Free Essay

Learnable Hyperspectral Similarity Measures

In:

Submitted By agalal
Words 934
Pages 4
1. W. Li, S. Prasad, J. Fowler and L. Bruce, "Class Dependent Compressive-Projection Principal Component Analysis for Hyperspectral Image Reconstruction", Proceeding of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2011. 2. Z. Denghui and Y. Le, "Support Vector Machine Based Classification for Hyperspectral Remote Sensing Images after Minimum Noise Fraction Rotation Transformation", Proceeding of Internet Computing and Information Services conference, September, 2011. 3. M. Dalla Mura, A. Villa, J.A Benediktsson, J. Chanussot and L. Bruzzone, "Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis", IEEE Geoscience and Remote Sensing Letters, 8(3):541-545, 2011. 4. S. Hemissi, K. Ettabaa, I. Farah and B. Soulaiman, "Towards multi-temporal hyperspectral images classification based on 3D signature model and matching", Proceeding of Hyperspectral 2010 Workshop, 2010. 5. M. Bilenko and R. Mooney, "Adaptive duplicate detection using learnable string similarity measures", Proceeding of Ninth ACM SIGKDD International Conference on Knowledge Discov-ery and Data Mining, 2003. 6. F. Chen, A. Farahat and Brants T. "Multiple similarity measures and source-pair information in story link detection", Proceeding of Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, May, 2004. 7. C., Rodarmel, J., Shan, “Principal Component Analysis for Hyperspectral Image Classification,” Journal of the American Congress on Surveying and Mapping, vol. 2, 2002, pp.115-122. 8. Liang, S., and H. Fang (2004), An Improved Atmospheric Correction Algorithm for Hyperspectral Remotely Sensed Imagery, IEEE Geosci Remote Sensing Lett, 1(2), 112-117 9. Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., Ratkowski, A.J., Felde, G., Hoke, M.L., 2005a. A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick atmospheric correction). In: Proceedings of the International Geoscience and Remote Sensing Symposium, IGARSS’05, 2005 IEEE International, vol. 5, pp. 3549-3552, 25-29 July 2005. 10. Zoran M., Stefan S., Climatic Changes Effects on Spectral Vegetation Indices for Forested Areas Analysis From Satellite Data. Proceedings of the 2nd Environmental Physics Conference, 18-22 Feb. 2006, Alexandria, Egypt. 11. Verrelst, J. Koetz, B. Kneubühler, M. Schaepman, M.E. Directional sensitivity analysis of vegetation indices from multi-angular CHRIS/PROBA data. In: International Society for Photogrammetry and Remote Sensing (ISPRS) 2006: ISPRS mid-term symposium 2006 remote sensing: from pixels to processes, 8-11 May 2006, Enschede, the Netherlands. 7 12. Rouse, J.W., R.H. Haas, J.A. Schell, and D.W. Deering, 1973. Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351 I: 309-317. 13. Tucker, C.J., 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of the Environment 8:127-150. 14. Sellers, P.J., 1985. Canopy Reflectance, Photosynthesis and Transpiration. International Journal of Remote Sensing 6:1335-1372. 15. Kaufman, Y.J. and D. Tanre, 1996. Strategy for Direct and Indirect Methods for Correcting the Aerosol Effect on Remote Sensing: from AVHRR to EOS-MODIS. Remote Sensing of Environment 55:65-79. 16. Sims, D.A. and J.A. Gamon, 2002. Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment 81:337-354. 17. Datt, B., 1999. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests Using Eucalyptus Leaves. Journal of Plant Physiology 154:30-36. 18. Gamon, J.A., J. Penuelas, and C.B. Field, 1992. A Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sensing of Environment 41:35-44. 19. Gamon, J.A., L. Serrano, and J.S. Surfus, 1997. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency Across Species, Functional Types and Nutrient Levels. Oecologia 112:492-501. 20. Penuelas, J., F. Baret, and I. Filella, 1995. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica 31:221-230. 21. 21 Gamon, J.A. and J.S. Surfus, 1999. Assessing Leaf Pigment Content and Activity With a Reflectometer. New Phytologist 143:105-117. 22. 22 Gitelson, A.A., M.N. Merzlyak, and O.B. Chivkunova, 2001. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochemistry and Photobiology 71:38-45. 23. Liew OW, Chong PCJ, Li B, Aundi AK 2008. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health. Sensors 8: 3205-3239 24. Gitelson AA, Stark R, Grifts U, Rundquist D, Kaufman Y, Derry D (2002) Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing 23, 2537–2562. 25. Xavier, A.C.; Rudorff, B.F.T.; Moreira, M.A.; Alvarenga, B.S.; Freitas, J.G.; Salomon, M.V. 2006. Hyperspectral field reflectance measurements to estimate wheat grain yield and plant height. Scientia Agricola 63: 130-138. 26. Jarmer, T.; Lilienthal, H. & Udelhoven, T. (2003): Spectral determination of nitrogen content of wheat canopies.- 3rd EARSeL Workshop on Imaging Spectroscopy, Oberpfaffenhofen, May 13-16 2003, 513-517. 27. Measurement of water stress: Comparison of reflectance at 970 and 1450 nm. 28. Applying Remote Sensing Techniques to Identify Early Crop Infestation: A Review 29. K. L. Castro-Esau, G. A. Sanchez-Azofeifa, B. Rivard, S. J. Wright and M. Quesada, “Variability in Leaf Optical Properties of Mesoamerican Trees and the Potential for Species Classification,” American Journal of Botany, Vol. 93, No. 4, 2006, pp. 517-530. doi:10.3732/ajb.93.4.517 30.

Similar Documents