Free Essay

Mata

In:

Submitted By Typn189
Words 3768
Pages 16
Introduction GMM for OLS GMM for IV Poisson Extras References

GMM estimation in Mata
Using Stata’s new optimizer to program estimators

Austin Nichols

July 24, 2008

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

optimize() is exciting stuff

The new (as of Stata 10) optimize function in Mata is exciting. You can use it e.g. to find maxima of a function, solve a difficult nonlinear system of equations, or write a new estimator. Likely suspects: Generalized Methods of Moments (GMM) or Minimum Distance estimators (MDE). More on GMM: Hansen (1982) More on MDE: Chamberlain (1982, 1984) More on both: Wooldridge (2002) chapter 14 Today: a couple of quick examples of GMM estimators; see ivpois on SSC for a more detailed example.

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

The OLS model
Consider the most common regression framework: y = Xβ + ε where we assume E (X ε) = 0 so our estimator β is unbiased. The usual approach is to define βOLS = (X X )−1 (X y ) that minimizes the sum of squared residuals (y − y )2 = and has an easy solution. (y − X β)2

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

The GMM model
Could also define βGMM that gets E (X ε) as close to zero as possible in the sample (zero, in fact, with a constant) by minimizing the quadratic form (X e) A(X e) for some weighting matrix A, where e is a function of the coefficient e = y − Xb. This is the basic idea of GMM: if you know a population moment g (β) is zero, try to get the analogous sample moment as close to zero as possible by minimizing its “square.” Hansen (1982, 1984) discusses the asymptotic properties of this approach, and Hayashi (2000), Wooldridge (2002, ch.14), and Baum, Schaffer, and Stillman (2003, 2007) discuss the intuition and practical implementation.

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

The GMM family of models

In fact, each criterion function of the form g (b) · A · g (b) defines a family of estimators, one for each weighting matrix A (including an identity matrix as one possibility). If A is chosen to be the inverse of the variance of g (b) we get an efficient estimator. If A is chosen to be a consistent estimator of the inverse of the asymptotic variance of g (b) we get an asymptotically efficient estimator—there are a few ways to do this (see Baum, Schaffer, and Stillman 2007 for a clear exposition).

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

The optimize() routine in Mata is surprisingly easy to use and all the documentation is on the web at http://stata.com/help.cgi?mata. That said, it can a bit confusing to set up a problem the first time. First you need to set up a function with the criterion function (the function to be minimized): mata: void i_crit(todo,b,crit,g,H) { external y,X,W m=X’(y-X*b’) crit=(m*W*m’) } where the external declaration allows the y,X,W to be passed back and forth among Mata functions. m is the moment function g (b) and crit is the criterion function. g and H are the gradient and Hessian, which we aren’t calculating here.
Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) gets the dep var “earnings”

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) makes a constant term

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) gets the RHS var “education”

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) computes the weighting matrix

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) makes a starting guess at a parameter vector (all zeros)

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) creates a ”name” for the optimization problem

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) names the function to optimize

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) tells optimize to minimize, not maximize

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) d0 says we won’t calculate gradient or Hessian

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) puts in the starting guess at a parameter vector

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can set up the problem in Mata and do the optimization in a handful of lines: y = st data(., "earnings") cons=J(rows(y),1,1) X = st data(., "education"), cons W=cholinv(X’X) init=J(1,cols(X),0) S=optimize init() optimize init evaluator(S, &i crit()) optimize init which(S,"min") optimize init evaluatortype(S,"d0") optimize init params(S,init) p=optimize(S) does the optimization and puts the parameter vector in p

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

That line optimize init evaluator tells the optimizer what Mata function is going to calculate the value of the criterion function, which is called the evaluator function in Mata. The criterion function can be scalar-valued for d-type evaluator functions, or vector-valued for v-type evaluator functions, and the d or v is modified with a number indicated how many derivatives it can calculate: type Capabilities expected of evaluator() ----------------------------------------------------0 can calculate f(p) 1 can calculate f(p) and g=f’(p) 2 can calculate f(p) and g=f’(p) and H=f’’(p) ----------------------------------------------------A side note: instead of declaring the data matrices as externals, you can use a function to add an argument to the evaluator function: optimize_init_argument(S, 1, X) which lowers your chance of making a mistake by using the same name for different objects.
Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

