... In this investigation I am going to investigate what affect the resistance of a wire. Electricity flows in metals. Metal wires are made of millions of tiny metal crystals. Each crystal’s atoms are arranged in a regular pattern. The metal is full of ‘free’ electrons that do not stick to any particular atom. They fill the space between atoms in a metal. When these electrons move they create an electric current. Conductors have resistance, but some are worse than others. The free electrons keep bumping into atoms. A wires resistance depends on four main factors which are: Resistivity The length of the wire Cross sectional area The temperature of the wire I am going to investigate how the length of the wire affects the resistance. I have done a preliminary experiment to help me decide the best way to do my investigation. The results should also help me make a prediction. Preliminary Investigation Below are my results from the preliminary experiment (see table 1). I have taken three readings each from the Volts and current to make sure it is as accurate as possible Table 1 From the results I can see that as the length of the wire increases, the resistance increases as well. Furthermore I have noticed that if you double the length of the wire, the resistance is roughly doubled. E.g. when the length of the wire is 20cm the resistance is 3.14 ohms, when the length of the wire is 40cm the resistance is 6.18 ohms which is roughly double 3.14 ohms. In my main investigation...
Words: 1588 - Pages: 7
...ate Aptitude Test in Engineering GATE 2014 Brochure Table of Contents 1. Introduction .............................................................................................................1 2. About GATE 2014 ......................................................................................................1 2.1. Financial Assistance ............................................................................................................................ 1 2.2 Employment ............................................................................................................................................ 2 2.3 Administration ....................................................................................................................................... 2 3.1 Changes Introduced in GATE 2013 that will continue to remain in force for GATE 2014 .......................................................................................................................................................... 3 4.1 Eligibility for GATE 2014 ................................................................................................................... 4 4.2 GATE Papers ............................................................................................................................................ 5 4.3 Zone-Wise List of Cities in which GATE 2014 will be Held ................................................... 6 4.4 Zone-Wise List of Cities for 3rd...
Words: 32784 - Pages: 132
...Programmable Logic Controllers: Programming Methods and Applications by John R. Hackworth and Frederick D. Hackworth, Jr. Table of Contents Chapter 1 - Ladder Diagram Fundamentals Chapter 2 - The Programmable Logic Controller Chapter 3 - Fundamental PLC Programming Chapter 4 - Advanced Programming Techniques Chapter 5 - Mnemonic Programming Code Chapter 6 - Wiring Techniques Chapter 7 - Analog I/O Chapter 8 - Discrete Position Sensors Chapter 9 - Encoders, Transducers, and Advanced Sensors Chapter 10 - Closed Loop and PID Control Chapter 11 - Motor Controls Chapter 12 - System Integrity and Safety Preface Most textbooks related to programmable controllers start with the basics of ladder logic, Boolean algebra, contacts, coils and all the other aspects of learning to program PLCs. However, once they get more deeply into the subject, they generally narrow the field of view to one particular manufacturer's unit (usually one of the more popular brands and models), and concentrate on programming that device with it's capabilities and peculiarities. This is worthwhile if the desire is to learn to program that unit. However, after finishing the PLC course, the student will most likely be employed in a position designing, programming, and maintaining systems using PLCs of another brand or model, or even more likely, many machines with many different brands and models of PLC. It seems to the authors that it would be more advantageous to approach the...
