Free Essay

Nike

In:

Submitted By mrugesh5
Words 17330
Pages 70
SYLLABUS
Cambridge IGCSE®
Combined Science

0653
For examination in June and November 2015

Cambridge Secondary 2

Changes to syllabus for 2015
This syllabus has been updated. Significant changes to the syllabus are indicated by black vertical lines either side of the text.

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a
Centre.
® IGCSE is the registered trademark of Cambridge International Examinations
© Cambridge International Examinations 2013

Contents
1. Introduction .................................................................................................................... 2
1.1
1.2
1.3
1.4
1.5

Why choose Cambridge?
Why choose Cambridge IGCSE?
Why choose Cambridge IGCSE Combined Science?
Cambridge ICE (International Certificate of Education)
How can I find out more?

2. Teacher support.............................................................................................................. 5
2.1 Support materials
2.2 Resource lists
2.3 Training

3. Syllabus content at a glance ........................................................................................... 6
4. Assessment at a glance ................................................................................................. 9
5. Syllabus aims and assessment objectives ................................................................... 11
5.1
5.2
5.3
5.4
5.5

Syllabus aims
Assessment objectives
Scheme of assessment
Weightings
Conventions (e.g. signs, symbols, terminology and nomenclature)

6. Curriculum content ....................................................................................................... 17
6.1 Biology
6.2 Chemistry
6.3 Physics

7. Practical assessment .................................................................................................... 44
Practical assessment: Papers 4, 5 or 6
7.1 Paper 4: Coursework (School-based assessment of practical skills)
7.2 Paper 5: Practical Test
7.3 Paper 6: Alternative to Practical

8. Appendix....................................................................................................................... 54
8.1
8.2
8.3
8.4
8.5
8.6
8.7

Symbols, units and definitions of physical quantities
Notes for use in qualitative analysis
The Periodic Table of the Elements
Grade descriptions
Mathematical requirements
Glossary of terms used in science papers
Forms

9. Other information ......................................................................................................... 67

Introduction

1.

Introduction

1.1 Why choose Cambridge?
Recognition
Cambridge International Examinations is the world’s largest provider of international education programmes and qualifications for learners aged 5 to 19. We are part of Cambridge Assessment, a department of the
University of Cambridge, trusted for excellence in education. Our qualifications are recognised by the world’s universities and employers.
Cambridge IGCSE® (International General Certificate of Secondary Education) is internationally recognised by schools, universities and employers as equivalent in demand to UK GCSEs. Learn more at www.cie.org.uk/recognition Excellence in education
Our mission is to deliver world-class international education through the provision of high-quality curricula, assessment and services.
More than 9000 schools are part of our Cambridge learning community. We support teachers in over 160 countries who offer their learners an international education based on our curricula and leading to our qualifications. Every year, thousands of learners use Cambridge qualifications to gain places at universities around the world.
Our syllabuses are reviewed and updated regularly so that they reflect the latest thinking of international experts and practitioners and take account of the different national contexts in which they are taught.
Cambridge programmes and qualifications are designed to support learners in becoming:


confident in working with information and ideas – their own and those of others



responsible for themselves, responsive to and respectful of others



reflective as learners, developing their ability to learn



innovative and equipped for new and future challenges



engaged intellectually and socially, ready to make a difference.

Support for teachers
A wide range of materials and resources is available to support teachers and learners in Cambridge schools.
Resources suit a variety of teaching methods in different international contexts. Through subject discussion forums and training, teachers can access the expert advice they need for teaching our qualifications. More details can be found in Section 2 of this syllabus and at www.cie.org.uk/teachers

Support for exams officers
Exams officers can trust in reliable, efficient administration of exams entries and excellent personal support from our customer services. Learn more at www.cie.org.uk/examsofficers

2

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Introduction

Not-for-profit, part of the University of Cambridge
We are a not-for-profit organisation where the needs of the teachers and learners are at the core of what we do. We continually invest in educational research and respond to feedback from our customers in order to improve our qualifications, products and services.
Our systems for managing the provision of international qualifications and education programmes for learners aged 5 to 19 are certified as meeting the internationally recognised standard for quality management, ISO 9001:2008. Learn more at www.cie.org.uk/ISO9001

1.2 Why choose Cambridge IGCSE?
Cambridge IGCSEs are international in outlook, but retain a local relevance. The syllabuses provide opportunities for contextualised learning and the content has been created to suit a wide variety of schools, avoid cultural bias and develop essential lifelong skills, including creative thinking and problem-solving.
Our aim is to balance knowledge, understanding and skills in our programmes and qualifications to enable candidates to become effective learners and to provide a solid foundation for their continuing educational journey. Through our professional development courses and our support materials for Cambridge IGCSEs, we provide the tools to enable teachers to prepare learners to the best of their ability and work with us in the pursuit of excellence in education.
Cambridge IGCSEs are considered to be an excellent preparation for Cambridge International AS and
A Levels, the Cambridge AICE (Advanced International Certificate of Education) Group Award,
Cambridge Pre-U, and other education programmes, such as the US Advanced Placement program and the International Baccalaureate Diploma programme. Learn more about Cambridge IGCSEs at www.cie.org.uk/cambridgesecondary2 Guided learning hours
Cambridge IGCSE syllabuses are designed on the assumption that candidates have about 130 guided learning hours per subject over the duration of the course, but this is for guidance only. The number of hours required to gain the qualification may vary according to local curricular practice and the learners’ prior experience of the subject.

1.3 Why choose Cambridge IGCSE Combined Science?
Cambridge IGCSE Combined Sciences gives students the opportunity to study biology, chemistry and physics, each covered in separate syllabus sections. Students learn about the basic principles of each subject through a mix of theoretical and practical studies, while also developing an understanding of the scientific skills essential for further study.
Candidates learn how science is studied and practised, and become aware that the results of scientific research can have both good and bad effects on individuals, communities and the environment. As well as focusing on the individual sciences, the syllabus enables candidates to better understand the technological world they live in, and take an informed interest in science and scientific developments.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

3

Introduction

This syllabus has been developed to


be appropriate to the wide range of teaching environments in Cambridge IGCSE Centres



encourage the consideration of science within an international context



be relevant to the differing backgrounds and experiences of candidates throughout the world.

The Cambridge IGCSE Combined Science syllabus is aimed at candidates across a very wide range of attainments, and will allow them to show success over the full range of grades from A* to G.
The syllabus has been designed to enable co-teaching with the Co-ordinated Science (Double Award) syllabus as well as with the separate Sciences Biology, Chemistry, Physics syllabuses.

Prior learning
We recommend that candidates who are beginning this course should have previously studied a science curriculum such as that of the Cambridge Lower Secondary Programme or equivalent national educational frameworks. Candidates should also have adequate mathematical skills for the content contained in this syllabus. Progression
Cambridge IGCSE Certificates are general qualifications that enable candidates to progress either directly to employment, or to proceed to further qualifications.

1.4 Cambridge ICE (International Certificate of Education)
Cambridge ICE is a group award for Cambridge IGCSE. It gives schools the opportunity to benefit from offering a broad and balanced curriculum by recognising the achievements of learners who pass examinations in at least seven subjects. To qualify for the Cambridge ICE award learners are required to have studied subjects from five groups: two languages from Group I, and one subject from each of the remaining four groups. The seventh subject can be taken from any of the five subject groups.
Combined Science falls into Group III, Science.
Learn more about Cambridge ICE at www.cie.org.uk/cambridgesecondary2
The Cambridge ICE is awarded from examinations administered in the June and November series each year.
Detailed timetables are available from www.cie.org.uk/examsofficers

1.5 How can I find out more?
If you are already a Cambridge school
You can make entries for this qualification through your usual channels. If you have any questions, please contact us at info@cie.org.uk

If you are not yet a Cambridge school
Learn about the benefits of becoming a Cambridge school at www.cie.org.uk/startcambridge. Email us at info@cie.org.uk to find out how your organisation can register to become a Cambridge school.

4

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Teacher support

2.

Teacher support

2.1 Support materials
Cambridge syllabuses, past question papers and examiner reports to cover the last examination series are on the Syllabus and Support Materials DVD, which we send to all Cambridge schools.
You can also go to our public website at www.cie.org.uk/igcse to download current and future syllabuses together with specimen papers or past question papers and examiner reports from one series.
For teachers at registered Cambridge schools a range of additional support materials for specific syllabuses is available online. For Teacher Support go to http://teachers.cie.org.uk (username and password required).

2.2 Resource lists
We work with publishers providing a range of resources for our syllabuses including textbooks, websites,
CDs etc. Any endorsed, recommended and suggested resources are listed on both our public website and on Teacher Support.
The resource lists can be filtered to show all resources or just those which are endorsed or recommended by Cambridge. Resources endorsed by Cambridge go through a detailed quality assurance process and are written to align closely with the Cambridge syllabus they support.

2.3 Training
We offer a range of support activities for teachers to ensure they have the relevant knowledge and skills to deliver our qualifications. See www.cie.org.uk/events for further information.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

5

Syllabus content at a glance

3.

Syllabus content at a glance

B1.

Characteristics of Living Organisms

B2.

Cells
2.1
2.2

Cell structure and organisation
Movement in and out of cells

B3.

Enzymes

B4.

Nutrition
4.1
4.2
4.3

B5.

Transportation
5.1
5.2

B6.

Hormones
Tropic responses

Reproduction
8.1
8.2
8.3

B9.

Respiration and energy
Gas exchange

Coordination and Response
7.1
7.2

B8.

Transport in plants
Transport in humans

Respiration
6.1
6.2

B7.

Nutrients
Plant nutrition
Animal nutrition

Asexual and sexual reproduction
Sexual reproduction in plants
Sexual reproduction in humans

Energy flow in Ecosystems

B10. Human Influences on the Ecosystem
C1.

The Particulate Nature of Matter

C2.

Experimental Techniques
2.1

C3.

Atoms, Elements and Compounds
3.1
3.2
3.3
3.4
3.5

C4.

6

Methods of separation and purification

Physical and chemical changes
Elements, compounds and mixtures
Atomic structure and the Periodic Table
Ions and ionic bonds
Molecules and covalent bonds

Stoichyiometry

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Syllabus content at a glance

C5.

Electricity and Chemistry

C6.

Energy Changes in Chemical Reactions
6.1

C7.

Chemical Reactions
7.1
7.2

C8.

Speed of reaction
Redox

Acids, Bases and Salts
8.1
8.2
8.3

C9.

Energetics of a reaction

The characteristic properties of acids and bases
Preparation of salts
Identification of ions and gases

The Periodic Table
9.1
9.2
9.3
9.4

Periodic trends
Group properties
Transition elements
Noble gases

C10. Metals
10.1 Properties of metals
10.2 Reactivity series
10.3 Extraction of metals
C11. Air and Water
C12. Organic Chemistry
12.1 Fuels
12.2 Hydrocarbons
P1.

Motion

P2.

Matter and Forces
2.1
2.2
2.3

P3.

Energy, Work and Power
3.1
3.2
3.3
3.4

P4.

Mass and weight
Density
Effects of forces

Energy
Energy resources
Work
Power

Simple Kinetic Molecular Model of Matter
4.1
4.2
4.3

States of matter
Molecular model
Evaporation

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

7

Syllabus content at a glance

P5.

Matter and Thermal Properties

P6.

Transfer of Thermal Energy
6.1
6.2
6.3
6.4

P7.

Waves
7.1

P8.

General wave properties

Light
8.1
8.2
8.3

P9.

Conduction
Convection
Radiation
Consequences of energy transfer

Reflection of light
Refraction of light
Thin converging lens

Electromagnetic Spectrum

P10. Sound
P11. Electricity
11.1
11.2
11.3
11.4
11.5
11.6

Electrical quantities
Electric charge
Current and potential difference
Resistance
Electrical energy
Dangers of electricity

P12. Electric Circuits
12.1 Circuit diagrams
12.2 Series and parallel circuits

8

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Assessment at a glance

4.

