...Biofuels Environmental Sciences Essay Nowadays, as the problem of greenhouse gases emissions is getting more serious, Carbon-negative biofuels represent the first potentially huge assault on the problem, in ways that are already technically feasible and practicable (Mathews, 2008). Scientists are having their research on how to ease or solve these problems. The topic of biofuels is being more popular in the recent years because it has the most potential to be a significant source of energy. Biomass is providing a surprisingly large amount of the world’s energy – 10% of total global primary energy consumption (Energy Future Coalition, 2007). Advantages of biofuels Safety Biofuels are safe to handle and transport because they are biodegradable, much less toxic than even table salt (ten times), and have high flashpoints of about 300oF compared to gasoline and petroleum diesel fuel (diesel has a flash point of 125 F, for comparison) (Biodiesel Chemical Safety Data – Oxford University). Because of its safety, the number of incidence of severe vehicle fires can be reduced, and its safety making it to be one of the safest of all alternative fuels. Also, biofuels produce fewer by-products than conventional hydrocarbon based fuels after combustion or burning. The conventional hydrocarbon-based fuels will produced a greater output of some noxious by-product, for example, carbon monoxide. That means, biofuels could lead to less localized smog in urban centers (Charles et al). Energy...
Words: 1326 - Pages: 6
...EMERGING TECHNOLOGY: AGRICULTURAL AND ANIMAL WASTE TO ENERGY Kathleen Cimino, Kimberly Andros, Teresa Bartley NEW TECHNOLOGIES IN ENVIRONMENTAL MANAGEMENT University of Maryland University College Spring 2009 Table of Contents 1.0 Introduction 1.1 Waste to energy definition/history/uses 1.2 Agricultural / Animal waste production 1.3 Graph, chart, quantities produced in United States, etc.. 2.0 Conversion of w2e 2.1 Conversion Pathways 2.1.1 Thermochemical 2.1.2 Biochemical 2.1.3 Physico-chemical 2.2 Factors affecting energy recovery 3.0 Agricultural Residue 3.1 Introduction to residue 3.2 What is it 3.3 Where is it produced 3.4 What is role in environment 3.4.1 Environmental risks 3.4.2 Health risks 3.5 Conversion of agricultural residue to energy 3.5.1 Process 3.5.2 Risks 3.5.3 Benefits 3.5.4 Future as energy source 4.0 Animal Wastes 4.1 Introduction to animal waste 4.2 What is animal waste comprised of 4.3 Where is it produced 4.4 What is its role in environment 4.4.1 Environmental risks 4.4.2 Health risks Table of Contents (Cont’d) 4.5 Conversion of animal waste to energy 4.5.1 Process 4.5.2 Risks 4.5.3 Benefits 4.5.4 Future as Energy source 5.0 Processes/Regulations/Technology 5.1 Availability of w2e facilities, costs 5.2 Technological benefits/risks 5.2.1 Other information on technology of w2e, production, transportation, environmental implications 5.3 Regulation governing...
Words: 8663 - Pages: 35
...EMERGING TECHNOLOGY: AGRICULTURAL AND ANIMAL WASTE TO ENERGY NEW TECHNOLOGIES IN ENVIRONMENTAL MANAGEMENT University of Maryland University College Spring 2009 Table of Contents 1.0 Introduction 1.1 Waste to energy definition/history/uses 1.2 Agricultural / Animal waste production 1.3 Graph, chart, quantities produced in United States, etc.. 2.0 Conversion of w2e 2.1 Conversion Pathways 2.1.1 Thermochemical 2.1.2 Biochemical 2.1.3 Physico-chemical 2.2 Factors affecting energy recovery 3.0 Agricultural Residue 3.1 Introduction to residue 3.2 What is it 3.3 Where is it produced 3.4 What is role in environment 3.4.1 Environmental risks 3.4.2 Health risks 3.5 Conversion of agricultural residue to energy 3.5.1 Process 3.5.2 Risks 3.5.3 Benefits 3.5.4 Future as energy source 4.0 Animal Wastes 4.1 Introduction to animal waste 4.2 What is animal waste comprised of 4.3 Where is it produced 4.4 What is its role in environment 4.4.1 Environmental risks 4.4.2 Health risks Table of Contents (Cont’d) 4.5 Conversion of animal waste to energy 4.5.1 Process 4.5.2 Risks 4.5.3 Benefits 4.5.4 Future as Energy source 5.0 Processes/Regulations/Technology 5.1 Availability of w2e facilities, costs 5.2 Technological benefits/risks 5.2.1 Other information on technology of w2e, production, transportation, environmental implications 5.3 Regulation governing w2e 6.0 Recommendations 6.1 Policy recommendations/guidelines...