Words: 73061 - Pages: 293
...BRE Building Elements Foundations, basements and external works Performance, diagnosis, maintenance, repair and the avoidance of defects H W Harrison, ISO, Dip Arch, RIBA P M Trotman BRE Garston Watford WD25 9XX Prices for all available BRE publications can be obtained from: CRC Ltd 151 Rosebery Avenue London, EC1R 4GB Tel: 020 7505 6622 Fax: 020 7505 6606 email: crc@construct.emap.co.uk BR 440 ISBN 1 86081 540 5 © Copyright BRE 2002 First published 2002 BRE is committed to providing impartial and authoritative information on all aspects of the built environment for clients, designers, contractors, engineers, manufacturers, occupants, etc. We make every effort to ensure the accuracy and quality of information and guidance when it is first published. However, we can take no responsibility for the subsequent use of this information, nor for any errors or omissions it may contain. Published by Construction Research Communications Ltd by permission of Building Research Establishment Ltd Requests to copy any part of this publication should be made to: CRC Ltd Building Research Establishment Bucknalls Lane Watford, WD25 9XX BRE material is also published quarterly on CD Each CD contains BRE material published in the current year, including reports, specialist reports, and the Professional Development publications: Digests, Good Building Guides, Good Repair Guides and Information Papers. The CD collection gives you the opportunity to build a comprehensive library...
Words: 167696 - Pages: 671
...A NPSTC Public Safety Communications Report The National Public Safety Telecommunications Council is a federation of organizations whose mission is to improve public safety communications and interoperability through collaborative leadership. Defining Public Safety Grade Systems and Facilities Final Report 5/22/2014 Support to NPSTC provided by the U.S. Department of Homeland Security's Science and Technology Directorate, Office for Interoperability and Compatibility (OIC), and the National Protection and Programs Directorate, Office of Emergency Communications (OEC). Points of view or opinions expressed are those of the originators and do not necessarily represent the official position or policies of the U.S. Department of Homeland Security. American Association of State Highway and Transportation Officials | American Radio Relay League | Association of Fish and Wildlife Agencies | Association of Public Safety Communications Officials | Forestry Conservation Communications Association | International Association of Chiefs of Police | International Association of Emergency Managers | International Association of Fire Chiefs | International Municipal Signal Association | National Association of State Chief Information Officers | National Association of State Emergency Medical Services Officials | National Association of State Foresters | National Association of State Technology Directors | National Emergency Number Association | National Sheriffs’ Association 8191 Southpark...
Words: 44798 - Pages: 180
...This page intentionally left blank Physical Constants Quantity Electron charge Electron mass Permittivity of free space Permeability of free space Velocity of light Value e = (1.602 177 33 ± 0.000 000 46) × 10−19 C m = (9.109 389 7 ± 0.000 005 4) × 10−31 kg �0 = 8.854 187 817 × 10−12 F/m µ0 = 4π10−7 H/m c = 2.997 924 58 × 108 m/s Dielectric Constant (�r� ) and Loss Tangent (� �� /� � ) Material Air Alcohol, ethyl Aluminum oxide Amber Bakelite Barium titanate Carbon dioxide Ferrite (NiZn) Germanium Glass Ice Mica Neoprene Nylon Paper Plexiglas Polyethylene Polypropylene Polystyrene Porcelain (dry process) Pyranol Pyrex glass Quartz (fused) Rubber Silica or SiO2 (fused) Silicon Snow Sodium chloride Soil (dry) Steatite Styrofoam Teflon Titanium dioxide Water (distilled) Water (sea) Water (dehydrated) Wood (dry) � r �� / � 1.0005 25 8.8 2.7 4.74 1200 1.001 12.4 16 4–7 4.2 5.4 6.6 3.5 3 3.45 2.26 2.25 2.56 6 4.4 4 3.8 2.5–3 3.8 11.8 3.3 5.9 2.8 5.8 1.03 2.1 100 80 1 1.5–4 0.1 0.000 6 0.002 0.022 0.013 0.000 25 0.002 0.05 0.000 6 0.011 0.02 0.008 0.03 0.000 2 0.000 3 0.000 05 0.014 0.000 5 0.000 6 0.000 75 0.002 0.000 75 0.5 0.000 1 0.05 0.003 0.000 1 0.000 3 0.001 5 0.04 4 0 0.01 Conductivity (� ) Material Silver Copper Gold Aluminum Tungsten Zinc Brass Nickel Iron Phosphor bronze Solder Carbon steel German silver Manganin Constantan Germanium Stainless steel , S/m 6.17 × 107 4.10 × 107 3.82 × 107 1.82 × 107 1.67 × 107 1.5 × 107 1.45 × 107 1.03...