Assessment at a glance

Candidates are awarded grades A* to G.
Candidates expected to achieve grades D, E, F or G study the core curriculum only and are eligible for grades C to G.
Candidates expected to achieve grades C or higher should study the core and supplementary curriculum areas. All candidates must enter for three papers.
Candidates take:
Paper 1

(30% of total marks)

(45 minutes)
A multiple-choice paper consisting of 40 items of the four-choice type. and either:

or:

Paper 2

(50% of total marks)

Paper 3

(50% of total marks)

(1 hour 15 minutes)

(1 hour 15 minutes)

Core curriculum – Grades C to G available
Core theory paper consisting of short-answer and structured questions, based on the core curriculum. Extended curriculum – Grades A* to G available
Extended theory paper consisting of short-answer and structured questions. The questions will be based on all of the material from the core and supplement curriculum.
Questions will allow candidates across the full ability range to demonstrate their knowledge and understanding.

and:
Practical assessment

(20% of total marks)

either:

Paper 4

Coursework

or:

Paper 5

Practical Test (1 hour 30 minutes)

or:

Paper 6

Alternative to Practical (1 hour)

Availability
This syllabus is examined in the May/June examination series and the October/November examination series. Detailed timetables are available from www.cie.org.uk/examsofficers
This syllabus is available to private candidates.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

9

Assessment at a glance

Centres in the UK that receive government funding are advised to consult the Cambridge website www.cie.org.uk for the latest information before beginning to teach this syllabus.

Combining this with other syllabuses
Candidates can combine this syllabus in an examination series with any other Cambridge syllabus, except:


syllabuses with the same title at the same level



0610 Cambridge IGCSE Biology



0620 Cambridge IGCSE Chemistry



0625 Cambridge IGCSE Physics



0652 Cambridge IGCSE Physical Science



0654 Cambridge IGCSE Co-ordinated Sciences (Double Award)



5054 Cambridge O Level Physics



5070 Cambridge O Level Chemistry



5090 Cambridge O Level Biology



5129 Cambridge O Level Combined Science

Please note that Cambridge IGCSE, Cambridge International Level 1/Level 2 Certificate and Cambridge
O Level syllabuses are at the same level.

10

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Syllabus aims and assessment objectives

5.

Syllabus aims and assessment objectives

5.1 Syllabus aims
The aims of the syllabus below are not listed in order of priority.
The aims are:
1. to provide a worthwhile educational experience for all candidates, through well-designed studies of experimental and practical science. In particular, candidates’ studies should enable them to acquire understanding and knowledge of the concepts, principles and applications of biology, chemistry and physics and, where appropriate, other related sciences so that they may


become confident citizens in a technological world, able to take an informed interest in matters of scientific importance



recognise both the usefulness and limitations of scientific method, and appreciate its applicability in other disciplines and in everyday life



be suitably prepared to embark upon certain post-16 science-dependent vocational courses and studies 2. to develop abilities and skills that


are relevant to the study and practice of science



are useful in everyday life



encourage safe practice



encourage effective communication

3. to stimulate


curiosity, interest and enjoyment in science and its methods of enquiry



interest in, and care for, the environment

4. to promote an awareness that


the study and practice of science are co-operative and cumulative activities subject to social, economic, technological, ethical and cultural influences and limitations



the applications of science may be both beneficial and detrimental to the individual, the community and the environment



the concepts of science are of a developing and sometimes transient nature



science transcends national boundaries and that the language of science is universal

In addition to these general aims, Cambridge IGCSE Combined Science seeks:
5. to emphasise that some principles and concepts are common to all science, while others are more particular to the separate sciences of biology, chemistry and physics
6. to promote interdisciplinary enquiry through practical investigations and through the co-ordination of the subject matter of the three separate sciences

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

11

Syllabus aims and assessment objectives

5.2 Assessment objectives
The three assessment objectives in Combined Science are
A

Knowledge with understanding

B

Handling information and problem solving

C

Experimental skills and investigations

A description of each assessment objective follows.

A

Knowledge with understanding

Students should be able to demonstrate knowledge and understanding in relation to:


scientific phenomena, facts, laws, definitions, concepts and theories



scientific vocabulary, terminology and conventions (including symbols, quantities and units)



scientific instruments and apparatus, including techniques of operation and aspects of safety



scientific quantities and their determination



scientific and technological applications with their social, economic and environmental implications.

The curriculum content defines the factual material that candidates may be required to recall and explain.
Questions testing this will often begin with one of the following words: define, state, describe, explain or outline. B

Handling information and problem solving

Students should be able, using words or other written forms of presentation (i.e. symbolic, graphical and numerical), to


locate, select, organise and present information from a variety of sources



translate information from one form to another



manipulate numerical and other data



use information to identify patterns, report trends and draw inferences



present reasoned explanations for phenomena, patterns and relationships



make predictions and hypotheses



solve problems.

These skills cannot be precisely specified in the curriculum content, because questions testing such skills are often based on information which is unfamiliar to the candidate. In answering such questions, candidates are required to use principles and concepts in the syllabus and apply them in a logical, deductive manner to a new situation. Questions testing these skills will often begin with one of the following words: discuss, predict, suggest, calculate or determine.

12

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Syllabus aims and assessment objectives

C

Experimental skills and investigations

Students should be able to


use techniques, apparatus and materials (including the following of a sequence of instructions where appropriate) •

make and record observations, measurements and estimates



interpret and evaluate experimental observations and data



plan investigations and/or evaluate methods, and suggest possible improvements (including the selection of techniques, apparatus and materials).

5.3 Scheme of assessment
All candidates must enter for three papers: Paper 1; either Paper 2 or Paper 3; one from Papers 4, 5 or 6.
Candidates who have only studied the core curriculum or who are expected to achieve a grade D or below should normally be entered for Paper 2.
Candidates who have studied the extended curriculum, and who are expected to achieve a grade C or above, should be entered for Paper 3.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

13

Syllabus aims and assessment objectives

Candidates take:
Paper 1

(30% of total marks)

(45 minutes)
A multiple-choice paper consisting of 40 items of the four-choice type.
The questions will be based on the core curriculum, will be of a difficulty appropriate to grades C to G, and will test skills mainly in Assessment Objectives A and B. and either:
Paper 2

or:
(50% of total marks)

Paper 3

(50% of total marks)

(1 hour 15 minutes)

(1 hour 15 minutes)

Core curriculum – Grades C to G available
Core theory paper consisting of short-answer and structured questions, based on the core curriculum. Extended curriculum – Grades A* to G available
Extended theory paper consisting of shortanswer and structured questions. The questions will be based on all of the material, both from the core and supplement, and will allow candidates to demonstrate their knowledge and understanding.

The questions will be of a difficulty appropriate to grades C to G and will test skills mainly in
Assessment Objectives A and B.

The questions will be of a difficulty appropriate to the higher grades and will test skills mainly in Assessment Objectives A and B.

80 marks

80 marks

and:
Practical assessment *

(20% of total marks)

either:

Coursework – a school-based assessment of practical skills **

or:

Paper 5

Practical Test (1 hour 30 minutes) – with questions covering experimental and observational skills

or:

*

Paper 4

Paper 6

Alternative to Practical (1 hour) – a written paper designed to test familiarity with laboratory based procedures

Scientific subjects are, by their nature, experimental. So, it is important that an assessment of a candidate’s knowledge and understanding of science should contain a component relating to practical work and experimental skills (see Assessment Objective C). Because schools and colleges have different circumstances – such as the availability of resources – three different means of assessment are provided: school-based assessment, a formal practical test and an ‘alternative to practical’ paper.

** Teachers may not undertake school-based assessment without the written approval of Cambridge. This will only be given to teachers who satisfy Cambridge requirements concerning moderation and they will have to undergo special training in assessment before entering candidates. Cambridge offers schools in-service training in the form of occasional face-to-face courses held in countries where there is a need, and also through the Cambridge IGCSE Coursework Training Handbook, available from Cambridge
Publications.
NB The Periodic Table will be included in Papers 1, 2 and 3.

14

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Syllabus aims and assessment objectives

5.4 Weightings
The approximate weightings allocated to each of the assessment objectives in the assessment model are summarised in the table below.
Assessment objective

Weighting

A Knowledge with understanding

50% (not more than 25% recall)

B Handling information and problem solving

30%

C Experimental skills and investigations

20%

The relationship between the assessment objectives and the scheme of assessment is set out in the table below. All the figures given below are for guidance only and have a tolerance of ±2%.
Assessment objective

Paper 1
(%)

Paper 2 or 3
(%)

Paper 4, 5 or 6
(%)

Whole assessment (%)

A Knowledge with understanding 20

30



50

B Handling information and problem solving

10

20



30





20

20

C Experimental skills and investigations Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

15

Syllabus aims and assessment objectives

5.5 Conventions (e.g. signs, symbols, terminology and nomenclature) Syllabuses and question papers will conform with generally accepted international practice.
In particular, attention is drawn to the following documents, published in the UK, which will be used as guidelines. (a) Reports produced by the Association for Science Education (ASE):


SI Units, Signs, Symbols and Abbreviations (1981)



Chemical Nomenclature, Symbols and Terminology for use in school science (1985)



Signs, Symbols and Systematics: The ASE Companion to 16–19 Science (2000)

(b) Reports produced by the Society of Biology (in association with the ASE):


Biological Nomenclature, Standard terms and expressions used in the teaching of biology
Fourth Edition (2009)

It is intended that, in order to avoid difficulties arising out of the use of l for the symbol for litre, usage of dm3 in place of l or litre will be made.

Experimental work
Experimental work is an essential component of all science. Experimental work within science education


gives candidates first-hand experience of phenomena



enables candidates to acquire practical skills



provides candidates with the opportunity to plan and carry out investigations into practical problems.

This can be achieved by individual or group experimental work, or by demonstrations which actively involve the candidates.

Duration of course
Centres will obviously make their own decisions about the length of time taken to teach this course, though it is assumed that most Centres will attempt to cover it in two years. Centres could allocate 3 × 40 minute lessons to science each week as an example of how to deliver the course in two years.

16

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

6.

Curriculum content

The curriculum content that follows is divided into three sections: Biology (B1–B10), Chemistry (C1–C12) and Physics (P1–P12). Candidates must study all three sections.
Candidates can either follow the core curriculum only, or they can follow the extended curriculum which includes both the core and the supplement. Candidates aiming for grades A* to C should follow the extended curriculum.
Note:
1. The curriculum content is designed to provide guidance to teachers as to what will be assessed in the overall evaluation of the candidate. It is not meant to limit, in any way, the teaching programme of any particular school or college.
2. The content is set out in topic areas within biology, chemistry and physics. Each topic area is divided into a number of sections. The left-hand column provides amplification of the core content, which all candidates must study. The right-hand column outlines the supplementary content, which should be studied by candidates following the extended curriculum.
The Curriculum content below is a guide to the areas on which candidates are assessed.
It is important that, throughout this course, teachers should make candidates aware of the relevance of the concepts studied to everyday life, and to the natural and man-made worlds.
In particular, attention should be drawn to:


the finite nature of the world’s resources, the impact of human activities on the environment, and the need for recycling and conservation



economic considerations for agriculture and industry, such as the availability and cost of raw materials and energy



the importance of natural and man-made materials, including chemicals, in both industry and everyday life. Specific content has been limited in order to encourage this approach, and to allow flexibility in the design of teaching programmes. Cambridge provides science schemes of work which teachers may find helpful, these can be found on the Cambridge Teacher Support website.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

17

Curriculum content

6.1 Biology
Core

Supplement

B1. Characteristics of living organisms
1

List and describe the characteristics of living organisms. B2. Cells
2.1 Cell structure and organisation
1

State that living organisms are made of cells.

