Free Essay

Mathe Formulae

In:

Submitted By niopu
Words 2819
Pages 12
1

SOME IMPORTANT MATHEMATICAL FORMULAE

Circle
: Area = π r2; Circumference = 2 π r.
Square : Area = x2 ; Perimeter = 4x.
Rectangle: Area = xy ; Perimeter = 2(x+y).
1
Triangle : Area = (base)(height) ; Perimeter = a+b+c.
2
3 2
Area of equilateral triangle = a .
4
4
Sphere : Surface Area = 4 π r2 ; Volume = π r3.
3
2
3
Cube
: Surface Area = 6a ; Volume = a .
1
Cone
: Curved Surface Area = π rl ; Volume = π r2 h
3
π r l + π r2
Total surface area = .
Cuboid : Total surface area = 2 (ab + bh + lh); Volume = lbh.
Cylinder : Curved surface area = 2 π rh; Volume = π r2 h
Total surface area (open) = 2 π rh;
Total surface area (closed) = 2 π rh+2 π r2 .
SOME BASIC ALGEBRAIC FORMULAE:

1.(a + b)2 = a2 + 2ab+ b2 .
2. (a - b)2 = a2 - 2ab+ b2 .
3.(a + b)3 = a3 + b3 + 3ab(a + b).
4. (a - b)3 = a3 - b3 - 3ab(a - b).
2
2
2
2
5.(a + b + c) = a + b + c +2ab+2bc +2ca.
6.(a + b + c)3 = a3 + b3 + c3+3a2b+3a2c + 3b2c +3b2a +3c2a +3c2a+6abc.
7.a2 - b2 = (a + b)(a – b ) .
8.a3 – b3 = (a – b) (a2 + ab + b2 ).
9.a3 + b3 = (a + b) (a2 - ab + b2 ).
10.(a + b)2 + (a - b)2 = 4ab.
11.(a + b)2 - (a - b)2 = 2(a2 + b2 ).
12.If a + b +c =0, then a3 + b3 + c3 = 3 abc .
INDICES AND SURDS m n mn (ab)m = a m b m am 1. am an = am + n 2.
= a m − n . 3. (a ) = a
. 4.
.
an m am
−m = 1
a
5.   =
.
6. a 0 = 1, a ≠ 0 .
7. a
. 8. a x = a y ⇒ x = y m am
b
b
9. a x = b x ⇒ a = b 10. a ± 2 b = x ± y , where x + y = a and xy = b.

S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

2
LOGARITHMS
a x = m ⇒ log m = x (a > 0 and a ≠ 1) a 1. loga mn = logm + logn.
m
2. loga   = logm – logn.
n
3. loga mn = n logm. log a
4. logba =
.
log b
5. logaa = 1.
6. loga1 = 0.
1
7. logba =
.
log a b
8. loga1= 0.
9. log (m +n) ≠ logm +logn.
10. e logx = x.
11. logaax = x.
PROGRESSIONS
ARITHMETIC PROGRESSION a, a + d, a+2d,-----------------------------are in A.P. nth term, Tn = a + (n-1)d. n Sum to n terms, Sn = [ 2a + (n − 1)d ] .
2
If a, b, c are in A.P, then 2b = a + c.
GEOMETRIC PROGRESSION a, ar, ar2 ,--------------------------- are in G.P. a(1 − r n ) a(r n − 1)
Sum to n terms, Sn = if r < 1 and Sn = if r > 1.
1− r r −1 a Sum to infinite terms of G.P, S∞ =
.
1− r
If a, b, c are in A.P, then b2 = ac.
HARMONIC PROGRESSION
Reciprocals of the terms of A.P are in H.P
1
1
1
,
,
, ----------------- are in H.P a a + d a + 2d
2ac
If a, b, c are in H.P, then b =
.
a+c
MATHEMATICAL INDUCTION n(n + 1)
1 + 2 + 3 + -----------------+n = ∑ n =
.
2 n(n + 1)(2n + 1)
2
12+22 +32 + -----------------+n2 = ∑ n =
.
6
S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