Words: 177667 - Pages: 711
...Building Code of the Philippines CHAPTER 1 GENERAL PROVISIONS SECTION 101. Title This Decree shall be known as the “National Building Code of the Philippines” and shall hereinafter be referred as the “Code”. SECTION 102. Declaration of Policy It is hereby declared to be the policy of the State of safeguard life, health, property, and public welfare, consistent with the principles of sound environmental management and control; and to this end, make it the purpose of this Code to provide for all buildings and structures, a framework of minimum standards and requirements to regulate and control their location, site, design, quality of materials, construction, use occupancy, and maintenance. SECTION 103. Scope and Application (a) The provisions of this Code shall apply to the design, location, sitting, construction, alteration, repair, conversion, use, occupancy, maintenance, moving, demolition of, and addition to public and private buildings and structures, except traditional indigenous family dwellings as defined herein. (b) Buildings and/or structures constructed before the approval of this Code shall not be affected except when alterations, additions, conversions or repairs are to be made therein in which case, this Code shall apply only to portions to be altered, added converted or repaired. SECTION 104. General Building Requirements (a) All buildings or structures as well as accessory facilities thereto shall conform in all respects to the principles...
Words: 127879 - Pages: 512
...NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR Bachelor of Technology Programmes amï´>r¶ JH$s g§ñWmZ, m¡Úmo{ à VO o pñ Vw dZ m dY r V ‘ ñ Syllabi and Regulations for Undergraduate PROGRAMME OF STUDY (wef 2012 entry batch) Ma {gb Course Structure for B.Tech (4years, 8 Semester Course) Civil Engineering ( to be applicable from 2012 entry batch onwards) Course No CH-1101 /PH-1101 EE-1101 MA-1101 CE-1101 HS-1101 CH-1111 /PH-1111 ME-1111 Course Name Semester-1 Chemistry/Physics Basic Electrical Engineering Mathematics-I Engineering Graphics Communication Skills Chemistry/Physics Laboratory Workshop Physical Training-I NCC/NSO/NSS L 3 3 3 1 3 0 0 0 0 13 T 1 0 1 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 4 1 1 0 0 0 0 0 0 2 0 0 0 0 P 0 0 0 3 0 2 3 2 2 8 0 0 0 0 0 2 2 2 2 0 0 0 0 0 2 2 2 6 0 0 8 2 C 8 6 8 5 6 2 3 0 0 38 8 8 8 8 6 2 0 0 40 8 8 6 6 6 2 2 2 40 6 6 8 2 Course No EC-1101 CS-1101 MA-1102 ME-1101 PH-1101/ CH-1101 CS-1111 EE-1111 PH-1111/ CH-1111 Course Name Semester-2 Basic Electronics Introduction to Computing Mathematics-II Engineering Mechanics Physics/Chemistry Computing Laboratory Electrical Science Laboratory Physics/Chemistry Laboratory Physical Training –II NCC/NSO/NSS Semester-4 Structural Analysis-I Hydraulics Environmental Engg-I Structural Design-I Managerial Economics Engg. Geology Laboratory Hydraulics Laboratory Physical Training-IV NCC/NSO/NSS Semester-6 Structural Design-II Structural Analysis-III Foundation Engineering Transportation Engineering-II Hydrology &Flood...