2

Identify and describe the structure of a plant cell (palisade cell) and an animal cell (liver cell), as seen under a light microscope.

4

Describe the differences in structure between typical animal and plant cells.

5

Calculate magnification and size of biological specimens using millimetres as units.

3

Relate the structures seen under the light microscope in the plant cell and in the animal cell to their functions.

3

Explain the effect of changes in temperature and pH on enzyme activity.

2.2 Movement in and out of cells
1

Define diffusion as the net movement of molecules from a region of their higher concentration to a region of their lower concentration down a concentration gradient, as a result of their random movement.

2

Describe the importance of diffusion of gases and solutes and of water as a solvent.

B3. Enzymes
1
2

18

Define enzymes as proteins that function as biological catalysts.
Investigate and describe the effect of changes in temperature and pH on enzyme activity. Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

B4. Nutrition
4.1 Nutrients
1

List the chemical elements that make up:



fats,


2

carbohydrates, proteins. Describe the structure of large molecules made from smaller basic units, i.e.



amino acids to proteins,


3

simple sugars to starch and glycogen, fatty acids and glycerol to fats and oils.

Describe tests for:



reducing sugars (Benedict’s solution),



protein (biuret test),


4

starch (iodine solution),

fats (ethanol).

List the principal sources of, and describe the importance of:


proteins,



vitamins (C and D only),



mineral salts (calcium and iron only),



fibre (roughage),


6

fats,



Describe the use of microorganisms in the manufacture of yoghurt.

carbohydrates,



5

water.

Describe the deficiency symptoms for:


vitamins (C and D only),



mineral salts (calcium and iron only.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

19

Curriculum content

Core

Supplement

4.2 Plant nutrition
1

Define photosynthesis as the fundamental process by which plants manufacture carbohydrates from raw materials using energy from light.

2

Explain that chlorophyll traps light energy and converts it into chemical energy for the formation of carbohydrates and their subsequent storage.

3

State the word equation for the production of simple sugars and oxygen.

4

State the balanced equation for photosynthesis in symbols light 6CO2 + 6H2O chlorophyll C6H12O6 + 6O2

5

Investigate the necessity for chlorophyll, light and carbon dioxide for photosynthesis, using appropriate controls.

6

7

Describe the intake of carbon dioxide and water by plants.

Investigate and state the effect of varying light intensity on the rate of photosynthesis (e.g. in submerged aquatic plants). 8

Identify and label the cuticle, cellular and tissue structure of a dicotyledonous leaf, as seen in cross-section under the light microscope. 2

Describe the effects of malnutrition in relation to starvation, coronary heart disease, constipation and obesity.

4.3 Animal nutrition
1

3

Identify the main regions of the alimentary canal and associated organs including mouth, salivary glands, oesophagus, stomach, small intestine: duodenum and ileum, pancreas, liver, gall bladder, large intestine: colon and rectum, anus.

4

Describe the functions of the regions of the alimentary canal listed above, in relation to ingestion, digestion, absorption, assimilation and egestion of food.

5

Define digestion as the break-down of large, insoluble food molecules into small, watersoluble molecules using mechanical and chemical processes.

6

Identify the types of human teeth and describe their structure and functions.

7

State the causes of dental decay and describe the proper care of teeth.

8

20

State what is meant by the term balanced diet and describe a balanced diet related to age, sex and activity of an individual.

State the significance of chemical digestion in the alimentary canal in producing small, soluble molecules that can be absorbed.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core
9

Supplement

Define absorption as movement of digested food molecules through the wall of the intestine into the blood.

10 Identify the small intestine as the region for the absorption of digested food.
B5. Transportation
5.1 Transport in plants
1

State the functions of xylem and phloem.

2

Identify the positions of xylem tissues as seen in transverse sections of unthickened, herbaceous, dicotyledonous roots, stems and leaves.

3

Identify root hair cells, as seen under the light microscope, and state their functions.

5

Investigate, using a suitable stain, the pathway of water through the above-ground parts of a plant.

6

Define transpiration as evaporation of water at the surfaces of the mesophyll cells followed by loss of water vapour from plant leaves, through the stomata.

7

Describe the effects of variation of temperature, humidity and light intensity on transpiration rate.

4

Relate the structure and functions of root hairs to their surface area and to water and ion uptake.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

21

Curriculum content

Core

Supplement

5.2 Transport in humans
1

Describe the circulatory system as a system of tubes with a pump and valves to ensure one-way flow of blood.

2

Describe the double circulation in terms of a low pressure circulation to the lungs and a high pressure circulation to the body tissues and relate these differences to the different functions of the two circuits.

3

Describe the structure of the heart including the muscular wall and septum, atria, ventricles, valves and associated blood vessels. 4

Describe coronary heart disease in terms of the blockage of coronary arteries and state the possible causes (diet, stress and smoking) and preventive measures.

5

Describe the function of the heart in terms of muscular contraction and the working of the valves.

6

Investigate the effect of physical activity on pulse rate.

7

Investigate, state and explain the effect of physical activity on pulse rate.

8

Identify red and white blood cells as seen under the light microscope on prepared slides, and in diagrams and photomicrographs. 9

List the components of blood as red blood cells, white blood cells, platelets and plasma.

10 State the functions of blood:



white blood cells – phagocytosis and antibody formation,



platelets – causing clotting (no details),



22

red blood cells – haemoglobin and oxygen transport,

plasma – transport of blood cells, ions, soluble nutrients, hormones and carbon dioxide. Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

B6. Respiration
6.1 Respiration and energy
1

Define respiration as the chemical reactions that break down nutrient molecules in living cells to release energy.

2

State the uses of energy in the body of humans: muscle contraction, protein synthesis, cell division, growth, the passage of nerve impulses and the maintenance of a constant body temperature.

3

State the word equation for aerobic respiration. 4

Define aerobic respiration as the release of a relatively large amount of energy in cells by the breakdown of food substances in the presence of oxygen.

5

State the equation for aerobic respiration using symbols (C6H12O6 + 6O2 → 6CO2 +
6H2O).

2

List the features of gas exchange surfaces in animals.

3

Explain the role of mucus and cilia in protecting the gas exchange system from pathogens and particles.

4

Describe the effects of tobacco smoke and its major toxic components (tar, nicotine, carbon monoxide, smoke particles) on the gas exchange system.

8

Explain the effects of physical activity on rate and depth of breathing.

6.2 Gas exchange
1

Identify on diagrams and name the larynx, trachea, bronchi, bronchioles, alveoli and associated capillaries.

5

State the differences in composition between inspired and expired air.

6

Use lime water as a test for carbon dioxide to investigate the differences in composition between inspired and expired air.

7

Investigate and describe the effects of physical activity on rate and depth of breathing. Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

23

Curriculum content

Core

Supplement

B7. Coordination and response
7.1 Hormones
1

Define a hormone as a chemical substance, produced by a gland, carried by the blood, which alters the activity of one or more specific target organs and is then destroyed by the liver.

2

State the role of the hormone adrenaline in chemical control of metabolic activity, including increasing the blood glucose concentration and pulse rate.

3

Give examples of situations in which adrenaline secretion increases.

7.2 Tropic responses
1

Define and investigate geotropism (as a response in which a plant grows towards or away from gravity) and phototropism (as a response in which a plant grows towards or away from the direction from which light is coming). 2

Explain the chemical control of plant growth by auxins including geotropism and phototropism in terms of auxins regulating differential growth.

B8. Reproduction
8.1 Asexual and sexual reproduction
1

2

24

Define asexual reproduction as the process resulting in the production of genetically identical offspring from one parent.
Define sexual reproduction as the process involving the fusion of haploid nuclei to form a diploid zygote and the production of genetically dissimilar offspring.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

8.2 Sexual reproduction in plants
1

Identify and draw, using a hand lens if necessary, the sepals, petals, stamens, anthers, carpels, ovaries and stigmas of one, locally available, named, insect-pollinated, dicotyledonous flower, and examine the pollen grains under a light microscope or in photomicrographs. 3

State the functions of the sepals, petals, anthers, stigmas and ovaries.

4

Candidates should expect to apply their understanding of the flowers they have studied to unfamiliar flowers.

5

Define pollination as the transfer of pollen grains from the male part of the plant (anther of stamen) to the female part of the plant
(stigma).

6

Name the agents of pollination.

8

Investigate and state the environmental conditions that affect germination of seeds: requirement for water and oxygen, suitable temperature. 2

Use a hand lens to identify and describe the anthers and stigmas of one, locally available, named, wind-pollinated flower.

7

Compare the different structural adaptations of insect-pollinated and windpollinated flowers.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

25

Curriculum content

Core

Supplement

8.3 Sexual reproduction in humans
1

Identify on diagrams of the male reproductive system, the testes, scrotum, sperm ducts, prostate gland, urethra and penis, and state the functions of these parts.

3

Identify on diagrams of the female reproductive system, the ovaries, oviducts, uterus, cervix and vagina, and state the functions of these parts.

4

Describe the menstrual cycle in terms of changes in the uterus and ovaries.

5

Describe fertilisation in terms of the joining of the nuclei of male gamete (sperm) and the female gamete (egg).

6

Outline early development of the zygote simply in terms of the formation of a ball of cells that becomes implanted in the wall of the uterus.

26

Compare male and female gametes in terms of size, numbers and mobility.

7

Indicate the functions of the amniotic sac and amniotic fluid.

8

Describe the function of the placenta and umbilical cord in relation to exchange of dissolved nutrients, gases and excretory products (no structural details are required). 9

10 Describe the methods of transmission of human immunodeficiency virus (HIV), and the ways in which HIV / AIDS can be prevented from spreading.

2

Describe the advantages and disadvantages of breast-feeding compared with bottle-feeding using formula milk.

11 Outline how HIV affects the immune system in a person with HIV / AIDS.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

B9. Energy flow in ecosystems
1

State that the Sun is the principal source of energy input to biological systems.

2

Define the terms:






food chain as a chart showing the flow of energy (food) from one organism to the next beginning with a producer
(e.g. mahogany tree → caterpillar → song bird → hawk),

Describe energy losses between trophic levels. 4

Define the terms:


consumer as an organism that gets its energy by feeding on other organisms,



herbivore as an animal that gets its energy by eating plants,



ecosystem as a unit containing all of the organisms and their environment, interacting together, in a given area,
e.g. decomposing log or a lake,



producer as an organism that makes its own organic nutrients, usually using energy from sunlight, through photosynthesis, decomposer as an organism that gets its energy from dead or waste organic matter, •

food web as a network of interconnected food chains showing the energy flow through part of an ecosystem,



6

3

trophic level as the position of an organism in a food chain or food web.

carnivore as an animal that gets its energy by eating other animals.

Describe the carbon cycle.

5

Explain why food chains usually have fewer than five trophic levels.

7 .................................................................
Discuss the effects of the combustion of fossil fuels and the cutting down of forests on the oxygen and carbon dioxide concentrations in the atmosphere.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

27

Curriculum content

Core

Supplement

B10. Human influences on the ecosystem
1

List the undesirable effects of deforestation
(to include extinction, loss of soil, flooding, carbon dioxide build up).

2

Describe the undesirable effects of pollution to include:



6

water pollution by sewage and chemical waste, Describe the undesirable effects of overuse of fertilisers (to include eutrophication of lakes and rivers).

4

Discuss the causes and effects on the environment of acid rain, and the measures that might be taken to reduce its incidence.

5

Explain how increases in greenhouse gases (carbon dioxide and methane) are thought to cause global warming.

air pollution by greenhouse gases
(carbon dioxide and methane) contributing to global warming.