A better way is to set up a Mata function that takes Stata variables as arguments, does the optimization, and stores the result in a Stata matrix: void i_ols(string scalar lhs, string scalar rhs, string scalar ok) { external y,X,W y = st_data(., tokens(lhs), ok) cons = J(rows(y),1,1) X = st_data(., tokens(rhs), ok), cons W = cholinv(X’X) init = st_matrix("b") S = optimize_init() optimize_init_evaluator(S, &i_crit()) optimize_init_which(S,"min") optimize_init_evaluatortype(S,"d0") optimize_init_params(S,init) p = optimize(S) st_replacematrix("b",p) }
Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Then you can put both Mata functions at the end of a little ado file ols.ado: prog ols, eclass version 10 syntax varlist [if] [in] marksample touse gettoken lhs rhs : varlist mat b = J(1,‘:word count ‘rhs’ _cons’,0) matname b ‘rhs’ _cons, c(.) mata: i_ols("‘lhs’", "‘rhs’", "‘touse’") eret post b, e(‘touse’) depname(‘lhs’) eret di end mata: void i_crit(todo,b,crit,g,H) { external y,X,W m=X’(y-X*b’) crit=(m’*W*m) } void i_ols(string scalar lhs, string scalar rhs, string scalar ok) { external y,X,W y = st_data(., tokens(lhs), ok) cons = J(rows(y),1,1) X = st_data(., tokens(rhs), ok), cons W = cholinv(X’X) init = st_matrix("b") S = optimize_init() optimize_init_evaluator(S, &i_crit()) optimize_init_which(S,"min") optimize_init_evaluatortype(S,"d0") optimize_init_params(S,init) p = optimize(S) st_replacematrix("b",p) } end Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Linear regression GMM Efficient GMM Simple example

Now you can run a GMM version of OLS, and bootstrap for standard errors: use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear bs: ols lwage educ bs: reg lwage educ Programming asymptotic standard error calculations for GMM is just a bit more work, but offers the advantage that once you calculate the gradient, you can improve the speed of optimization by choosing method d1 (see help mf optimize). Note how easily you can shift to an instrumental variables (IV) model by assuming E (Z ε) = 0 instead of E (X ε) = 0.

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Poisson regression
A Poisson regression assumes that the outcome is described by a conditional mean which is an exponentiated linear combination of X i.e. E (y |X ) = exp(X β) so it is appropriate for a wide variety of models where the dependent variable is nonnegative (zero or positive), not just where the dependent variable measures counts of events. Wherever you might be inclined to take the logarithm of a nonnegative dependent variable y and use OLS, Poisson regression offers an alternative that includes observations where y is zero. Just as with a regression of log dependent variable on X , the interpretation of estimates is as marginal effects in percentage terms, e.g. a coefficient of 0.05 indicates a one-unit increase in X is associated with a 5% increase in y .

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

GMM IV Poisson

Mullahy (1997) proposed a GMM estimator suitable for endogenous X . If we assume y = exp(X β)ε then y · exp(−X β) − 1 should be orthogonal to a set of instruments Z : E [Z (y · exp(−X β) − 1)] = 0 For this case, wherever you might be inclined to take the logarithm of a nonnegative dependent variable y and use IV, the GMM estimator offers an alternative that includes observations where y is zero.

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Multiply or add
Given E [y |X ] = exp(X β), one can assume either an additive error or a multiplicative error, which produce different versions of the moment conditions. The additive form for the error posits that y = exp(X β) + u and gives moment conditions of the form Z (y − exp(X β)) = 0, whereas the multiplicative form posits y = exp(X β)u and gives moment conditions of the form E [Z (y · exp(−X β) − 1))] = 0 for instruments Z (where Z includes all exogenous variables, both included and excluded instruments). Angrist (2001) shows that in a model with endogenous binary treatment and a binary instrument, the latter procedure (assuming a multiplicative error) estimates a proportional local average treatment effect (LATE) parameter in models with no covariates. The latter is also more intuitively appealing and congruent with Poisson and GLM, and the assumption can be rewritten y = exp(X β)u = exp(X β)exp(v ) = exp(X β + v ) so ln(y ) = X β + v (assuming y > 0) to provide the natural link to OLS. Windmeijer (2006) contains a useful discussion and further related models.
Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Moment conditions
Recall that if we assume y = exp(X β)ε then y · exp(−X β) − 1 should be orthogonal to a set of instruments Z : E [Z (y · exp(−X β) − 1)] = 0 This translates very easily into the Mata code: mata: void i_civp(todo,b,crit,g,H) { external y,X,Z,W m=Z’((y:*exp(-X*b’):- 1)) crit=(m’*W*m) } There are two changes: the m= something different, and we add Z to the external declaration.
Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

optimize() code
The program that calls optimize() merely adds Z :

void i_ivp(string scalar lhs, string scalar rhs, string scalar z, string { external y,X,Z,W y = st_data(., tokens(lhs), ok) cons = J(rows(y),1,1) X = st_data(., tokens(rhs), ok), cons Z = st_data(., tokens(z), ok), cons W = cholinv(Z’Z) init = st_matrix("b") S = optimize_init() optimize_init_evaluator(S, &i_civp()) optimize_init_which(S,"min") optimize_init_evaluatortype(S,"d0") optimize_init_params(S,init) p = optimize(S) st_replacematrix("b",p) }
Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