Words: 8657 - Pages: 35
...View Online / Journal Homepage / Table of Contents for this issue Catalysis Science & Technology Cite this: Catal. Sci. Technol., 2012, 2, 2025–2036 www.rsc.org/catalysis Dynamic Article Links MINIREVIEW Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels Saikat Dutta, Sudipta De, Basudeb Saha* and Md. Imteyaz Alam Downloaded on 15 September 2012 Published on 01 June 2012 on http://pubs.rsc.org | doi:10.1039/C2CY20235B Received 14th April 2012, Accepted 28th May 2012 DOI: 10.1039/c2cy20235b Recent approaches to furfural synthesis from hemicellulosic biomass and pentose sugars with both homogeneous and solid acidic catalysts have been summarized by addressing the associated sustainability issues. The features of deconstruction of hemicellulosic biomass by acid hydrolysis to produce pentose sugar feedstock for furfural have been discussed in brief. Several strategies including solvent extraction in a biphasic process, application of surface functionalized materials such as acidic resins, mesoporous solids and mechanistic insight in limited cases are discussed. The present status of the promising furfural platform in producing second generation biofuels (furanics and hydrocarbon) is reviewed. The performances of each catalytic system are assessed in terms of intrinsic reactivity and selectivity toward furfural production. Overall, this minireview attempts to highlight the scope of further developments for a sustainable furfural...
Words: 10852 - Pages: 44
...Renewable energy is generally defined as energy that comes from resources which are naturally replenished on a human timescale such as sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy replaces conventional fuels in four distinct areas: electricity generation, air and water heating/cooling, motor fuels, and rural energy services. Based on REN21's 2014 report, renewables contributed 19 percent to our global energy consumption and 22 percent to our electricity generation in 2012 and 2013, respectively. Both, modern renewables, such as hydro, wind, solar and biofuels, as well as traditional biomass, contributed in about equal parts to the global energy supply. Worldwide investments in renewable technologies amounted to more than US$214 billion in 2013, with countries like China and the United States heavily investing in wind, hydro, solar and biofuels. Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply. National renewable energy markets...
Words: 7346 - Pages: 30
...INTRODUCTION Background of the Study The evolution of industrialization and mechanization in the 21st century made it possible to transform manual equipment into modern machinery. With this development, global reliance on petroleum-based fuel is constantly increasing, giving rise to a challenge on energy sufficiency. Negative impacts, such as greenhouse gas (GHG) emissions, are associated with the combustion of these petroleum-based fuels (MacLellan, 2010). Major GHG contributors identified by the United States Environmental Protection Agency (EPA) include industry (20%), residential and commercial (11%), and agriculture (8%) (Bogart, 2013). Adverse effects on health and the environment of using petroleum-based fuels, thus, urge scientific community to search and develop alternative renewable fuel to replace the current and existing petroleum-based fuels. Biofuels have been demonstrated by several researches to reduce GHG emissions as compared to gasoline (petrol) (Leen, 2012). Among the alternative biofuels, bioethanol has received considerable attention in transportation sector because of its utility as an octane booster, fuel additive, and even as neat fuel (Mudliar, et. al., 2009). Bioethanol can be derived from organic materials, such as energy crops like corn, wheat, sugar cane, sugar beet, and cassava, among others (Neves, et. al., 2007). However, due to their primary utility as food, these crops cannot provide the global demand for bioethanol production. Among...