Describe the need for conservation of:


species and their habitats,



28

3

natural resources (limited to water and non-renewable materials including fossil fuels). Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

6.2 Chemistry
Core

Supplement

C1. The particulate nature of matter
See P4.1 and P4.2 for details of common content. 1

Demonstrate understanding of the terms atom and molecule.

C2. Experimental techniques
2.1 Methods of separation and purification
1

Describe paper chromatography.

2

Interpret simple chromatograms.

3

Describe methods of separation and purification: filtration, crystallisation, distillation, fractional distillation.

4

Suggest suitable purification techniques, given information about the substances involved. 2

Demonstrate understanding of the concepts of element, compound and mixture. 2

Describe the build-up of electrons in
‘shells’ and understand the significance of the noble gas electronic structures and of valency electrons (the ideas of the distribution of electrons in s and p orbitals and in d block elements are not required).

C3. Atoms, elements and compounds
3.1 Physical and chemical changes
1

Identify physical and chemical changes, and understand the differences between them.

3.2 Elements, compounds and mixtures
1

Describe the differences between elements, compounds and mixtures.

3.3 Atomic structure and the Periodic Table
1

Describe the structure of an atom in terms of electrons and a nucleus containing protons and neutrons.

3

State the relative charges and approximate relative masses of protons, neutrons and electrons. 4

Define proton number and nucleon number.

5

Use proton number and the simple structure of atoms to explain the basis of the Periodic
Table (see section C9), with special reference to the elements of proton number
1 to 20.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

29

Curriculum content

Core

Supplement

3.4 Ions and ionic bonds
1

Describe the formation of ions by electron loss or gain.

2

Describe the formation of ionic bonds between elements from Groups I and VII.

3

Explain the formation of ionic bonds between metallic and non-metallic elements. 2

Draw dot-and-cross diagrams to represent the sharing of electron pairs to form single covalent bonds in simple molecules, exemplified by H2, Cl2, H2O, CH4 and HCl.

5

Determine the formula of an ionic compound from the charges on the ions present. 6

Construct and use symbolic equations with state symbols.

7

Deduce the balanced equation for a chemical reaction, given relevant information. 3.5 Molecules and covalent bonds
1

State that non-metallic elements form nonionic compounds using a different type of bonding called covalent bonding involving shared pairs of electrons.

C4. Stoichiometry
1
2

Deduce the formula of a simple compound from the relative numbers of atoms present.

3

Deduce the formula of a simple compound from a model or a diagrammatic representation. 4

30

Use the symbols of the elements to write the formulae of simple compounds.

Construct and use word equations.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

C5. Electricity and chemistry
1

State that electrolysis is the chemical effect of electricity on ionic compounds, causing them to break up into simpler substances, usually elements.

2

Use the terms electrode, electrolyte, anode and cathode.

3

Describe electrolysis in terms of the ions present and the reactions at the electrodes. 4

Describe the electrode products, using inert electrodes, in the electrolysis of:

5

Predict the products of the electrolysis of a specified binary compound in the molten state. 2

Demonstrate understanding that exothermic and endothermic changes relate to the transformation of chemical energy to heat (thermal energy), and vice versa. 3

Interpret data obtained from experiments concerned with speed of reaction.

4

Describe and explain the effects of temperature and concentration in terms of collisions between reacting particles
(concept of activation energy will not be examined). •

molten lead(II) bromide,



aqueous copper chloride.

C6. Energy changes in chemical reactions
6.1 Energetics of a reaction
1

Relate the terms exothermic and endothermic to the temperature changes observed during chemical reactions.

C7. Chemical reactions
7.1 Speed of reaction
1

Describe the effect of concentration, particle size, catalysis and temperature on the speeds of reactions.

2

Describe a practical method for investigating the speed of a reaction involving gas evolution. 5

Define catalyst as an agent which increases rate but which remains unchanged.

7.2 Redox
1

Define oxidation and reduction in terms of oxygen loss / gain, and identify such reactions from given information.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

31

Curriculum content

Core

Supplement

C8. Acids, bases and salts
8.1 The characteristic properties of acids and bases
1

Describe neutrality and relative acidity and alkalinity in terms of pH (whole numbers only) measured using full-range indicator and litmus. 2

Describe the characteristic reactions between acids and metals, bases (including alkalis) and carbonates.

3

Describe and explain the importance of controlling acidity in the environment (air, water and soil).

8.2 Preparation of salts
1

Describe the preparation, separation and purification of salts using techniques selected from section C2.1 and the reactions specified in section C8.1.

2

Suggest a method of making a given salt from suitable starting material, given appropriate information.

8.3 Identification of ions and gases
1

Use the following tests to identify: aqueous cations:


ammonium, copper(II), iron(II), iron(III) and zinc by means of aqueous sodium hydroxide and aqueous ammonia as appropriate. (Formulae of complex ions are not required.)

anions:


carbonate by means of dilute acid and then limewater,



chloride by means of aqueous silver nitrate under acidic conditions,



nitrate by reduction with aluminium,



sulfate by means of aqueous barium ions under acidic conditions,

gases:



carbon dioxide by means of limewater,



chlorine by means of damp litmus paper,



hydrogen by means of a lighted splint,



32

ammonia by means of damp red litmus paper, oxygen by means of a glowing splint.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

C9. The Periodic Table
1

Descibe the way the Periodic Table classifies elements in order of proton number.

2

Use the Periodic Table to predict properties of elements by means of groups and periods.

2

Describe the relationship between Group number, number of outer-shell (valency) electrons and metallic/non-metallic character. 9.1 Periodic trends
1

Describe the change from metallic to nonmetallic character across a period.

9.2 Group properties
1

Describe lithium, sodium and potassium in Group I as a collection of relatively soft metals showing a trend in melting point and reaction with water.

2

Predict the properties of other elements in
Group I, given data where appropriate.

3

Describe the trends in properties of chlorine, bromine and iodine in Group VII including colour, physical state and reactions with other halide ions.

4

Predict the properties of other elements in
Group VII, given data where appropriate.

2

Describe the uses of the noble gases in providing an inert atmosphere, i.e. argon in lamps, helium for filling balloons.

2

Identify and interpret diagrams that represent the structure of an alloy.

9.3 Transition elements
1

Describe the transition elements as a collection of metals having high densities, high melting points and forming coloured compounds, and which, as elements and compounds, often act as catalysts.

9.4 Noble gases
1

Describe the noble gases as being unreactive. C10. Metals
10.1 Properties of metals
1

Distinguish between metals and non-metals by their general physical and chemical properties. 3

Explain why metals are often used in the form of alloys.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

33

Curriculum content

Core

Supplement

10.2 Reactivity series
1

Place in order of reactivity: potassium, sodium, calcium, magnesium, zinc, iron, hydrogen and copper, by reference to the reactions, if any, of the elements with


dilute hydrochloric acid (except for alkali metals). Compare the reactivity series to the tendency of a metal to form its positive ion, illustrated by its reaction, if any, with:


the aqueous ions of other listed metals, •

the oxides of the other listed metals.

water or steam,



2

3

Deduce an order of reactivity from a given set of experimental results.

2

Describe the essential reactions in the extraction of iron in the blast furnace.

3

Relate the method of extraction of a metal from its ore to its position in the reactivity series limited to Group I and II metals, aluminium, iron and copper.

4

Explain why the proportion of carbon dioxide in air is increasing, and why this is important. 10.3 Extraction of metals
1

Describe the use of carbon in the extraction of copper from copper oxide.

C11. Air and water
1

Describe a chemical test for water.

2

Describe and explain, in outline, the purification of the water supply by filtration and chlorination.

3

Describe the composition of clean air as being a mixture of 78% nitrogen, 21% oxygen and small quantities of noble gases, water vapour and carbon dioxide.

5

Describe the formation of carbon dioxide:



34

as a product of respiration,


6

as a product of complete combustion of carbon-containing substances, as a product of the reaction between an acid and a carbonate.

Describe the rusting of iron in terms of a reaction involving air and water, and simple methods of rust prevention, including paint and other coatings to exclude oxygen.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

C12. Organic chemistry
12.1 Fuels
1

Recall coal, natural gas and petroleum as fossil fuels that produce carbon dioxide on combustion. 3

Name methane as the main constituent of natural gas.

4

Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation.

5

State the use of:

Name, identify and draw the structures of methane, ethane and ethene.

4

Recognise alkanes and alkenes from their chemical names or from molecular structures. Describe the manufacture of alkenes by cracking. 6

Distinguish between alkanes and alkenes by the addition reaction of alkenes with bromine. gasoline fraction for fuel (petrol) in cars,



3

refinery gas for bottled gas for heating and cooking,



Understand the essential principle of fractional distillation in terms of differing boiling points (ranges) of fractions related to molecular size and intermolecular attractive forces.

5



2

diesel oil/gas oil for fuel in diesel engines.

12.2 Hydrocarbons
1

Describe the properties of alkanes
(exemplified by methane) as being generally unreactive, except in terms of burning.

2

State that the products of complete combustion of hydrocarbons, exemplified by methane, are carbon dioxide and water.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

35

Curriculum content

6.3 Physics
Core

Supplement

P1. Motion
1

Define speed and calculate speed from total distance total time

2

Plot and interpret a speed/time graph and a distance/time graph.

3

Recognise from the shape of a speed/time graph when a body is moving with constant speed,



moving with changing speed.

5

Recognise motion for which the acceleration is not constant.

6

Calculate the area under a speed / time graph to work out the distance travelled for motion with constant acceleration.

2

Know that the Earth is the source of a gravitational field.
Describe, and use the concept of, weight as the effect of a gravitational field on a mass. 2

Describe the determination of the density of an irregularly shaped solid by the method of displacement, and make the necessary calculation. at rest,



Recognise linear motion for which the acceleration is constant and calculate the acceleration. 3



4

P2. Matter and Forces
2.1 Mass and weight
1

State that weight is a force.

2.2 Density
1

36

Describe an experiment to determine the density of a liquid and of a regularly shaped solid and make the necessary calculation using the equation density = mass / volume or d = m / v

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

2.3 Effects of forces
1

Know that a force is measured in newtons
(N).

2

Describe how forces may change the size, shape and motion of a body.

3

Plot and interpret extension/load graphs.

4

State Hooke’s Law and recall and use the expression force = constant × extension (F = k x).

5

Recognise the significance of the term ‘limit of proportionality’ for an extension / load graph.

3

Recall and use the expressions
K.E. = ½ mv2 and P.E. = mgh

6

Apply the principle of energy conservation to simple examples.

P3. Energy, Work and Power
3.1 Energy
1

Know that energy and work are measured in joules (J), and power in watts (W).

2

Demonstrate understanding that an object may have energy due to its motion (kinetic) or its position (potential), and that energy may be transferred and stored.

4

Give and identify examples of energy in different forms, including kinetic, gravitational, chemical, nuclear, thermal
(heat), electrical, light and sound.

5

Give and identify examples of the conversion of energy from one form to another, and of its transfer from one place to another.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

37

Curriculum content

Core

Supplement

3.2 Energy resources
1

Distinguish between renewable and non-renewable sources of energy.

2

Know that the Sun is the source of energy for all our energy resources except geothermal and nuclear.

3

Describe how electricity or other useful forms of energy may be obtained from:


Describe energy changes in terms of work done. 3

Recall and use W = F × d

2

Recall and use the equation P = E / t in simple systems.

geothermal resources,



2

water, including the energy stored in waves, in tides, and in water behind hydroelectric dams,



Recall and use the equation: useful energy output
× 100% efficiency = energy input

chemical energy stored in fuel,



4

heat and light from the Sun (solar cells and panels).

5

Give advantages and disadvantages of each method in terms of reliability, scale and environmental impact.