optimize() code
But the main program in a do-file has a little bit more work to do: prog ivp, eclass version 10 syntax varlist [if] [in] [, exog(varlist) endog(varlist)] marksample touse markout ‘touse’ ‘exog’ ‘endog’ gettoken lhs varlist:varlist loc rhs: list varlist | endog loc z: list varlist | exog loc z: list z - endog mat b = J(1,‘:word count ‘rhs’ _cons’,0) matname b ‘rhs’ _cons, c(.) mata: i_ivp("‘lhs’", "‘rhs’", "‘z’", "‘touse’") eret post b, e(‘touse’) depname(‘lhs’) eret di end mata: void i_civp(todo,b,crit,g,H) { external y,X,Z,W m=Z’((y:*exp(-X*b’):- 1)) crit=(m’*W*m) } void i_ivp(string scalar lhs, string scalar rhs, string scalar z, string scalar ok) { external y,X,Z,W y = st_data(., tokens(lhs), ok) cons = J(rows(y),1,1) X = st_data(., tokens(rhs), ok), cons Z = st_data(., tokens(z), ok), cons W = cholinv(Z’Z) init = st_matrix("b") S = optimize_init() optimize_init_evaluator(S, &i_civp()) Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

optimize() code
If you save the program as ivp.ado, you can run a GMM-IV-Poisson model easily and compare: use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear ssc inst ivpois, replace ssc inst ivreg2, replace bs: ivp wage educ, endog(educ) exog(nearc4) bs: ivpois wage educ, endog(educ) exog(nearc4) ivpois wage educ, endog(educ) exog(nearc4) ivreg2 lwage (educ=nearc4) The SSC program ivpois is just a longer version of ivp with some extras (checking for various errors, collinearity, etc.), but not nearly as developed as ivreg2 (also on SSC).

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Structures Cross products Simple syntax for gmm?

Structures

A better way to handle some of the passing of arguments and functions is to define a Mata structure (see Gould 2007 and help M-2 struct). We could put all the vectors, matrices, scalars like rows(y), etc. in one structure and refer to that structure in the various functions we might need. No time for a detailed look at that approach today.

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Structures Cross products Simple syntax for gmm?

quadcross

I should be using quadcross for all the matrix multiplication above. But this: m=X’(y-X*b’) is a bit easier to read than: m=quadcross(X,(y-quadcross(X’,b’)))

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

Structures Cross products Simple syntax for gmm?

Syntax choices for a hypothetical gmm
The fact that the only moving parts so far have been the moment condition m and the form of the weight matrix W suggests that a simple way to create a general gmm command is to ask the user to supply a varlist, or possibly more than one, and to supply a moment condition in terms of y and X, in the spirit of twoway function. A temporary file can be written out via the file command just like the above ado files, but with the appropriate text inserted. Of course, a more sophisticated version of the command would request a gradient, do some checking of whether the user has made mistakes, etc. A different approach would require the user to compile a Mata function ahead of time, and supply the name of the function. I don’t think these approaches are necessarily incompatible, but I’d like to poll Stata users present to see what makes sense to them. To you, I mean.

Austin Nichols

GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

References
Angrist, Joshua D. 2001. “Estimation of limited dependent variable models with dummy endogenous regressors: simple strategies for empirical practice.” Journal of Business and Economic Statistics, 19:2-16. Baum, Christopher F., Mark E. Schaffer, and Steven Stillman. 2003. “Instrumental variables and GMM: Estimation and testing.” Stata Journal, 3(1): 1-31. Baum, Christopher F., Mark E. Schaffer, and Steven Stillman. 2007. “Enhanced routines for instrumental variables/GMM estimation and testing.” Stata Journal, 7(4): 465–506. Chamberlain, G. 1982. “Multivariate regression models for panel data.” Journal of Econometrics, 18: 5–46. Chamberlain, G. 1984. “Panel Data.” in Griliches, Zvi and M.D. Intrilligator, eds. Handbook of Econometrics, Vol.2 Ch.22: 1247–1318.
Austin Nichols GMM estimation in Mata

Introduction GMM for OLS GMM for IV Poisson Extras References

References
Gould, William. 2007. “Mata Matters: Structures.” Stata Journal, 7(4): 556–570. Hansen, Lars Peter. 1982. “Large Sample Properties of Generalized Method of Moments Estimators.” Econometrica, 50: 1029–1054. Hayashi, Fumio. 2000. Econometrics. 1st ed. Princeton, NJ: Princeton University Press. Mullahy, John. 1997. “Instrumental-Variable Estimation of Count Data Models: Applications to Models of Cigarette Smoking Behavior.” The Review of Economics and Statistics, 79(4):586-593. Windmeijer, Frank. 2006. “GMM for Panel Count Data Models.” Discussion Paper No. 06/591, Department of Economics, University of Bristol. Wooldridge, J.M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press.
Austin Nichols GMM estimation in Mata