3

13+23 +33 + ----------------+ n3 =

∑n

3

=

n 2 (n + 1) 2
.
4

PERMUTATIONS AND COMBINATION n! n Pr =
( n − r) ! . n! nCr =
.
r!( n − r ) ! n!= 1.2 3.--------n. nCr = nCn-r. nCr + nCr-1 = (n + 1) Cr.
(m + n)!
(m + n)Cr =
.
m!n!
BINOMIAL THEOREM
(x +a)n = xn + nC1 xn-1 a + nC2 xn-2 a2 + nC3 xn-3 a3 +------------+ nCn an. nth term, Tr+1 = nCr xn-r ar .
PARTIAL FRACTIONS f (x) is a proper fraction if the deg (g(x)) > deg (f(x)). g(x) f (x) is a improper fraction if the deg (g(x)) ≤ deg (f(x)). g(x) 1. Linear non- repeated factors f (x)
A
B
=
+
.
(ax + b)(cx + d) ax + b (cx + d)
2. Linear repeated factors f (x)
A
B
C
=
+
+
.
2
(ax + b)(cx + d) ax + b (cx + d) (cx + d) 2
3. Non-linear(quadratic which can not be factorized) f (x)
Ax + B Cx + D
= 2
+
.
2
2
(ax + b)(cx + d) ax + b (cx 2 + d)
ANALYTICAL GEOMETRY
1. Distance between the two points (x1, y1) and (x2, y2) in the plane is
(x 2 − x1 ) 2 + (y 2 − y1 ) 2 OR

(x1 − x 2 ) 2 + (y1 − y 2 ) 2 .

2. Section formula
 mx 2 + nx1 my 2 + ny1 
,

 (for internal division), m+n 
 m+n
 mx 2 − nx1 my 2 − ny1 
,

 (for external division). m−n 
 m−n
S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

4
3. Mid point formula
 x1 + x 2 y1 + y 2 
,

.
2 
 2
4. Centriod formula
 x1 + x 2 + x 3 y1 + y 2 + y3 
,

.
3
3


5. Area of triangle when their vertices are given,
1
∑ x1 (y2 − y3 )
2
1
= [ x1 (y 2 − y3 ) + x 2 (y3 − y1 ) + x 3 (y1 − y 2 ) ]
2
STRAIGHT LINE
Slope (or Gradient) of a line = tangent of an inclination = tanθ.
Slope of a X- axis = 0
Slope of a line parallel to X-axis = 0
Slope of a Y- axis = ∞
Slope of a line parallel to Y-axis = ∞ y 2 − y1
Slope of a line joining (x1, x2) and (y1, y2) =
.
x 2 − x1
If two lines are parallel, then their slopes are equal (m1= m2)
If two lines are perpendicular, then their product of slopes is -1 (m1 m2 = -1)
EQUATIONS OF STRAIGHT LINE
1. y = mx + c (slope-intercept form) y - y1 = m(x-x1) (point-slope form) y −y y − y1 = 2 1 (x − x1 ) (two point form) x 2 − x1 x y
+ = 1 (intercept form) a b x cosα +y sinα = P (normal form)
Equation of a straight line in the general form is ax2 + bx + c = 0
a
Slope of ax2 + bx + c = 0 is –  
b
m1 − m 2
2. Angle between two straight lines is given by, tanθ =
1 + m1m 2
Length of the perpendicular from a point (x1,x2) and the straight line ax2 + bx + c ax1 + by1 + c
= 0 is a 2 + b2