6

Demonstrate a qualitative understanding of efficiency. 3.3 Work
1

Relate (without calculation) work done to the magnitude of a force and the distance moved. 3.4 Power
1

Relate (without calculation) power to work done and time taken, using appropriate examples. P4. Simple Kinetic Molecular Model of Matter
4.1 States of matter
1

38

State the distinguishing properties of solids, liquids and gases.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

4.2 Molecular model
1

Describe qualitatively the molecular structure of solids, liquids and gases.

2

Relate the properties of solids, liquids and gases to the forces and distances between molecules and to the motion of the molecules. 3

Interpret the temperature of a gas in terms of the motion of its molecules.

2

Explain heat transfer in solids in terms of molecular motion.

2

Relate convection in fluids to density changes. 4.3 Evaporation
1

Describe evaporation in terms of the escape of more-energetic molecules from the surface of a liquid.

2

Relate evaporation to the consequent cooling. P5. Matter and Thermal Properties
1

Describe qualitatively the thermal expansion of solids, liquids and gases.

2

Identify and explain some of the everyday applications and consequences of thermal expansion. 3

State the meaning of melting point and boiling point.

P6. Transfer of thermal energy
6.1 Conduction
1

Describe experiments to demonstrate the properties of good and bad conductors of heat. 6.2 Convection
1

Recognise convection as the main method of heat transfer in liquids and gases.

3

Describe experiments to illustrate convection in liquids and gases.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

39

Curriculum content

Core

Supplement

6.3 Radiation
1

Recognise radiation as the method of heat transfer that does not require a medium to travel through.

3

2

Describe experiments to show the properties of good and bad emitters and good and bad absorbers of infra-red radiation. Identify infra-red radiation as the part of the electromagnetic spectrum often involved in heat transfer by radiation.

6.4 Consequences of energy transfer
1

Identify and explain some of the everyday applications and consequences of conduction, convection and radiation.

P7. Waves
7.1 General wave properties
1

Describe what is meant by wave motion as illustrated by vibration in ropes and springs and by experiments using water waves.

2

Distinguish between transverse and longitudinal waves and give suitable examples. 3

State the meaning of and use the terms speed, frequency, wavelength and amplitude. 4

Recall and use the equation v = f λ

5

Identify how a wave can be reflected off a plane barrier and can change direction as its speed changes.

2

Perform simple constructions, measurements and calculations based on reflections in plane mirrors.

5

Describe the action of optical fibres particularly in medicine and communications technology.

P8. Light
8.1 Reflection of light
1

Describe the formation and give the characteristics of an optical image by a plane mirror.

3

Use the law angle of incidence = angle of reflection.

8.2 Refraction of light
1
2

Identify and describe internal and total internal reflection using ray diagrams.

3

Describe, using ray diagrams, the passage of light through parallel-sided transparent material, indicating the angle of incidence i and angle of refraction r.

4

40

Describe an experimental demonstration of the refraction of light.

State the meaning of critical angle.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core

Supplement

8.3 Thin converging lens
1

Describe the action of a thin converging lens on a beam of light using ray diagrams.

2

Use the terms principal focus and focal length. P9. Electromagnetic spectrum
1

Describe the main features of the electromagnetic spectrum.

3

Describe the role of electromagnetic waves in: •

2

Describe transmission of sound in air in terms of compressions and rarefactions.

7

State the order of magnitude of the speed of sound in air, liquids and solids.

electrical appliances, remote controllers for televisions and intruder alarms
(infra-red),


4

satellite television and telephones
(microwaves),



State that all electromagnetic waves travel with the same high speed in vacuo.

radio and television communications
(radio waves),



2

medicine and security (X-rays).

Demonstrate an awareness of safety issues regarding the use of microwaves and X-rays.

P10. Sound
1

Describe the production of sound by vibrating sources.

3

State the approximate human range of audible frequencies.

4

Demonstrate understanding that a medium is needed to transmit sound waves.

5

Describe an experiment to determine the speed of sound in air.

6

Relate the loudness and pitch of sound waves to amplitude and frequency.

8

Describe how the reflection of sound may produce an echo.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

41

Curriculum content

Core

Supplement

P11. Electricity
11.1 Electrical quantities
1

Demonstrate understanding of current, potential difference and resistance, and use with their appropriate units.

2

Use and describe the use of an ammeter and a voltmeter.

11.2 Electric charge
1

Describe simple experiments to show the production and detection of electrostatic charges. 2

State that there are positive and negative charges. 3

State that unlike charges attract and that like charges repel.

5

Distinguish between electrical conductors and insulators and give typical examples.

4

Describe an electric field as a region in which an electric charge experiences a force. 11.3 Current and potential difference
1

State that current is related to the flow of charge. 2

Use the term potential difference (p.d.) to describe what drives the current between two points in a circuit.

11.4 Resistance
1

State that resistance = p.d. / current and understand qualitatively how changes in
p.d. or resistance affect current.

2

Recall and use the equation R = V / I.

4

Describe an experiment to determine resistance using a voltmeter and an ammeter. 3

Relate (without calculation) the resistance of a wire to its length and to its diameter.

1

Recall and use the equations
P = I V and E = I V t

11.5 Electrical energy

11.6 Dangers of electricity

42

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Curriculum content

Core
1

Supplement

Identify electrical hazards including



overheating of cables,


2

damaged insulation, damp conditions.

Demonstrate understanding of the use of fuses. P12. Electric circuits
12.1 Circuit diagrams
1

Draw and interpret circuit diagrams containing sources, switches, resistors
(fixed and variable), lamps, ammeters, voltmeters and fuses.

12.2 Series and parallel circuits
1

Demonstrate understanding that the current at every point in a series circuit is the same.

3

State that, for a parallel circuit, the current from the source is larger than the current in each branch.

6

5

Recall and use the fact that the current from the source is the sum of the currents in the separate branches of a parallel circuit.

State that the combined resistance of two resistors in parallel is less than that of either resistor by itself.

7

Recall and use the fact that the sum of the
p.d.s across the components in a series circuit is equal to the total p.d. across the supply. Calculate the combined resistance of two or more resistors in series.

4

2

State the advantages of connecting lamps in parallel in a lighting circuit.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

43

Practical assessment

7.

Practical assessment

Practical assessment: Papers 4, 5 or 6
Scientific subjects are, by their nature, experimental. It is therefore important that an assessment of a student’s knowledge and understanding of science should contain a component relating to practical work and experimental skills (as identified by assessment objective C). To accommodate, within Cambridge
IGCSE, differing circumstances – such as the availability of resources – Cambridge provides three different means of assessing assessment objective C: School-based assessment, a formal Practical Test and an
Alternative to Practical Paper.

7.1 Paper 4: Coursework (School-based assessment of practical skills)
The experimental skills and abilities to be assessed are:
C1 Using and organising techniques, apparatus and materials
C2 Observing, measuring and recording
C3 Handling experimental observations and data
C4 Planning, carrying out and evaluating investigations
The four skills carry equal weighting.
All assessments must be based upon experimental work carried out by the candidates.
The teaching and assessment of experimental skills and abilities should take place throughout the course.
Teachers must ensure that they can make available to Cambridge evidence of two assessments for each skill for each candidate. For skills C1 to C4 inclusive, information about the tasks set and how the marks were awarded will be required. For skills C2, C3 and C4 the candidate’s written work will also be required.
The final assessment scores for each skill must represent the candidate’s best performances.
For candidates who miss the assessment of a given skill through no fault of their own, for example because of illness, and who cannot be assessed on another occasion, Cambridge’s procedure for special consideration should be followed. However, candidates who for no good reason absent themselves from an assessment of a given skill should be given a mark of zero for that assessment.

44

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Practical assessment

Criteria for assessment of experimental skills and abilities
Each skill must be assessed on a six-point scale, level 6 being the highest level of achievement.
Each of the skills is defined in terms of three levels of achievement at scores of 2, 4 and 6.
A score of 0 is available if there is no evidence of positive achievement for a skill.
For candidates who do not meet the criteria for a score of 2, a score of 1 is available if there is some evidence of positive achievement.
A score of 3 is available for candidates who go beyond the level defined by 2, but who do not meet fully the criteria for 4.
Similarly, a score of 5 is available for those who go beyond the level defined for 4, but do not meet fully the criteria for 6.
Score

Skill C1: Using and organising techniques, apparatus and materials

0

No evidence of positive achievement for this skill.

1

Some evidence of positive achievement, but the criteria for a score of 2 are not met.

2

Follows written, diagrammatic or oral instructions to perform a single practical operation.
Uses familiar apparatus and materials adequately, needing reminders on points of safety.

3

Is beyond the level defined for 2, but does not meet fully the criteria for 4.

4

Follows written, diagrammatic or oral instructions to perform an experiment involving a series of step-by-step practical operations.
Uses familiar apparatus, materials and techniques adequately and safely.

5

6

Is beyond the level defined for 4, but does not meet fully the criteria for 6.
Follows written, diagrammatic or oral instructions to perform an experiment involving a series of practical operations where there may be a need to modify or adjust one step in the light of the effect of a previous step.
Uses familiar apparatus, materials and techniques safely, correctly and methodically.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

45

Practical assessment

Score

Skill C2: Observing, measuring and recording

0

No evidence of positive achievement for this skill.

1

Some evidence of positive achievement, but the criteria for a score of 2 are not met.

2

Makes observations or readings given detailed instructions.
Records results in an appropriate manner given a detailed format.

3

Is beyond the level defined for 2, but does not meet fully the criteria for 4.

4

Makes relevant observations, measurements or estimates given an outline format or brief guidelines.
Records results in an appropriate manner given an outline format.

5

Is beyond the level defined for 4, but does not meet fully the criteria for 6.

6

Makes relevant observations, measurements or estimates to a degree of accuracy appropriate to the instruments or techniques used.
Records results in an appropriate manner given no format.

Score

Skill C3: Handling experimental observations and data

0

No evidence of positive achievement for this skill.

1

Some evidence of positive achievement, but the criteria for a score of 2 are not met.

2
3

Processes results in an appropriate manner given a detailed format.
Draws an obvious qualitative conclusion from the results of an experiment.
Is beyond the level defined for 2, but does not meet fully the criteria for 4.
Processes results in an appropriate manner given an outline format.

4

5

Recognises and comments on anomalous results.
Draws qualitative conclusions which are consistent with obtained results and deduces patterns in data.
Is beyond the level defined for 4, but does not meet fully the criteria for 6.
Processes results in an appropriate manner given no format.

6

Deals appropriately with anomalous or inconsistent results.
Recognises and comments on possible sources of experimental error.
Expresses conclusions as generalisations or patterns where appropriate.

46

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Practical assessment

Score

Skill C4: Planning, carrying out and evaluating investigations

0

No evidence of positive achievement for this skill.

1

Some evidence of positive achievement, but the criteria for a score of 2 are not met.

2
3

Suggests a simple experimental strategy to investigate a given practical problem.
Attempts ‘trial and error’ modification in the light of the experimental work carried out.
Is beyond the level defined for 2, but does not meet fully the criteria for 4.
Specifies a sequence of activities to investigate a given practical problem.

4

In a situation where there are two variables, recognises the need to keep one of them constant while the other is being changed.
Comments critically on the original plan, and implements appropriate changes in the light of the experimental work carried out.