Similar Documents

Free Essay

Mata

...UNIVERSITATEA ROMÂNO- AMERICANĂ DATA ACTUALIZARE: 14.02.2013 FACULTATEA DE INFORMATICĂ MANAGERIALĂ DOMENIUL CIBERNETICĂ, STATISTICĂ ŞI INFORMATICĂ ECONOMICĂ SPECIALIZAREA INFORMATICĂ ECONOMICĂ FORMA DE INVATAMANT INVATAMANT CU FRECVENTA- DURATA 3 ANI STUDII UNIVERSITARE DE LICENTA O R A RUL CURSURILOR SI SEMINARIILOR ANUL I - AN UNIV. 2012 – 2013 , SEM. II ZIUA LUNI 10,30-11,50 12,00-13,20 MARŢI 13.30-14.50 15,00-16,20 16,30-17,50 18,00-19,20 Sala 514 CONTABILITATE Sala 513 - BAZELE PROGRAMĂRII PE OBIECTE ORA Grupa 601 Grupa 602 Grupa 603 LIBER Grupa 604 Grupa 605 Grupa 606 Sala 514 - ANALIZĂ MATEMATICĂ Sala Sala 516 - CONTABILITATE Sala 426 CONTABILITATE 426 BAZELE PROGRAMĂRII PE OBIECTE Sala 327 - BAZELE PROGRAMĂRII PE OBIECTE Sala 516 CONTABILITATE Sala 516 - ANALIZĂ MATEMATICĂ Sala 518 – MACROECONOMIE Sala 518 – MACROECONOMIE 12,00-13,20 13,30-14,50 MIERCURI 15,00-16,20 Sala 511 - ANALIZĂ MATEMATICĂ Sala 516 - LIMBA ENGLEZĂ II Sala 518 - ANALIZĂ MATEMATICĂ Sala Sala 514 - ANALIZĂ MATEMATICĂ Sala 518 – MACROECONOMIE 426 16,30-17,50 18,00-19,20 ANALIZĂ MATEMATICĂ Sala 426 DREPT - Sala 516 - - LIMBA ENGLEZĂ II Sala 518 – MACROECONOMIE 12,00-13,20 JOI 13,30-14,50 15,00-16,20 16,30-17,50 18,00-19,20 Sala 518 - LIMBA ENGLEZĂ II Sala 220 - BAZELE PROGRAMĂRII PE OBIECTE Sala 327 - BIROTICĂ PROFESESIONALĂ Sala 516 - ANALIZĂ MATEMATICĂ Sala AMF.1 BIROTICĂ PROFESIONALĂ Sala 516 - - LIMBA...

Words: 1633 - Pages: 7

Premium Essay

The Leader In Daniel's Story By Carol Matas

...In the thrilling story Daniel's Story, by Carol Matas, Daniel is a leader. Daniel is a leader because during all the hardships he encounters, he is an amazing role model, and contains many positive traits. In Daniel's Story, smart is one of the best traits that could be given to Daniel. Daniel is smart, because when he was confronted by an S.S officer after hiding in the floorboards of the barracks, he thought up a believable story there on the spot. A second reason is, When Daniel had a 50% chance of dying, he smacked his cheeks and bit his lips, so when the officer was choosing which jews would die ,daniel would look as if he were healthy enough to work. Courageous is a second trait Daniel contains. Daniel is courageous because of these reasons. First of all, he still has hope that the allies will come soon. He believes they will take over, and all jews will be free again, and also believes no jew should have to live by...

Words: 444 - Pages: 2

Premium Essay

Dichotomy Between Mata Hai And The Edith Cavell

...Sexuality – that’s the common misconception applied within the topic of women in espionage. The pervasive myth is that female contributions to findings came by means of feminine charms. Although some resorted to flirtation, many women contributed by training, organizing, and passing information - with only patriotism driving their ability to aid their state. It misconstrues the powerful influence women play during wartime in the realm of intelligence. Post-World War I and II images of the female agents present a false dichotomy between the Edith Cavell’s version of purity or the Mata Hari’s version of immorality. Improper association debases the work of notable women and female organizations passing information and forming networks during...