S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

5
Equation of a straight line passing through intersection of two lines a 1x2 + b1x + c1
= 0 and a2x2 + b2x + c2 = 0 is a1x2 + b1x + c1 + K(a2x2 + b2x + c2 ) = 0, where K is any constant.
Two lines meeting a point are called intersecting lines.
More than two lines meeting a point are called concurrent lines.
Equation of bisector of angle between the lines a1x + b1y+ c1 = 0 and a1x + b1 y + c1 a x + b 2 y 2 + c2
=± 2 a2x + b2y + c2 = 0 is a12 + b12 a 22 + b22
PAIR OF STRAIGHT LINES
1. An equation ax2 +2hxy +by2 = 0, represents a pair of lines passing through origin generally called as homogeneous equation of degree2 in x and y and
2 h 2 − ab angle between these is given by tanθ =
.
a+b ax2 +2hxy +by2 = 0, represents a pair of coincident lines, if h2 = ab and the same represents a pair of perpendicular lines, if a + b = 0.
2h
If m1 and m2 are the slopes of the lines ax2 +2hxy +by2 = 0,then m1 + m2 = − b a and m1 m2 = . b 2. An equation ax2 +2hxy +by2+2gx +2fy +c = 0 is called second general second order equation represents a pair of lines if it satisfies the the condition abc + 2fgh –af2 – bg2 – ch2 = 0.
The angle between the lines ax2 +2hxy +by2+2gx +2fy +c = 0 is given by tanθ =

2 h 2 − ab
.
a+b

ax2 +2hxy +by2+2gx +2fy +c = 0, represents a pair of parallel lines, if h2 = ab and af2= bg2 and the distance between the parallel lines is
2 g 2 − ac
.
a(a + b) ax2 +2hxy +by2+2gx +2fy +c = 0, represents a pair of perpendicular lines
,if a + b = 0.

S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

6
TRIGNOMETRY
1 2
Area of a sector of a circle = r θ .
2
Arc length, S = r θ. opp adj opp adj hyp hyp sinθ =
,cosθ =
,tanθ =
,cotθ =
, secθ =
, cosecθ =
.
hyp hyp adj opp adj opp 1
1
1
1
Sinθ = or cosecθ =
, cosθ = or secθ =
,
cos ecθ sin θ sec θ cos θ
1
1 sin θ cos θ tanθ = or cotθ =
, tanθ =
, cotθ =
.
cot θ tan θ cos θ sin θ sin2θ + cos2θ = 1; ⇒ sin2θ = 1- cos2θ; cos2θ = 1- sin2θ; sec2θ - tan2θ = 1; ⇒ sec2θ = 1+ tan2θ; tan2θ = sec2θ – 1; cosec2θ - cot2θ = 1; ⇒ cosec2θ = 1+ cot2θ; cot2θ = cosec2θ – 1.
STANDARD ANGLES π π
0 or or 450 or
00 0 30
6
4
Sin
Cos
Tan
Cot
Sec
Cosec

0

1
0


1


1
2

1

3
2
1

1

3
3

2

3
2
1
2

1

3

2

1

2
3
2

600 or

2

1
3
1
2

2

3

π
3

900 or
1
0


0


1

π π 150 or
2
12
3 −1
2 2
3 +1
2 2

750 or


12

3 +1
2 2
3 −1
2 2

3 −1

3 +1

3 +1

3 −1

3 +1

3 −1

3 −1

3 +1

2 2
3 +1
2 2
3 −1

2 2
3 −1
2 2
3 +1

ALLIED ANGLES
Trigonometric functions of angles which are in the 2nd, 3rd and 4th quadrants can be obtained as follows :
If the transformation begins at 900 or 2700, the trigonometric functions changes as sin ↔ cos tan ↔ cot sec ↔ cosec
S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

7 where as the transformation begins at 1800 or 3600, the same trigonometric functions will be retained, however the signs (+ or -) of the functions decides ASTC rule.
COMPOUND ANGLES
Sin(A+B)=sinAcosB+cosAsinB.
Sin(A-B)= sinAcosB-cosAsinB.
Cos(A+B)=cosAcosB-sinAsinB.
Cos(A-B)=cosAcosB+sinAsinB. tan A + tan B tan(A+B)= 1 − tan A tan B tan A − tan B tan(A-B)= 1 + tan A tan B
π
 1 + tan A tan  + A  =
4
 1 − tan A
π
 1 − tan A tan  − A  =
4
 1 + tan A tan A + tan B + tan C − tan A tan B tan C tan(A+B+C)= 1 − (tan A tan B + tan B tan C + tan C tan A) sin(A+B) sin(A-B)= sin 2 A − sin 2 B = cos 2 B − cos 2 A cos(A+B) cos(A-B)= cos 2 A − sin 2 B
MULTIPLE ANGLES
1.sin 2A=2 sinA cosA.