5

Is beyond the level defined for 4, but does not meet fully the criteria for 6.
Analyses a practical problem systematically and produces a logical plan for an investigation. 6

In a given situation, recognises that there are a number of variables and attempts to control them.
Evaluates chosen procedures, suggests/implements modifications where appropriate and shows a systematic approach in dealing with unexpected results.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

47

Practical assessment

Notes for guidance
The following notes are intended to help teachers to make valid and reliable assessments of the skills and abilities of their candidates.
The assessments should be based on the principle of positive achievement: candidates should be given opportunities to demonstrate what they understand and can do.
It is expected that candidates will have had opportunities to acquire a given skill before assessment takes place. It is not expected that all of the practical work undertaken by a candidate will be assessed.
Assessments can be carried out at any time during the course. However, at whatever stage assessments are done, the standards applied must be those expected at the end of the course as exemplified in the criteria for the skills.
Assessments should normally be made by the person responsible for teaching the candidates.
It is recognised that a given practical task is unlikely to provide opportunities for all aspects of the criteria at a given level for a particular skill to be satisfied, for example, there may not be any anomalous results (Skill
C3). However, by using a range of practical work, teachers should ensure that opportunities are provided for all aspects of the criteria to be satisfied during the course.
The educational value of extended experimental investigations is widely recognised. Where such investigations are used for assessment purposes, teachers should make sure that candidates have ample opportunity for displaying the skills and abilities required by the scheme of assessment.
It is not necessary for all candidates in a Centre, or in a teaching group within a Centre, to be assessed on exactly the same practical work, although teachers may well wish to make use of work that is undertaken by all of their candidates.
When an assessment is carried out on group work the teacher must ensure that the individual contribution of each candidate can be assessed.
Skill C1 may not generate a written product from the candidates. It will often be assessed by watching the candidates carrying out practical work.
Skills C2, C3 and C4 will usually generate a written product from the candidates. This product will provide evidence for moderation.
Raw scores for individual practical assessments should be recorded on the Individual Candidate Record
Card. The final, internally-moderated, total score should be recorded on the Coursework Assessment
Summary Form. Examples of both forms are provided at the end of this syllabus.
Raw scores for individual practical assessments may be given to candidates as part of the normal feedback from the teacher. The final, internally-moderated, total score, which is submitted to Cambridge should not be given to the candidate.

48

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Practical assessment

Moderation
(a) Internal moderation
When several teachers in a Centre are involved in internal assessments, arrangements must be made within the Centre for all candidates to be assessed to a common standard.
It is essential that within each Centre the marks for each skill assigned within different teaching groups
(e.g. different classes) are moderated internally for the whole Centre entry. The Centre assessments will then be subject to external moderation.
(b) External moderation
External moderation of internal assessment is carried out by Cambridge. Centres must submit candidates’ internally assessed marks to Cambridge. The deadlines and methods for submitting internally assessed marks are in the Cambridge Administrative Guide available on our website.
Once Cambridge has received the marks, Cambridge will select a sample of candidates whose work should be submitted for external moderation. Cambridge will communicate the list of candidates to the
Centre, and the Centre should despatch the coursework of these candidates to Cambridge immediately.
For each candidate on the list, every piece of work which has contributed to the final mark should be sent to Cambridge. Individual Candidate Record Cards and Coursework Assessment Summary
Forms (copies of which may be found at the back of this syllabus booklet) must be enclosed with the coursework. Further information about external moderation may be found in the Cambridge Handbook and the
Cambridge Administrative Guide.
A further sample may be required. All records and supporting written work should be retained until after publication of results. Centres may find it convenient to use loose-leaf A4 file paper for assessed written work. This is because samples will be sent through the post for moderation and postage bills are likely to be large if whole exercise books are sent. Authenticated photocopies of the sample required would be acceptable.
The individual pieces of work should not be stapled together. Each piece of work should be labelled with the skill being assessed, the Centre number and candidate name and number, title of the experiment, a copy of the mark scheme used, and the mark awarded. This information should be attached securely, mindful that adhesive labels tend to peel off some plastic surfaces.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

49

Practical assessment

7.2 Paper 5: Practical Test
Biology
Candidates may be asked to carry out exercises involving:


follow instructions and handle apparatus and material safely and correctly



observe and measure biological material, carry out a biological experiment using appropriate equipment/ characters/units •

carefully drawing, using a sharp pencil, and labelling specimens of plant or animal material



record observations and measurements in a suitable form such as a table or bar chart



representing results graphically, using appropriate scales, intervals and axes, drawing suitable lines.
Understanding that points on a graph maybe experimental and joining the points serves no purpose



interpret and evaluate observational and experimental data from specimens or from experiments



comment on an experimental method used and suggest possible improvements



devise an experiment to enable a task to be performed.

The list below details the apparatus expected to be generally available for examination purposes. The list is not exhaustive: in particular, items that are commonly regarded as standard equipment in a science laboratory (such as Bunsen burners, tripods, hot water baths etc.) are not included. It is expected that the following items would be available for each candidate.



mounted needles or seekers or long pins with large head



means of cutting biological materials such as scalpels, solid edged razor blades or knives



scissors



forceps



means of writing on glassware



beakers, 100 cm3, 250 cm3



test-tubes, 125 mm × 15 mm and 150 mm × 25 mm including some hard glass test-tubes



means of measuring small and larger volumes of liquids such as syringes and measuring cylinders



dropping pipette



white tile



hand lens



a thermometer, –10°C to +110°C at 1°C graduations



50

rulers capable of measuring to 1 mm

clock (or wall clock) to measure to an accuracy of about 1s.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Practical assessment

Chemistry
Candidates may be asked to carry out exercises involving:


simple quantitative experiments involving the measurement of volumes



speeds of reaction



measurement of temperature based on a thermometer with 1°C graduations



problems of an investigatory nature, possibly including suitable organic compounds



filtration



identification of ions and gases as specified in the Core curriculum. The question paper will include
Notes for Use in Qualitative Analysis



making suitable observations without necessarily identifying compounds.

Candidates may be required to do the following:


record readings from apparatus



estimate small volumes without the use of measuring devices



describe, explain or comment on experimental arrangements and techniques



complete tables of data



draw conclusions from observations and/or from information given



interpret and evaluate observations and experimental data



plot graphs and/or interpret graphical information



identify sources of error and suggest possible improvements in procedures



plan an investigation, including suggesting suitable techniques and apparatus.

Note on taking readings
When approximate volumes are used, e.g. about 2 cm3, it is expected that candidates will estimate this and not use measuring devices. Thermometers may be marked with intervals of 1°C. It is however appropriate to record a reading which coincides exactly with a mark, e.g. 22.0°C rather than 22°C. Interpolation between scale divisions should also be used such that a figure of 22.5°C may be more appropriate.
Apparatus List
The list below details the apparatus expected to be generally available for examination purposes. The list is not exhaustive: in particular, items that are commonly regarded as standard equipment in a chemical laboratory (such as Bunsen burners, tripods, hot water baths etc.) are not included. It is expected that the following items would be available for each candidate.


two conical flasks within the range 150 cm3 to 250 cm3



measuring cylinders, 100 cm3, 25 cm3 and 10 cm3



a filter funnel



two beakers, 250 cm3 and 100 cm3



a thermometer, –10°C to +110°C at 1°C graduations



a dropping pipette



clocks (or wall clock) to measure to an accuracy of about 1 s. Candidates own wristwatch may be used



a plastic trough of approximate size W150 mm × L220 mm × D80 mm



test-tubes. Sizes approximately 125 × 15 mm and 150 × 25 mm should be available and should include some hard glass test-tubes.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

51

Practical assessment

Physics
Candidates should be able to


assemble common pieces of equipment such as simple electrical circuits and where necessary follow written instructions to do so



use a balance to determine the mass of an object



carry out the specified manipulation of the apparatus



take reading from a measuring device, including


reading a scale with appropriate precision/accuracy, (see note below)



consistent use of significant figures,



taking repeated measurements to obtain an average



record their observations systematically, e.g. construct a table of data with appropriate units



process their data, as required. Calculators may be used



present data graphically, using suitable axes and scales and understanding the importance of the origin



using their graph to take readings including interpolation and extrapolation and calculating a gradient



describe sources of error and how to improve accuracy



devise an experiment to test a hypothesis or an alternative to the experiment carried out.

Note: a measuring instrument should be used to its full precision. Thermometers may be marked in 1°C intervals but it is often appropriate to interpolate between scale divisions and record a temperature as
21.5°C. Measurements using a rule requires suitable accuracy of recording such as 15.0 cm rather than 15 and use of millimetres used more regularly. Similarly, when measuring current, it is often more useful to use milliamperes rather than amperes.
Apparatus List
The list below details the apparatus expected to be generally available for examination purposes. The list is not exhaustive: in particular, items that are commonly regarded as standard equipment in a physics laboratory are not included. It is expected that the following items would be available for each candidate.



voltmeter FSD 1 V, 5 V



cells and holders to enable several cells to be joined



connecting leads and crocodile clips



d.c. power supply – variable to 12 V



metre rule



converging lens with f = 15 cm



low voltage filament bulbs in holders



good supply of masses and holder



Newton meter



plastic or polystyrene cup



Plasticine or modelling clay



various resistors



switch



thermometer, –10°C to +110°C at 1°C graduations



52

an ammeter FSD 1 A or 1.5 A

wooden board

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Practical assessment



glass or perspex block, rectangular and semi circular



measuring cylinder, 100 cm3, 250 cm3



springs



stopwatch



ray box.

7.3 Paper 6: Alternative to Practical
This paper is designed to test candidates’ familiarity with laboratory practical procedures.
Questions may be set requesting candidates to:


describe in simple terms how they would carry out practical procedures



explain and/or comment critically on described procedures or points of practical detail



follow instructions for drawing diagrams



draw, complete and/or label diagrams of apparatus



take readings from their own diagrams, drawn as instructed, and/or from printed diagrams including


reading a scale with appropriate precision/accuracy with consistent use of significant figures and with appropriate units,



interpolating between scale divisions,



taking repeat measurements to obtain an average value



process data as required, complete tables of data



present data graphically, using suitable axes and scales (appropriately labelled) and plotting the points accurately •

take readings from a graph by interpolation and extrapolation



determine a gradient, intercept or intersection on a graph



draw and report a conclusion or result clearly



identify and/or select, with reasons, items of apparatus to be used for carrying out practical procedures



explain, suggest and/or comment critically on precautions taken and/or possible improvements to techniques and procedures



describe, from memory, tests for gases and ions, and/or draw conclusions from such tests
(Notes for Use in Qualitative Analysis, will not be provided in the question paper).

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

53

Appendix

8.

Appendix

8.1 Symbols, units and definitions of physical quantities
Candidates should be able to state the symbols for the following physical quantities and, where indicated, state the units in which they are measured. Candidates should be able to define those items indicated by an asterisk (*). The list for the extended curriculum includes both the core and the supplement.
Core

Supplement

Quantity

Symbol

Unit

Quantity

Symbol

Unit

length

l, h ...

km, m, cm, mm

area

A

m2, cm2

volume

V

m3, dm3, cm3

weight

W

N

N*

mass

m, M

kg, g

mg

density

d, ρ

kg / m3, g / cm3

time

t

h, min, s

speed*

u, v

km / h, m / s, cm / s

acceleration

a

acceleration of free fall g

force

F, P ...

ms

acceleration*

work done

W, E

J

energy

E
P

W

t

o

N*
Nm

work done by a force*

J*

J

power

force* moment of a force*

N

m / s2

temperature

J*, kW h* power* W*

C frequency* f

Hz

wavelength*

λ

m, cm

focal length

cm, mm

angle of incidence

i

degree (°)

angle of reflection

r

degree (°)

potential difference / voltage V

V, mV

potential difference*

current

I

A, mA

current*

e.m.f.

E

V

e.m.f.*

resistance

54

f

R



Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

V*

Appendix

8.2 Notes for use in qualitative analysis
Tests for anions anion test

test result

carbonate (CO32–)

add dilute acid

effervescence, carbon dioxide produced chloride (Cl –)
[in solution]

acidify with dilute nitric acid, then add aqueous silver nitrate

white ppt.

nitrate (NO3–)
[in solution]

add aqueous sodium hydroxide, then aluminium foil; warm carefully

ammonia produced

sulfate (SO42–)
[in solution]

acidify with dilute nitric acid, then add aqueous barium nitrate

white ppt.

