid 1 setup creates an exact copy (or mirror) of data on two or more disks. A typical setup just has two drives that are setup to mirror data. If one drive goes down your server will still be functional until a scheduled drive replacement can be installed. c. RAID 5 Striped Set with Parity -- A RAID 5 setup uses block-level striping with parity data distributed across all disks in the RAID Array. This means you can have one drive fail and your server will remain functional until a scheduled drive replacement can be installed. RAID 5 also increases read/write speeds while using the available disk space efficiently. d. RAID 6 Similar to RAID 5 but not as widely used, RAID 6 performs either two parity computations...
Words: 422 - Pages: 2
...Unit 2 Assignment 1: Disk Redundancy Research December 14, 2013 1) What does RAID stand for? RAID stands for? RAID stands for Redundant Array of Independent Disks. 2) When would we use RAID? RAID can be used by either individual users or large network users to store data across multiple locations to increase fault tolerance. 3) Define the following types of RAID: a) RAID 0 b) RAID 1 c) RAID 5 d) RAID 6 RAID 0 | Strips data without redundancy. Provides faster performance, but it lacks fault tolerance. | RAID 1 | Known as disk mirroring. This method doesn’t strip data, it saves all data intact across at least two disks to provide fault tolerance. | RAID 5 | Uses rotating parity to store data. There is do data duplication, but the parity data can be used to reconstruct data. Mostly used by large organizations for data that is not performance sensitive. | RAID 6 | Same as RAID 5, but adds another parity scheme to increase fault tolerance. | 4) Why is RAID 0 of any use if it offers no redundancy? RAID 0 allows data to be broken up in order to allow faster access to data. 5) Why do you think that RAID 1 can be the most expensive? Why would people utilize it if it’s so costly? RAID 1 can be the most expensive because it requires an entire drive to make a duplicate of any data and the more copies you want, the more drives you need. People still use is because it makes complete copies of data, not partial ones. The complete copies allow users...
Words: 405 - Pages: 2
...Disk Redundancy Research Disk Redundancy Research • What does RAID stand for? Redundant array of independent disks • When would we use RAID? When need of advanced storage schemes are needed. Whether it is better performance, reliability and extra redundancy. • Define the following types of RAID: • RAID 0 – Block-level striping without parity or mirroring • RAID 1 – Mirroring without parity or striping • RAID 5 – Block-level striping with distributed parity • RAID 6 – Block-level striping with double distributed parity. (Basically extended RAID 5) • Why is RAID 0 of any use if it offers no redundancy? Best if used in a High bandwidth need. video and picture editing, etc. • Why do you think that RAID 1 can be the most expensive? Why would people utilize it if it’s so costly? Because its disk overhead requires the drives to always be running. Its 100% redundancy provides a guarantee that no data will be lost. • If you, as a home computer user, were to purchase a form of RAID, which would you choose and why? It all depends on what purpose I would choose to use a RAID for. If I was implementing a type of high traffic situation I would use RAID 5, RAID 0 in any high speed situation, and RAID 1 if high availability is needed. • What is the difference between software RAID and hardware RAID? Hardware raid is where a controller built into the motherboard or an Add-in card is used to populate the raid. Software raid is where you use the program available to your operating...
Words: 272 - Pages: 2
...UNIT 2. ASSIGNMENT 2. DISK REDUNDANCY RESEARCH Assignment Requirements: Using the Internet and the ITT Tech Virtual Library, research the following questions, and provide your thoughts on each one. Submit your answers in a Word Document and ensure that you cite any resources you utilized with the proper APA format. 1. What does RAID stand for? A. Redundant Array of Independent Disks 2. When would we use RAID? A. When you need a performance increase in software or software redundancy. Running a large Info server were a lot of people will be getting info at the same time. 3. Define the following types of RAID: A. RAID 0 this configuration has striping but no redundancy of data. It offers the best performance but no fault-tolerance. B. RAID 1 Also known as disk mirroring, this configuration consists of at least two drives that duplicate the storage of data. There is no striping. Read performance is improved since either disk can be read at the same time. Write performance is the same as for single disk storage. C. RAID 5 this level is based on block-level striping with parity. The parity information is striped across each drive, allowing the array to function even if one drive were to fail. The array’s architecture allows read and write operations to span multiple drives. This results in performance that is usually better than that of a single drive, but not as high as that of a RAID 0 array. RAID 5 requires at least three disks, but it is often recommended to use at...
Words: 559 - Pages: 3
...Unit 2 Assignment 1 Disk Redundancy Research 1. What Does RAID stand for? Redundant Array of Independent Disks 2. When would we use RAID? It’s a balanced way to improve overall storage performance. 3. Define the following types of RAID a. RAID 0: Provides data striping but it lacks both fault tolerance and redundancy to improve performance as a result if one drive fails then all data in the array is lost. b. RAID 1: Provides disk mirroring and duplexing so level one provides twice the read transaction rate of single disks and the same write transaction rate as a single disk. c. RAID 5: Uses block-level striping with parity data distributed across all member disks. Also RAID 5 has achieved popularity because of its low cost of redundancy. d. RAID 6: Extends RAID 5 by adding an additional parity block thus it uses block-level striping with two parity blocks distributed across all member disks. RAID 6 does not have a performance penalty for read operations but it does have a performance penalty on write operations because of the overhead associated with parity calculations and it’s also no less space efficient then RAID 5. 4. Why is RAID 0 of any use if it offers no redundancy? Because it provides data striping even though it lacks both fault tolerance and redundancy. 5. Why do you think that RAID 1 can be the most expensive? You get two copies of everything after you have a hard drive fail on you with all of the data completely lost you’ll understand that spending...