Words: 126345 - Pages: 506
...1 1 Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry Krishnan Rajeshwar The University of Texas at Arlington, Arlington, Texas 1.1 1.2 1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.4 1.4.1 1.4.2 1.4.3 1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.5.5 1.6 1.7 1.7.1 1.7.2 1.7.3 1.7.4 1.7.5 Introduction and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electron Energy Levels in Semiconductors and Energy Band Model . The Semiconductor–Electrolyte Interface at Equilibrium . . . . . . . . The Equilibration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Depletion Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mapping of the Semiconductor Band-edge Positions Relative to Solution Redox Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Surface States and Other Complications . . . . . . . . . . . . . . . . . . . Charge Transfer Processes in the Dark . . . . . . . . . . . . . . . . . . . . Current-potential Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dark Processes Mediated by Surface States or by Space Charge Layer Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rate-limiting Steps in Charge Transfer Processes in the Dark . . . . . Light Absorption by the Semiconductor Electrode and Carrier Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Light Absorption...
Words: 180197 - Pages: 721
...Guide to Meteorological Instruments and Methods of Observation WMO-No. 8 Guide to Meteorological Instruments and Methods of Observation WMO-No. 8 Seventh edition 2008 WMO-No. 8 © World Meteorological Organization, 2008 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix P.O. Box No. 2300 CH-1211 Geneva 2, Switzerland ISBN 978-92-63-10008-5 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of WMO. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. Tel.: +41 (0) 22 730 84 03 Fax: +41 (0) 22 730 80 40 E-mail: publications@wmo...
Words: 216230 - Pages: 865
...CONVERSION FACTORS FROM ENGLISH TO SI UNITS Length: 1 ft 1 ft 1 ft 1 in. 1 in. 1 in. 1 ft2 1 ft2 1 ft2 1 in.2 1 in.2 1 in.2 1 ft3 1 ft3 1 in.3 1 in.3 1 in. 1 in.3 1 ft/min 1 ft/min 1 ft/min 1 ft/sec 1 ft/sec 1 in./min 1 in./sec 1 in./sec 3 0.3048 m 30.48 cm 304.8 mm 0.0254 m 2.54 cm 25.4 mm 929.03 10 4 m2 929.03 cm2 929.03 102 mm2 6.452 10 4 m2 6.452 cm2 645.16 mm2 28.317 10 3 m3 28.317 103 cm3 16.387 10 6 m3 16.387 cm3 0.16387 0.16387 10 mm 10 4 m3 5 3 Coefficient of consolidation: Force: 1 in.2/sec 1 in.2/sec 1 ft2/sec 1 lb 1 lb 1 lb 1 kip 1 U.S. ton 1 lb 1 lb/ft 1 lb/ft2 1 lb/ft2 1 U.S. ton/ft2 1 kip/ft2 1 lb/in.2 1 lb/ft3 1 lb/in.3 1 lb-ft 1 lb-in. 1 ft-lb 1 in.4 1 in.4 6.452 cm2/sec 20.346 103 m2/yr 929.03 cm2/sec 4.448 N 4.448 10 3 kN 0.4536 kgf 4.448 kN 8.896 kN 0.4536 10 3 metric ton 14.593 N/m 47.88 N/m2 0.04788 kN/m2 95.76 kN/m2 47.88 kN/m2 6.895 kN/m2 0.1572 kN/m3 271.43 kN/m3 1.3558 N · m 0.11298 N · m 1.3558 J 0.4162 0.4162 106 mm4 10 6 m4 Area: Stress: Volume: Unit weight: Moment: Energy: Moment of inertia: Section modulus: Hydraulic conductivity: 0.3048 m/min 30.48 cm/min 304.8 mm/min 0.3048 m/sec 304.8 mm/sec 0.0254 m/min 2.54 cm/sec 25.4 mm/sec CONVERSION FACTORS FROM SI TO ENGLISH UNITS Length: 1m 1 cm 1 mm 1m 1 cm 1 mm 1m 1 cm2 1 mm2 1 m2 1 cm2 1 mm2 1m 1 cm3 1 m3 1 cm3 1N 1 kN 1 kgf 1 kN 1 kN 1 metric ton 1 N/m 3 2 3.281 ft 3.281 10 3.281 10 39.37 in. 0.3937 in. 0.03937 in. 2 Stress: 2 3 ft ft 1 N/m2 1 kN/m2...
Words: 183832 - Pages: 736