Tests for aqueous cations cation effect of aqueous sodium hydroxide

effect of aqueous ammonia

ammonium (NH4 )

ammonia produced on warming

-

copper(II) (Cu2+)

light blue ppt., insoluble in excess

light blue ppt., soluble in excess, giving a dark blue solution

iron(II) (Fe2+)

green ppt., insoluble in excess

green ppt., insoluble in excess

red-brown ppt., insoluble in excess

red-brown ppt., insoluble in excess

white ppt., soluble in excess, giving a colourless solution

white ppt., soluble in excess, giving a colourless solution

+

3+

iron(III) (Fe )
2+

zinc (Zn )

Tests for gases gas test and test result

ammonia (NH3)

turns damp red litmus paper blue

carbon dioxide (CO2)

turns lime water milky

chlorine (Cl 2)

bleaches damp litmus paper

hydrogen (H2)

‘pops’ with a lighted splint

oxygen (O2)

relights a glowing splint

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

55

Appendix

56

8.3 The Periodic Table of the Elements
Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

DATA SHEET
The Periodic Table of the Elements
Group
I

III

II

IV

V

VI

VII

0

1

4

H

He

Hydrogen

Helium

2

1
7

9

11

12

14

16

19

20

Li

Be

B

C

N

O

F

Ne

Lithium

Beryllium

3

Boron

4

5

Carbon

6

Nitrogen

7

Oxygen

8

Fluorine

Neon

10

9

23

24

27

28

31

32

35.5

40

Na

Mg

Al

Si

P

S

Cl

Ar

Sodium

Magnesium

11

Silicon

Aluminium

12

14

13

Phosphorus

Sulfur

16

15

Argon

Chlorine

18

17

39

40

45

48

51

52

55

56

59

59

64

65

70

73

75

79

80

84

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

As

Se

Br

Kr

Potassium

19

Calcium

20

Scandium

Titanium

21

22

Vanadium

23

Chromium

24

Manganese

25

85

88

89

91

93

96

Rb

Sr

Y

Zr

Nb

Mo

Iron

26

Rubidium

37

Strontium

38

Yttrium

Zirconium

39

40

Niobium

41

Molybdenum

42

Cobalt

27

Technetium

43

108

Rh

Pd

Ag

Cd

Ruthenium

44

Rhodium

45

137

139

178

181

184

186

Hf

Ta

W

Re

192

190

La

Os

Barium

Lanthanum

57

Hafnium

*

223

226

Ra

Tantalum

73

Tungsten

74

Rhenium

75

127

128

Sb

Te

Tin

50

Antimony

51

131

I

Tellurium

52

Krypton

36

Xe
Xenon

Iodine

54

53

195

197

201

204

207

209

209

210

222

Au

Hg

Tl

Pb

Bi

Po

At

Rn

Platinum

Iridium

78

77

122

Sn

Indium

49

Bromine

35

119

In

Cadmium

48

Selenium

34

Pt

Ir

Osmium

76

Silver

47

Arsenic

33

Gold

79

Mercury

80

Lead

Thallium

82

81

Bismuth

83

Polonium

84

Astatine

85

Radon

86

227

Fr

72

Palladium

46

Germanium

32
115

112

Ru

Tc

Gallium

31

106

Ba
56

Zinc

30

103

133

Caesium

Copper

29

101

Cs
55

Nickel

28

Ac

Francium

Radium

87

88

Actinium

89


140

141

144

147

150

152

157

159

162

165

167

169

173

175

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Cerium

* 58–71 Lanthanoid series
† 90–103 Actinoid series

Praseodymium

58 a X

Key b a = relative atomic mass

X = atomic symbol b = atomic (proton) number

59

Neodymium

60

Promethium

61

Samarium

62

Europium

63

Gadolinium

64

Terbium

65

Dysprosium

66

Holmium

67

Erbium

68

Thulium

69

Ytterbium

70

Lutetium

71

232

238

237

244

243

247

247

251

252

257

258

259

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

Lr

Thorium

90

231

Th

Protactinium

Uranium

Neptunium

Plutonium

Americium

Curium

Berkelium

Californium

Einsteinium

Fermium

Mendelevium

Nobelium

Lawrencium

91

92

93

94

95

96

97

98

99

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).

100

101

102

260

103

Appendix

8.4 Grade descriptions
The scheme of assessment is intended to encourage positive achievement by all candidates. Mastery of the core curriculum is required for further academic study.
A Grade A candidate must show mastery of the core curriculum and the extended curriculum.
A Grade C candidate must show mastery of the core curriculum plus some ability to answer questions which are pitched at a higher level.
A Grade F candidate must show competence in the core curriculum.
A Grade A candidate is likely to


relate facts to principles and theories and vice versa



state why particular techniques are preferred for a procedure or operation



select and collate information from a number of sources and present it in a clear logical form



solve problems in situations which may involve a wide range of variables



process data from a number of sources to identify any patterns or trends



generate a hypothesis to explain facts, or find facts to support an hypothesis.

A Grade C candidate is likely to


link facts to situations not specified in the syllabus



describe the correct procedure(s) for a multi-stage operation



select a range of information from a given source and present it in a clear logical form



identify patterns or trends in given information



solve problems involving more than one step, but with a limited range of variables



generate a hypothesis to explain a given set of facts or data.

A Grade F candidate is likely to


recall facts contained in the syllabus



indicate the correct procedure for a single operation



select and present a single piece of information from a given source



solve a problem involving one step, or more than one step if structured help is given



identify a pattern or trend where only a minor manipulation of data is needed



recognise which of two given hypotheses explains a set of facts or data.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

57

Appendix

8.5 Mathematical requirements
Calculators may be used in all parts of the assessment.
Candidates should be able to:


add, subtract, multiply and divide



understand and use averages, decimals, fractions, percentages, ratios and reciprocals



recognise and use standard notation



use direct and inverse proportion



use positive, whole number indices



draw charts and graphs from given data



interpret charts and graphs



select suitable scales and axes for graphs



make approximate evaluations of numerical expressions



recognise and use the relationship between length, surface area and volume and their units on metric scales •

use usual mathematical instruments (ruler, compasses, protractor, set square)



understand the meaning of angle, curve, circle, radius, diameter, square, parallelogram, rectangle and diagonal •

solve equations of the form x = yz for any one term when the other two are known



recognise and use points of the compass (N, S, E, W).

8.6 Glossary of terms used in science papers
It is hoped that the glossary (which is relevant only to Science subjects) will prove helpful to candidates as a guide (e.g. it is neither exhaustive nor definitive). The glossary has been deliberately kept brief not only with respect to the number of terms included but also to the descriptions of their meanings. Candidates should appreciate that the meaning of a term must depend, in part, on its context.
1. Define (the term(s) ... ) is intended literally, only a formal statement or equivalent paraphrase being required. 2. What do you understand by/What is meant by (the term (s) ... ) normally implies that a definition should be given, together with some relevant comment on the significance or context of the term(s) concerned, especially where two or more terms are included in the question. The amount of supplementary comment intended should be interpreted in the light of the indicated mark value.
3. State implies a concise answer with little or no supporting argument (e.g. a numerical answer that can readily be obtained ‘by inspection’).
4. List requires a number of points, generally each of one word, with no elaboration. Where a given number of points is specified this should not be exceeded.
5. Explain may imply reasoning or some reference to theory, depending on the context.
6. Describe requires the candidate to state in words (using diagrams where appropriate) the main points of the topic. It is often used with reference either to particular phenomena or to particular experiments.
In the former instance, the term usually implies that the answer should include reference to (visual) observations associated with the phenomena.
In other contexts, describe should be interpreted more generally (i.e. the candidate has greater discretion about the nature and the organisation of the material to be included in the answer). Describe and explain may be coupled, as may state and explain.

58

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Appendix

7. Discuss requires the candidate to give a critical account of the points involved in the topic.
8. Outline implies brevity (i.e. restricting the answer to giving essentials).
9. Predict implies that the candidate is not expected to produce the required answer by recall but by making a logical connection between other pieces of information. Such information may be wholly given in the question or may depend on answers extracted in an earlier part of the question.
Predict also implies a concise answer with no supporting statement required.
10. Deduce is used in a similar way to predict except that some supporting statement is required
(e.g. reference to a law, principle, or the necessary reasoning is to be included in the answer).
11. Suggest is used in two main contexts (i.e. either to imply that there is no unique answer (e.g. in
Chemistry, two or more substances may satisfy the given conditions describing an ‘unknown’), or to imply that candidates are expected to apply their general knowledge to a ‘novel’ situation, one that may be formally ‘not in the syllabus’).
12. Find is a general term that may variously be interpreted as calculate, measure, determine, etc.
13. Calculate is used when a numerical answer is required. In general, working should be shown, especially where two or more steps are involved.
14. Measure implies that the quantity concerned can be directly obtained from a suitable measuring instrument (e.g. length, using a rule, or mass, using a balance).
15. Determine often implies that the quantity concerned cannot be measured directly but is obtained by calculation, substituting measured or known values of other quantities into a standard formula
(e.g. resistance, the formula of an ionic compound).
16. Estimate implies a reasoned order of magnitude statement or calculation of the quantity concerned, making such simplifying assumptions as may be necessary about points of principle and about the values of quantities not otherwise included in the question.
17. Sketch, when applied to graph work, implies that the shape and/or position of the curve need only be qualitatively correct, but candidates should be aware that, depending on the context, some quantitative aspects may be looked for (e.g. passing through the origin, having an intercept).
In diagrams, sketch implies that simple, freehand drawing is acceptable; nevertheless, care should be taken over proportions and the clear exposition of important details.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

59

Appendix

8.7 Forms
The following pages contain:



Instructions for completing individual candidate record cards



Coursework Assessment Summary Form



Instructions for completing coursework assessment summary forms



Sciences Experiment Form



60

Individual Candidate Record Card

Instructions for completing sciences experiment forms

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

COMBINED SCIENCE
Individual Candidate Record Card
IGCSE 2015
Please read the instructions printed overleaf and the General Coursework Regulations before completing this form.
Centre number

Centre name

June/November

Candidate number

Candidate name

Teaching group/set

Experiment number from
Sciences Experiment Form

1

5

Relevant comments (e.g. if help was given)

Assess at least twice: ring highest two marks for each skill
(Max 6 each assessment)
C1
C2
C3
C4

TOTAL

Marks to be transferred to
Coursework Assessment Summary Form
(max 12)

WMS291

0

(max 12)

(max 12)

(max 12)

(max 48)

IGCSE/SCIENCES/CW/I/15

61

Appendix

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Date of assessment 2

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Appendix

62

Instructions for completing individual candidate record cards
1. Complete the information at the head of the form.
2. Mark each item of Coursework for each candidate, according to instructions given in the Syllabus and Training Manual.
3. Enter marks and total marks in the appropriate spaces. Complete any other sections of the form required.
4. Ensure that the addition of marks is independently checked.
5. It is essential that the marks of candidates from different teaching groups within each Centre are moderated internally. This means that the marks awarded to all candidates within a Centre must be brought to a common standard by the teacher responsible for co-ordinating the internal assessment (i.e. the internal moderator), and a single valid and reliable set of marks should be produced which reflects the relative attainment of all the candidates in the Coursework component at the Centre.
6. Transfer the marks to the Coursework Assessment Summary Form, in accordance with the instructions given on that document.
7. Retain all Individual Candidate Record Cards and Coursework, which will be required for external moderation. Further detailed instructions about external moderation will be sent in late March of the year of the June examination, and early October of the year of the November examination. See also the instructions on the Coursework Assessment Summary Form.
Note:
These Record Cards are to be used by teachers only for students who have undertaken Coursework as part of the Cambridge IGCSE.