Words: 262 - Pages: 2

Free Essay

Test Natin Kung Malinaw Pa Mata Mo: Bible Book Brain Teaser

...Instruction: Before you begin, you need to know that there really are 21 Bible book names in the paragraph below, now, look for them. Goodluck! I once made a remark about the hidden books of the Bible. It was a lulu kept, people looking so hard for facts. For others, it was a real revelation. Some were in a jam, especially since the names of the book are not capitalized. But the truth finally struck home to numbers of readers. It should be a most fascinating new moments from you. Yes, there are some books that will be a hard job to find, but those are the most fun. Can a human being really find all twenty-one of them? At the worst, you would find fifteen. No defect in the genes is required, although i will admit it it usually takes a minister to find one of them and there will be loud lamentations when it is found. What will you keep from answering this challenge? A little lady says she brews a cup of tea so she can concentrate better. How long can you keep working on it only you can judge so long as you try to complete. Remember, we've had fun seeking out 21 books of the Bible, but it is far more important to "seek first His kingdom and His righteousness". it's always true, God loves you. Ex: I once made a remark about the hidden books of the Bible. It was a lulu kept, people looking so hard for facts. Old Testament Genesis Exodus Leviticus Numbers Deuteronomy Joshua Judges Ruth 1 Samuel 2 Samuel 1 Kings 2 Kings 1 Chronicles 2 Chronicles ...

Words: 345 - Pages: 2

Free Essay

Science

...peristiwa pengembalian arah rambat cahaya pada reflektor. Pembiasan cahaya adalah peristiwa pembelokan arah rambat cahaya karena cahaya melalui bidang batas antara dua zat bening yang berbeda kerapatannya. Jenis alat optik yang akan kita pelajari dalam konteks ini adalah mata. Alat Optik Alami Adalah Mata. Kita hidup didunia ini merupakan berkah dari Tuhan maha pencipta, dan kita dijadikan manusia ini merupakan makhluk yang paling sempurna. Kita juga diberi Panca indra yang dapat kita fungsikan sesuai keguanaannya masing-masing, salah satunya adalah mata yang berguna sebagai alat optik alami . BAB II PEMBAHASAN A. Fungsi Mata Fungsi Mata Sebagai Alat Optik, karena mata merupakan salah satu contoh alat optik, karena dalam pemakaiannya mata membutuhkan berbagai benda-benda optik seperti lensa. B. Bagian-bagian Mata 1. Alis, yaitu rambut-rambut halus yang terdapat diatas mata. Alis berfungsi mencegah masuknya air atau keringat dari dahi ke mata. 2. Bulu Mata, Bulu mata yaitu rambut-rambut halus yang terdapat di tepi kelopak mata. Bulu mata berfungsi untuk melindungi mata dari benda asing. 3. Humor berair (Cairan berair) atau cairan berair berfungsi menghasilkan cairan pada mata 4. Humor/badan bening Humor Badan Bening ini terletak dibelakang lensa. Bentuknya berupa Zat...

Words: 2919 - Pages: 12

Free Essay

Matrix Using Calculator

...all its 9 elements visible. Casio fx-570MS has only a 2-line display and can only show matrix elements one at a time. Hence the operations for matrix computation are different for these two series of calculators. The general procedures in matrix calculations are as follows: (1) Enter Matrix mode of the calculators. (2) Assign a variable to store the matrix. There are 3 variables available: MatA, MatB, and MatC. (3) Select the dimension or order (1×1 to 3×3) of the matrix. (4) Input the elements of the matrix; the data will be automatically saved in the matrix variable assigned. (5) Exit the matrix input or edit mode by pressing the coloured AC key. (6) Press SHIFT MATRIX or SHIFT MAT (Matrix function is at numeric key 4) to recall the stored matrix and perform matrix calculations as needed. (a) Casio fx-570ES (a) Entering a matrix. 1. 2. 3. 4. Press the MODE key. Select 6:Matrix mode. A display Matrix? will be shown to let us select one of the 3 possible matrix variables allowable. Let us choose 1:MatA by pressing 1. The next display permits us to select the order (m×n) of the matrix MatA. Let us choose 1: 3×3 by pressing 1. An input screen will be displayed for us to key in the elements of the matrix. Let us key in the following matrix as an exercise: 1 1 2    4 0 3  5 1 2   Press 1=, 1=, 2=, 4=, 0=, 3=, 5=, 1=, and 2=. (The = key acts like the Enter key on a computer keyboard.) 5. Exit from the matrix input screen by pressing the AC key. (The AC acts like the...