Words: 10036 - Pages: 41
...unit 1 Water cycle The water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above and below the surface of the Earth. Since the water cycle is truly a "cycle," there is no beginning or end. Water can change states among liquid, vapor, and ice at various places in the water cycle. Although the balance of water on Earth remains fairly constant over time, individual water molecules can come and go. Contents Description The sun, which drives the water cycle, heats water in the oceans. Water evaporates as vapor into the air. Ice and snow can sublimate directly into water vapor. Evapotranspiration is water transpired from plants and evaporated from the soil. Rising air currents take the vapor up into the atmosphere where cooler temperatures cause it to condense into clouds. Air currents move clouds around the globe, cloud particles collide, grow, and fall out of the sky as precipitation. Some precipitation falls as snow and can accumulate as ice caps and glaciers, which can store frozen water for thousands of years. Snowpacks can thaw and melt, and the melted water flows over land as snowmelt. Most precipitation falls back into the oceans or onto land, where the precipitation flows over the ground as surface runoff. A portion of runoff enters rivers in valleys in the landscape, with streamflow moving water towards the oceans. Runoff and groundwater are stored as freshwater in lakes. Not all runoff flows into rivers. Much of it soaks...
Words: 15993 - Pages: 64
...Chapter 8: Renewable Energy Sources The Sustainability Revolution John C. Ayers "In a sense, the fossil fuels are a one-time gift that lifted us up from subsistence agriculture and should eventually lead us to a future based on renewable resources." Kenneth Deffeyes (2001) "I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that." — Thomas Edison, 1931 We cannot create or destroy energy. We can only capture it. The sun provides either directly or indirectly nearly all of the energy available to us. Plants capture solar energy directly through photosynthesis. Fossil fuels contain the energy of sunlight captured hundreds of millions of years ago. Photovoltaic (PV) cells also capture sunlight energy directly. Other energy sources capture the energy of sunlight indirectly. Heat from the sun powers the flowing air and water. We usually capture the kinetic energy of wind and water by using turbines that transfer the energy to an alternator, an electrical generator that produces alternating current. Geothermal energy is different in that it captures flowing heat energy produced by radioactive decay in the earth’s interior. In this chapter we will see that Wind, Water, and Sun (WWS) energy sources are sustainable because they are renewable, clean, safe, and nearly carbon-free. Although they have low energy densities, meaning that they require large areas of land or water to produce energy...
Words: 9196 - Pages: 37
...GLOBALIZATION THE ESSENTIALS GEORGE RITZER A John Wiley & Sons, Ltd., Publication Globalization Globalization A Basic Text George Ritzer This balanced introduction draws on academic and popular sources to examine the major issues and events in the history of globalization. Globalization: A Basic Text is a substantial introductory textbook, designed to work either on its own or alongside Readings in Globalization. The books are cross-referenced and are both structured around the core concepts of globalization. 2009 • 608 pages • 978-1-4051-3271-8 • paperback www.wiley.com/go/globalization Readings in Globalization Key Readings and Major Debates Edited by George Ritzer and Zeynep Atalay This unique and engaging anthology introduces students to the major concepts of globalization within the context of the key debates and disputes. Readings in Globalization illustrates that major debates in the field are not only useful to examine for their own merit but can extend our knowledge of globalization. The volume explores both the political economy of globalization and the relationship of culture to globalization. The volume is designed so it may be used independently, or alongside George Ritzer’s Globalization: A Basic Text for a complete student resource. 2010 • 560 pages • 978-1-4051-3273-2 • paperback Order together and save! Quote ISBN 978-1-4443-2371-9 GLOBALIZATION THE ESSENTIALS GEORGE RITZER A John Wiley & Sons, Ltd., Publication This edition first...
Words: 168078 - Pages: 673