Words: 434 - Pages: 2
...NT1230 cLIENT-sERVER NETWORKING 1 | UNIT 2 ASSIGNMENT 1 | DISK REDUNDANCY RESEARCH | | Joseph Balcazar (13383477) | 6/27/2015 | Using the internet and the ITT-Tech Library, research the following questions and provide your thoughts on each one . Submit your answers in a Word Document and cite any resources in A.P.A format | 1.What does R.A.I.D stand for? R.A.I.D stands for Redundant Array of Inexpensive Disks 2.When would we use RAID? We would use RAID in file server and data storage where access speed with a minimal lost of data and reliability is crucial for example a web store 3.Define the following types of RAID: a. RAID0 Disk Striping offering no redundancy and is written across multiple drives increasing drive performance b. RAID1 duplicates entire contents of drive1 on a second drive so if the primary drive fails there’s a backup of the primary on a secondary disk minimizing downtime of drive c. RAID5 Spreads data across multiple drives evenly giving server or website higher drive data reliability and higher drive storage capacity d.RAID6 RAID 6, also known as double-parity RAID, uses two parity stripes on each disk. It allows for two disk failures within the RAID set before any data is lost. 4.Why is RAID0 of any use if it doesn’t offer any redundancy ? RAID0 is usedwhere drive performance is more important that security of data for example a gaming computer. 5 Why do u think RAID1 can be the most expensive? Why would people utilize it if so costly? RAID1...
Words: 489 - Pages: 2
...NT1230 Unit 2. Assignment 1 Disk Redundancy Research 1. What does RAID stand for? Redundant Array of Inexpensive Disk 2. When would we use RAID? When you have a vast amount of data to need to be backup or to improve speed of the system. 3. Define the following types of RAID: a. RAID 0: Splits data evenly across two or more disks (striped) without parity information for speed. RAID 0 was not one of the original RAID levels and provides no data redundancy. RAID 0 is normally used to increase performance, although it can also be used as a way to create a large logical disk out of two or more physical ones. b. RAID 1: An exact copy (or mirror) of a set of data on two disks. This is useful when read performance or reliability is more important than data storage capacity. Such an array can only be as big as the smallest member disk. c. RAID 5: Comprises block-level striping with distributed parity. Unlike in RAID 4, parity information is distributed among the drives. It requires that all drives but one be present to operate. Upon failure of a single drive, subsequent reads can be calculated from the distributed parity such that no data is lost. RAID 5 requires at least three disks. d. RAID 6: Extends RAID 5 by adding an additional parity block; thus it uses block-level striping with two parity blocks distributed across all member disks. 4. Why is RAID 0 of any use if it offers no redundancy? It splits data evenly across two or more disks (striped) without parity information...
Words: 415 - Pages: 2
...question 1-10 p. 144 Pg 1 Disk Redundancy Research Pg 2 1. By default, Windows 7 standers users are permitted to install Plug and Play devices only if their drivers are digitally signed. 2. The debilitating condition in which files are stored as clusters scattered all over a disk is called fragmentation. 3. The file system included in Windows 7 that is specifically designed for on flash drives called eXfat. 4. Technically speaking, you create partitions on basic disks and volumes on dynamic disks. 5. In windows 7, the Fat32 file system is limited to volumes no larger than 32 GB. 6. The digital signature of a driver consists of a Checksum that is appended to the driver itself before publication. 7. To create a fourth primary partition on a basic disk, you must use the Disk Part utility. 8. To extend or shrink a partition on a basic disk, you must be a member of the Administrators or Backup Operators group. 9. The default partition style used by windows 7 on anx86 computer is MBR. 10. All digital signed drivers have undergone Windows Hardware Quality Lab testing. 1. RAID stands for, Redundant Array of Independent Disks. 2. We would RAID when we need to combining several hard disk drives into one logical unit. 3. A. RAID 0 is stripping it divides the information onto 2 or more hard drives speeding up the input and output of the device, B. RAID 1 is mirroring it provides redundancy by writing all data to...
Words: 466 - Pages: 2
...Unit 2. Assignment 1. Disk Redundancy Research 1. What does RAID stand for? Raid stands for Redundant Array of Independent Disks 2. When would we use RAID? You would use RAID to combine multiple hard drives. 3. Define the following types of RAID: a. RAID 0 RAID 0 increases performance and splits data evenly between 2 drives b. RAID 1 RAID 1 mirrors both drives. c. RAID 5 RAID 5 uses 3 drives and uses striping to divide across all drives with additional parity data divided across all disks. d. RAID 6 RAID 6 is similar to RAID 5 but adds an additional parity block to each drive writing 2 parity blocks for each bit of data striped across the disks. 4. Why is RAID 0 of any use if it offers no redundancy? Because it splits the data evenly among the 2 hard drives 5. Why do you think that RAID 1 can be the most expensive? Why would people utilize it if it’s so costly? Because you will run out of space faster but you will always have a copy of your data if 1 of the drives ever fails. 6. If you, as a home computer user, were to purchase a form of RAID, which would you choose and why? I think I would try RAID 10 since it has the ability to use the advantages of RAID 1 and 0 I will have the mirroring on my secondary disks and no redundancy. 7. What is the difference between software RAID and hardware RAID? Hardware has a specially built controller to that handles the drives and costs more and the software has no specialized hardware is...
Words: 281 - Pages: 2