Words: 3638 - Pages: 15

Free Essay

Costing Hospital

...Sugiyarti et al, Analisis Biaya Satuan (Unit Cost) Dengan Metode Activity Based Costing (ABC)...... Analisis Biaya Satuan (Unit Cost) Dengan Metode Activity Based Costing (ABC) (Studi Kasus di Poli Mata RSD Balung Kabupaten Jember) Unit Cost Analysis (Unit Cost) With Activity Based Costing Method (ABC) (Case Study In Eyes at RSD Balung Jember) Anis Tri Sugiyarti, Nuryadi, Christyana Sandra Bagian Administrasi dan Kebijakan Kesehatan, Fakultas Kesehatan Masyarakat, Universitas Jember e-mail korespondensi : anistrisugiyarti@gmail.com Abstract Hospital is a government environment agency stablished to provide health services to the community. Therefore, hospitals desperately need input in the form of complete information, about is cost of a unit (unit cost). RSD Balung Jember that are required to perform the calculation of unit costs (unit cost) by of activity based costing (ABC) method. The purpose research is the calculation of unit costs (unit cost) by of activity based costing (ABC) method in Eyes at RSD Balung Jember. These research used descriptive with case study. Results sowed that, extraction corpus alienum Rp. 42.695; epilasi eyelash Rp. 36.579; incisi hordeolum or chalazion Rp. 41.956; tonometri Rp. 19.883; funduscopy Rp. 39.642; fluorosence Rp. 41.200; slyt lamp Rp. 14.119; visus Rp. 13.674; eye irrigation Rp. 60.544; extraction granuloma and ptyrigium Rp. 63.685; lift statches Rp. 36.507; anel test Rp. 60.288; prescription glasses Rp. 30.249;...

Words: 5390 - Pages: 22

Free Essay

Sistem Koordinasi

...BAB I PENDAHULUAN A. Latar Belakang Biologi merupakan ilmu pengetahuan alam yang berguna agar kita mengetahui tentang diri kita dan bumi yang kita huni. Salah satu ilmu biologi tentang diri kita yang harus kita ketahui yaitu  sistem koordinasi atau sistem pengatur tubuh makhluk hidup. Sistem koordinasi merupakan suatu sistem yang mengatur kerja semua sistem organ agar dapat bekerja secara serasi. Sistem koordinasi bekerja untuk menerima rangsangan, mengolahnya dan kemudian meneruskannya untuk menanggapi rangsangan. Di dalam tubuh manusia terdapat tiga perangkat pengatur kegiatan tubuh yaitu system koordinasi yang terdiri  dari saraf,  endokrin (hormon), dan pengindraan. Sistem saraf merupakan salah satu sistem koordinasi tubuh yang bekerja dengan cepat untuk menanggapi adanya perubahan lingkungan yang merangsangnya. Pengaturan sistem dilakukan oleh benang – benang saraf yang akan melaporkannya ke otak. Selain sistem saraf, terdapat sistem hormon yang mengendalikan sistem fisiologis tubuh seperti mengatur pertumbuhan dan perkembangan, metabolisme, keseimbangan internal, reproduksi, serta tingkah laku. Hormon bekerja jauh lebih lambat, tetapi teratur dan berurutan dalam jangka waktu yang lama. Pengangkutan hormon dilakukan melalui pembuluh darah. Sistem saraf berhubungan erat dengan alat indera manusia yang merupakan reseptor rangsang dari luar. System koordinasi pada manusia dan hewan perbedaan. Pada makalah ini akan dibahas satu persatu system koordinasi pada manusia...

Words: 7094 - Pages: 29

Free Essay

Redenominasi

...redenominasi sama dengan sanering. Kedua istilah tersebut adalah hal yang berbeda, dimana redenominasi adalah penyederhanaan nilai mata uang, sedangkan sanering adalah pemotongan nilai mata uang tanpa diikuti dengan penyederhanaan nilai barang. Redenominasi adalah hal yang wajar dilakukan oleh suatu negara. Bahkan terdapat negara yang telah beberapa kali melakukan redenominasi, diantaranya ada yang gagal, namun ada juga yang berhasil. Saat ini, Bank Indonesia selaku pihak yang berwenang dalam mengatur dan menjaga keselarasan sistem pembayaran di Indonesia, merasa perlu melakukan redenominasi, salah satu alasannya karena rupiah termasuk dalam kategori worst currency. Namun dalam redenominasi harus memperkiran dampak-dampak yang akan terjadi, baik itu dampak positif maupun dampak negatif. Kata Kunci: redenominasi, sanering, inflasi, ekonomi, mata uang 1. Pendahuluan a. Pengertian Redenominasi Redenominasi adalah penyederhanaan nilai mata uang menjadi lebih kecil tanpa mengubah nilai tukarnya. Redenominasi mata uang adalah suatu proses dimana suatu unit baru dari uang menggantikan unit yang lama dengan suatu rasio tertentu. Hal ini dapat dicapai dengan mengeluarkan angka nol atau memindahkan beberapa desimal poin dari mata uang ke sebelah kiri, dengan tujuan untuk mengoreksi mata uang dan struktur harga serta meningkatkan kredibilitas dari mata uang local (CBN, 2007)....