2. sin 2A=

2 tan A
.
1 + tan 2 A

3.cos 2A = cos 2 A − sin 2 A
=1-2 sin 2 A .
= 2 cos 2 A − 1
1 − tan 2 A
=
1 + tan 2 A
2 tan A
1
4. tan 2A=
, 5. 1+cos 2A= 2 cos 2 A , 6. cos 2 A = (1 + cos 2A) .
2
2
1 − tan A
1
7. 1-cos 2A= 2sin 2 A , 8. sin 2 A = (1 − cos 2A) , 9.1+sin 2A= (sin A + cos A) 2 ,
2
2
10. 1-sin 2A= (cos A − sin A) = (sin A − cos A) 2 , 11.cos 3A= 4 cos3 A − 3cos A ,
12. sin 3A= 3sin A − 4sin 3 A , 13.tan 3A=

S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

3 tan A − tan 3 A
.
1 − 3 tan 2 A

8
HALF ANGLE FORMULAE
θ
2 tan   θ θ
2
2 θ
2 θ
1) sin θ = 2sin cos . 2) sin θ =
. 3) cos θ = cos − sin .
θ
2
2
2
2
1 + tan 2  
2
θ
1 − tan 2  
2
2 θ
2 θ
4) cos θ = 1 − 2sin . 5) cos θ = 2 cos − 1 . 6) cos θ =
.
θ
2
2
1 + tan 2  
2
θ
2 tan  
2
2 θ
2 θ
7) tan θ =
. 8) 1 + cos θ = 2 cos . 9) 1 − cos θ = 2sin .
θ
2
2
1 − tan 2  
2
PRODUCT TO SUM
2 sinA cosB = sin(A+B) + sin(A-B).
2 cosA sinB = sin(A+B) – sin(A-B).
2 cosA cosB = cos(A+B) + cos(A-B).
2 sinA sinB = cos(A+B) – cos(A-B).
SUM TO PRODUCT
C+D
C−D
Sin C + sin D = 2sin 
 cos 
.
 2 
 2 
C+D C−D
Sin C –sin D = 2 cos 
 sin 
.
 2   2 
C+D
C−D
Cos C + cos D = 2 cos 
 cos 
.
 2 
 2 
 C+D C−D
Cos C- cos D = −2sin 
 sin 

 2   2 
OR
 D+C  D−C
Cos C- cos D = 2sin 
 sin 

 2   2 
PROPERTIES AND SOLUTIONS OF TRIANGLE a b c =
=
= 2R , where R is the circum radius of the
Sine Rule: sin A sin B sin C triangle. b 2 + c2 − a 2
Cosine Rule: a2 = b2 + c2 -2bc cosA or cosA =
,
2bc
S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

9 a 2 + c2 − b2
,
2ac a 2 + b2 − c2 c2 = a2 + b2 -2ab cosC or cosC =
.
2ab
Projection Rule: a = b cosC +c cosB b = c cosA +a cosC c = a cosB +b cosA
Tangents Rule:
 B−C b−c
A
tan  cot   ,
=
 2  b+c
2
C−A c−a
B
tan  cot   ,
=
 2  c+a
2
A−B a−b
C
tan  cot   .
=
 2  a+b
2
Half angle formula:
(s − b)(s − c)
(s − b)(s − c) s(s − a)
A
A
A
sin   =
, cos   =
, tan   =
.
s(s − a) bc bc
2
2
2
b2 = a2 + c2 -2ac cosB or cosB =

(s − a)(s − c)
(s − a)(s − c) s(s − b)
B
B
B
sin   =
, cos   =
, tan   =
.
s(s − b) ac ac
2
2
2
(s − a)(s − b)
(s − a)(s − b) s(s − c)
C
C
C
sin   =
, cos   =
, tan   =
.
s(s − c) ab ab
2
2
2
Area of triangle ABC = s(s − a)(s − b)(s − c) ,
1
1
1
Area of triangle ABC = bcsin A = ac sin B = ab sin C .
2
2
2
LIMITS

1.