Words: 4188 - Pages: 17

Free Essay

Proton

...cantik di mata cantik di hati 6 tip Wajah kusam Kembali ceria Kesibukan dengan urusan kerja mahupun rumah tangga sering kali menyebabkan wanita kurang tidur dan rehat yang mencukupi.Sekali gus menyebabkan wajah tampak kusam dan tidak bermaya. B agi wanita berkerjaya,pastinya hal ini mahu dihindarkan kerana tidak mahu tampil dengan wajah yang kurang ceria terutama ketika berhadapan orang ramai.Beberapa tip di bawah mungkin dapat membantu membuatkan wajah yang kusam kembali ceria. 1 Melakukan aktiviti luar Mungkin ada yang beranggapan kenapa perlu melakukan aktiviti luar seperti berjoging dan sebagainya sedangkan tubuh sudah keletihan.Sebenarnya dengan melakukan senaman ringan pada waktu pagi misalnya membolehkan anda menghirupkan udara segar sekali gus dapat membuatkan tubuh lebih relaks. Selain itu,udara waktu pagi juga selamat dari sebarang pencemaran.Malah ia turut membantu melancarkan peredaran darah dan membantu tubuh lebih relaks dan segar 2 Minum air putih Pengambilan air putih sekurang-kurang dua liter atau lapan gelas sehari adalah amat digalakkan.Namun ada yang tidak mengambilan kisah hal ini dan melebihkan pengambilan air manis dan berkafien.Tidak kurang juga ada yang tidak minum apapun di pagi hari.Sebaiknya,bagi anda yang gemar melakukan aktiviti luar,pastikan sebotol air putih turut dibawa bersama dan minumlah ketika memulakan aktiviti harian anda.Cara ini...

Words: 747 - Pages: 3

Free Essay

Essay

...ting var i makeup tasken, som var i håndtasken (nogle af dem at jeg fået i gave): Blush børste, mærke: Nilens Jord Black Diamond (fra matas) 170,- Foundation pinsel, mærke: Nilens Jord Black Diamond (fra matas) 125,- Foundation, mærke: Estee Lauder Dobbelt Wear (fra matas) 355,- Flere hårelastik (købt samlet) fra matas 20,- Pudder, mærke: urban decay (fra magasin) 260,- 3 ringe (købt samlet I en pakke) – H&M 30,- Cinderella lipstick, mærke: mac (fra magasin)180,- Lip-gloss, mærke: mac (fra magasin)180,- Concealer, mærke: Maybelline SuperStay 24H (til at dække mørke render) (fra matas) 60,- Læbestift, mærke:Julia Petit – mac (fra magasin) 180,- Lip-gloss, mærke: Divine night Cremesheen Glass – mac (fra magasin)195,- hårnål sorte, (fra matas) 23,- Blush, Brightening Brick – Bobbi Brown (fra magasin) 375,- Pensel til at farve øjenbryn, mærke Nilens jord (fra matas)80,- Elizabeth Arden Mascara – (fra matas)230,- Øjenbrynsbørste, mærke: Duo Lash Brow Comb – mac (fra magasin)70,- Flydende øjenbryndsfarve, mærke: Fluidline Brow Gelcreme – mac (fra magasin)145,- Udover makeup tasken var der: * hvidguld armbånd, som blev købt i Tyrkiet i sommers (mor finder ud af prisen). Der skal tages billede af et andet armbånd, som ligner det samme (til dokumentation). * Parfume, mærke: Viktor&Rolf Flowerbomb, 100ml (fra matas) ca.,- 900 * Daglig hånd creme, fra Kvickly, -75 * Sort headset (jabra step wireless) pris? Tag evt. billede af kvittering. ...

Words: 280 - Pages: 2

Premium Essay

Customer Care Maruti

...option in the agreement to raise Suzuki¶s equity to 40%, which it exercised in 1987. Five years later, in 1992, Suzuki further increased its equity to 50% turning Maruti into a non-government organization managed on the lines of Japanese management practices. Maruti created history by going into production in a record 13 months. Maruti is the highest volume car manufacturer in Asia, outside Japan and Korea, having produced over 5 million vehicles by May 2005. Maruti is one of the most successful automobile joint ventures, and has made profits every year since inception till 2000-01. In 2000-01, although Maruti generated operating profits on an income of Rs 92.5 billion, high depreciation on new model launches resulted in a book loss. MATA GUJRI COLLEGE, FATEHGARH SAHIB History of Maruti In 1970 , Sanjay Gandhi the son of Indira Gandhi envisioned the manufacture of an indigenous , cost effective , low maintenance compact car for the...