If f ( − x ) = f ( x ) , then f ( x ) is called Even Function

2.

If f ( − x ) = − f ( x ) , then f ( x ) is called Odd Function

3.

If P is the smallest + ve real number such that if f ( x + P ) = f ( x ) , then f ( x ) is called a periodic function with period P.

4.

lim
Right Hand Limit (RHL) = x → a + ( f ( x ) ) = lim ( f ( a + h ) ) h →0 lim Left Hand Limit (LHL) = x → a − ( f ( x ) ) = lim ( f ( a − h ) ) h →0
If RHL=LHL then lim ( f ( x ) ) exists and x→a lim ( f ( x ) ) = RHL=LHL x→a S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

10
5.
6.

1 p = 0 , if p > 0 and nLt n = ∞ if p > 0
→∞
np

Lt

n →∞

Lt

x →0

sin x tan x x x
= Lt
= Lt
=1
( x in radians ) = xLt0 x →0
→ sin x x → 0 tan x x x

7.

sin x 0 tan x 0 π = Lt
=
x →0 x →0 x x
180

8.

Ltπ

Lt

x→

2

sin x 2
=
x π 9.

lim

sin −1 x tan −1 x
= 1 = lim x →0 x x

10.

lim

x n − an
= nan − 1 , where n is an integer or a fraction. x−a 11.

lim

ax − 1
= log a , x 12.

1

lim  1 +  = e , x →∞  n 13.

lim kf ( x )  = k lim f ( x )

x→a  x→a 14.

lim  f ( x ) ± g ( x )  = lim f ( x ) ± lim g ( x )



15.

lim f ( x ) .g ( x ) = lim f ( x ) .lim g ( x )

x →0

x→a

x →0

lim x →0

n

 f ( x) lim  x→a  g ( x)

16.

1

lim ( 1 + n ) n = e x →0

x→a

x→a

x→a

x→a

x →a

x→a

 lim f ( x ) x→a provided lim g( x ) ≠ 0
=
x→a lim g ( x )
 x→a

A function f ( x ) is said to be continuous at the point x = a if
(i) lim f ( x ) exists x→a 17.

ex − 1
= log e = 1 x (ii) f ( a ) is defined

(iii) lim f ( x ) = f ( a ) x→a A function f ( x ) is said to be discontinuous or not continuous at x = a if
(i) f ( x ) is not defined at x = a

(ii) lim f ( x ) does not exist at x = a x→a (iii) xlim0 f ( x ) ≠ xlim0 f ( x ) ≠ f ( a )
→a+
→a−

18.

If two functions f ( x ) and g ( x ) are continuous then f ( x ) + g ( x ) is continuous

S B SATHYANARAYANA
M. Sc., M.I.E ., M Phil .
9481477536

Similar Documents

Premium Essay

Philosophy

...Institute of Philosophy and Religious studies. Affiliated to The Catholic University of Malawi PHILOSOPHY OF KNOWLEDGE (Epistemology) Student: OTIENO STEPHEN MBAKA Class Notes INTRODUCTION Fundamental Notions THE "PHILOSOPHY OF KNOWLEDGE" is that branch of philosophy which tries to determine in a general way what the nature and scope of man's capacity to know are. Precisely what this determi-nation will turn out to be cannot be foreseen at the beginning of our investigation since the very reason for undertaking such a project is to find that out in a methodical and systematic way. Nonetheless, even at this point, we do have a vague sense of what we are after, and, presumably, we have had enough experi-ence of our ignorance and capacity for error to motivate us to take up this arduous task. Our common-sense notion of nature tells us that an investigation into the "nature" of anything means at least that we are ask-ing "what sort of thing is it?" To be sure, this question is none too precise, but it will do for a beginning. Again, our common-sense notion of "scope" tells us that an inquiry into the "scope" of any-thing means at least that we are asking "how far does it extend?" Again, this imprecise query will do for the moment. Notice that we are not asking whether we know anything at all. The reason is, as we shall see in detail later that this question cannot be asked at all, because to have asked it is to have answered...

Words: 49506 - Pages: 199