Words: 9284 - Pages: 38

Premium Essay

Entah

...from two different sectors , Apollo Food Holdings Berhad and Cahaya Mata Sdn Bhd in order to evaluate company performance and financial health. The financial analysis covers both companies income statements and balance sheets ,comparative income statements and balance sheets and two financial statement ratios such as inventory turnover , average of turnover and average collection period measures from year 2011 to 2012 . Apollo offers product from the segment of food while Cahaya Mata Sdn Bhd producing industrial cement basis in Sarawak. Both company shows increased in revenue that signals of better performances achieved from the previous year. Though this time span , Cahaya Mata secured a lower liquidity risk to turn their assets into cash as they had achieved 8.49 percent of inventory turnover compared than Apollo holding that has 0.54 more than Cahaya Mata . Cahaya Mata approach is that the company reinvest those funds to produce higher profits and creates a stronger financially fit company. However,the average of turnover shows that Apollo has its advantage of turning assets into cash whereby they are able to settle their obligation with a short period of time , 40.42 days compared to Cahaya Mata which tooks 42.99 days . Meanwhile , the average collection period shows a big different between Apollo and Cahaya Mata , whereby Apollo contribute about 47.72 days of their collection period compared to Cahaya Mata,76.96 days. Both strategies work to entice investors as both company...

Words: 324 - Pages: 2

Free Essay

Menuju Nilai Tukar Rupiah Yang Lebih Stabil Dengan Sistem Nilai Tukar Syariah: Suatu Pembuktian Empiris Metode Ordinary Least Square

...Lomba Karya Tulis Mahasiswa Menuju Nilai Tukar Rupiah yang Lebih Stabil dengan Sistem Nilai Tukar Syariah: Suatu Pembuktian Empiris Metode Ordinary Least Square[1] Oleh: Rika Kumala Dewi Viany Indah Anggryeny Fakultas Ekonomi Universitas Indonesia Depok 2006 BAB I PENDAHULUAN Di era yang semakin terbuka seperti sekarang ini, perdagangan internasional merupakan bagian yang tak terelakkan, bahkan bisa dibilang suatu necessary condition menuju era perdagangan bebas. Hal ini berarti, stabilitas perekonomian suatu negara juga dipengaruhi oleh negara lain. Dalam hubungan antar negara ini, banyak pihak menaruh perhatian khusus terhadap nilai tukar, suatu variabel yang disebut-sebut sebagai variabel yang bisa “menghancurkan” ketenangan ekonomi suatu negara. Bukti nyata telah terjadi pada tahun 1997! Anjloknya nilai tukar negara-negara di dunia, termasuk Indonesia, telah membuat perekonomian lesu, bahkan pembangunan menunjukkan angka negatif, dan hutang luar negeri Indonesia pun membengkak 6-7 kali lipat[2]. Kalutnya perekonomian dunia tahun 1997 ini telah membuat berbagai pihak menaruh perhatian terhadap apa yang dinamakan nilai tukar. Berbagai formulasi dirumuskan dalam rangka mencari bentuk yang paling tepat untuk menjaga stabilitas nilai tukar. Tak ketinggalan juga pemerintah, dalam hal ini Bank Indonesia, melakukan perubahan kebijakan nilai tukarnya dari sistem nilai tukar mengambang fleksibel (september 1986-Agustus 1997) menjadi sistem...

Words: 5106 - Pages: 21

Free Essay

Control

...1. Faktor kegagalan melayu ke IPT ialah kerana kini institusi keluarga mengalami perubahan dramatik baik dari segi struktur dan organisasi. Ini ekoran daripada perubahan yang berlaku dalam masyarakat dalam pelbagai bidang, terutamanya dalam bidang ekonomi dan pendidikan. Perubahan dalam masyarakat ini, khususnya dalam masyarakat Melayu berpunca daripada proses pembaharuan (pemodenan) yang dilancarkan oleh kerajaan semenjak negara mencapai kemerdekaan. Walaupun perubahan telah berlaku di negara ini semasa penjajahan apabila Inggeris memperkenalkan beberapa pembaharuan dalam bidang ekonomi, pentadbiran, pendidikan, infrastruktur dan lain-lain, pembaharuan itu tidak memberi kesan secara langsung ke atas masyarakat Melayu, kerana orang Melayu ketika itu telah dipinggirkan atau tidak diserapkan secara langsung ke dalam sistem ekonomi, pendidikan, dan pembangunan oleh Inggeris. Hanya selepas Merdeka, baru timbul usaha sedar (conscious/deliberate effort) oleh pihak Kerajaan untuk membawa perubahan kepada masyarakat Melayu melalui pelancaran pelbagai program pembaharuan di semua sektor dan bidang. Proses pembaharuan ini membawa beberapa implikasi positif dan negatif. Persoalan di sini bukan isu buruk baik proses pembaharuan tersebut. Hakikatnya, sebarang proses perubahan samaada dirancangkan atau tidak, akan membawa kedua-dua kesan yang disebutkan itu. Yang penting, pembaharuan adalah sesuatu yang perlu bagi mewujudkan kualiti kehidupan yang lebih baik kepada masyarakat. Kesan negatif...

Words: 1072 - Pages: 5