IGCSE/SCIENCES/CW/I/15

COMBINED SCIENCE
Coursework Assessment Summary Form
IGCSE 2015
Please read the instructions printed overleaf and the General Coursework Regulations before completing this form.
Centre number
Syllabus code
Candidate
number

Centre name
0

6

5

3

Candidate name

WMS292

COMBINED SCIENCE
Teaching
group/ set Component number

0 4 Component title

0

1

5

COURSEWORK

C1

C2

C3

C4

Total mark

(max 12)

(max 12)

(max 12)

(max 12)

(max 48)

Signature
Signature

2

Internally moderated mark
(max 48)

Date
Date

IGCSE/SCIENCES/CW/S/15

63

Appendix

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Name of teacher completing this form
Name of internal moderator

Syllabus title

June/November

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Appendix

64

A.

Instructions for completing coursework assessment summary forms

1. Complete the information at the head of the form.
2. List the candidates in an order which will allow ease of transfer of information to a computer-printed Coursework mark sheet MS1 at a later stage
(i.e. in candidate index number order, where this is known; see item B.1 below). Show the teaching group or set for each candidate. The initials of the teacher may be used to indicate group or set.
3. Transfer each candidate’s marks from his or her Individual Candidate Record Card to this form as follows:
(a) Where there are columns for individual skills or assignments, enter the marks initially awarded (i.e. before internal moderation took place).
(b) In the column headed ‘Total mark’, enter the total mark awarded before internal moderation took place.
(c) In the column headed ‘Internally moderated mark’, enter the total mark awarded after internal moderation took place.
4. Both the teacher completing the form and the internal moderator (or moderators) should check the form and complete and sign the bottom portion.

B.

Procedures for external moderation

1. University of Cambridge International Examinations sends a computer-printed Coursework mark sheet MS1 to each Centre (in late March for the
June examination, and in early October for the November examination), showing the names and index numbers of each candidate. Transfer the total internally moderated mark for each candidate from the Coursework Assessment Summary Form to the computer-printed Coursework mark sheet MS1.
2. The top copy of the computer-printed Coursework mark sheet MS1 must be despatched in the specially provided envelope to arrive at Cambridge as soon as possible, but no later than 30 April for the June examination and 31 October for the November examination.
3. Cambridge will select a list of candidates whose work is required for external moderation. As soon as this list is received, send candidates’ work to
Cambridge, with the corresponding Individual Candidate Record Cards, this summary form and the second copy of MS1.
4. Experiment Forms, Work Sheets and Marking Schemes must be included for each task that has contributed to the final mark of these candidates. 5. Photocopies of the samples may be sent but candidates’ original work, with marks and comments from the teacher, is preferred.
6. (a) The pieces of work for each skill should not be stapled together, nor should individual sheets be enclosed in plastic wallets.
(b) Each piece of work should be clearly labelled with the skill being assessed, Centre name, candidate name and index number and the mark awarded. For each task, supply the information requested in B.4 above.
7. Cambridge reserves the right to ask for further samples of Coursework.

IGCSE/SCIENCES/CW/S/15

Appendix

COMBINED SCIENCE
Experiment Form
IGCSE 2015
Please read the instructions printed overleaf.
Centre number

Centre name

Syllabus code

Syllabus title

Component number

Component title

June/November
Experiment
number

WMS340

2

0

1

Coursework

5
Experiment

Skill(s)
Assessed

IGCSE/SCIENCES/CW/EX/15

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

65

Appendix

Instructions for completing sciences experiment form
1. Complete the information at the head of the form.
2. Use a separate form for each Syllabus.
3. Give a brief description of each of the experiments your students performed for assessment in the
Cambridge IGCSE Science Syllabus indicated. Use additional sheets as necessary.
4. Copies of the experiment forms and the corresponding worksheets/instructions and marking schemes will be required for each assessed task sampled, for each of Skills C1 to C4 inclusive.

IGCSE/SCIENCES/CW/EX/15

66

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

Other information

9.

Other information

Equality and inclusion
Cambridge International Examinations has taken great care in the preparation of this syllabus and assessment materials to avoid bias of any kind. To comply with the UK Equality Act (2010), Cambridge has designed this qualification with the aim of avoiding direct and indirect discrimination.
The standard assessment arrangements may present unnecessary barriers for candidates with disabilities or learning difficulties. Arrangements can be put in place for these candidates to enable them to access the assessments and receive recognition of their attainment. Access arrangements will not be agreed if they give candidates an unfair advantage over others or if they compromise the standards being assessed.
Candidates who are unable to access the assessment of any component may be eligible to receive an award based on the parts of the assessment they have taken.
Information on access arrangements is found in the Cambridge Handbook which can be downloaded from the website www.cie.org.uk

Language
This syllabus and the associated assessment materials are available in English only.

Grading and reporting
Cambridge IGCSE results are shown by one of the grades A*, A, B, C, D, E, F or G indicating the standard achieved, A* being the highest and G the lowest. ‘Ungraded’ indicates that the candidate’s performance fell short of the standard required for grade G. ‘Ungraded’ will be reported on the statement of results but not on the certificate. The letters Q (result pending); X (no results) and Y (to be issued) may also appear on the statement of results but not on the certificate.

Entry codes
To maintain the security of our examinations we produce question papers for different areas of the world, known as ‘administrative zones’. Where the component entry code has two digits, the first digit is the component number given in the syllabus. The second digit is the location code, specific to an administrative zone. Information about entry codes, examination timetables and administrative instructions can be found in the Cambridge Guide to Making Entries.

Cambridge IGCSE Combined Science 0653. Syllabus for examination 2015.

67

Cambridge International Examinations
1 Hills Road, Cambridge, CB1 2EU, United Kingdom
Tel: +44 (0)1223 553554 Fax: +44 (0)1223 553558
Email: info@cie.org.uk www.cie.org.uk
® IGCSE is the registered trademark of Cambridge International Examinations
© Cambridge International Examinations 2013

*4860584379*

Similar Documents

Free Essay

Nike

...Case Title: Nike Inc. Developing an effective public relations strategy 1. SHORT CYCLE PROCESS | Who | Nike´s Corporation | What | La imagen de la compañía fue muy negativa, por lo que sus ventas bajaron considerablemente | Why | En los medios de comunicación afirmaron que las fábricas subcontratadas para Nike en China e Indonesia obligaban a los trabajadores a tener largas horas por bajos salarios y los gerentes abusaban verbalmente | When | En 1990 | Case difficulty cube How: x Analytical Conceptual Presentation 2. LONG CYCLE PROCESS | Problema | Raíz del problema | La mala publicidad perjudica a la organización terriblemente, ya que los consumidores toman la postura de prohibir la compra de sus productos. | El público fue informado de que Nike estaba maltratando a sus trabajadores en el extranjero | Nike ignoró los problemas y negó su responsabilidad hacia su fabricación por contrato | La compañía no se quería hacer responsable de las acusaciones que se le hacían, ya que culpaban a los contratistas en los países asiáticos | Nike no puede equilibrar entre el objetivo de actividades y cuestiones prácticas laborales | Nike no era coherente entre lo que tenía por escrito en su código de conducta y lo que realmente estaba pasando en las fábricas de China e Indonesia | Los grupos activistas no se convencieron con la implementación de su código de conducta y problemas de administración...

Words: 1051 - Pages: 5

Premium Essay

Nike

...Nike is one of the largest public sportswear and equipment suppliers, with the leading edge in athletic sneakers, apparel, and sports equipment in the world. Nike has been ranked the most powerful sports brand by Forbes magazine, in early 2011. Nike started out as a small distributing company for Asics and now has become a global success. In 1964 Bill Bowerman, the coach of the track and field team for the University of Oregon, as well as one of the runners Phil Knight, started distributing running sneakers for the company “Onsitsuka Tiger” (now known as Asics), in the back of Phil’s car. With profits increasing and popularity growing, by 1967 Blue Ribbon Sports was opening their first retail store in Santa Monica, California. During 1971, Blue Ribbon Sports started to expand, and Phil Knight and Bill Bowerman started preparing their own footwear line. The infamous swoosh was developed in 1971 by Carolyn Davidson. This was the start of Nikes journey to becoming the most powerful sports company in the world today. The first shoe released to the public was a soccer shoe named Nike, which was released in the summer of 1971. Early 1972 the first line of Nike shoes was released. In 1978 Blue Ribbon Sports officially renamed itself Nike. The waffle design was Nike’s first self-designed product. Bill Bowerman and Phil Knight started experimenting with different out soles to increase traction and efficiency. The waffle trainer was a hit. By 1980 Nike captured 50% of the United States...

Words: 1694 - Pages: 7

Premium Essay

Nike

...Cathy Buckland Nike MKTG305-1202A-05 Marketing Management Project Type: Unit 4 Individual Project April 15, 2012 Abstract To get the word out many companies have turned to television and actors and actress for advertising. Nike has made its way through many changes and it has been able to focus on its marketing mix through television ads as well as using billboards, and magazines. Nike Introduction Targeting the market is what every company faces in order to increase sales and in order to keep their company in business. Nike has proven to be able corner and stay one step ahead of the market even in a trying economy it uses athletes, actors and actresses to keep its company going. The brand in today’s market Nike currently has a 47% control of the market with its athletic shoes with sales in the U.S. at 3.7 billion dollars. Nike also targets the market in well over 100 countries which include Europe, and Asia Pacific. Since Nike is such a large producer of many different products its targeting market varies. Nike athletic shoes have been very popular with both the younger crowd as well as adults. Its products are designed with quality this along with the ability to use marketing strategies has continued to keep this company at the top of the list. Nike has used athletes such as Michael Jordan, and Lebron James to promote their products. The strategy allows for the consumers to wear products that they believe in because of the superstar wearing them...

Words: 1412 - Pages: 6

Premium Essay

Nike

...Nike Fortune 500 Company Analysis Park University MG495 Abstract This paper will discuss the successful, multi-national, athletic, and Fortune 500 company, Nike. Nike is one of the most recognized companies today and has created products and an image that companies all around the world dream to achieve. Through a straight forward mission statement that encompasses their vision, Nike is able to show how devoted they are to satisfying their customers' needs and going beyond that to ensure their customers only receive quality products and services. Nike’s extensive history, dating back to the 1950’s only adds to its impressive reputation in the athletics industry. It’s properly researched, developed and managed marketing strategy has given Nike the advantage over its competitors and has helped to ensure the company will lasts for years to come. The company was founded on the premise that it wanted to be the industry leader and develop products to help athletes perform at the highest standards. From the very begging Nike has done everything to achieve and maintain that balance and it still is the industry leader today. Nike History Bill Bowerman was a track coach for Oregon in the 1950’s. He was always seeking new ways to get a competitive advantage amongst his competitors. He tried everything from experimenting with running surface compounds, hydration, nutrition, and just about anything else you could think of to gain an advantage. He tried pitching it to all of the...

Words: 2858 - Pages: 12

Premium Essay

Nike

...Nike Outline I. INTRODUCTION Paragraph No. A. Nike Described + Thesis: Many people can prove that Nike is a company 1 that continues to push the boundaries of design and performance, promoting freedom and choice, but these same people leave out the obvious facts that show how this company exploits third world countries by using cheap labor. II. History of Nike Inc. A. Founders B. Co-founding business 2 C. Business Success 3 III. Anti-Nike A. Cheap labor 4 B. Definition of sweatshops 5 C. Locations of sweatshops 6 D. Working conditions 7-8 IV. Nike Defended A. Ruined reputation 9-11 B. Target of organizational protests 12-13 C. Significant progress 14 V. Conclusion 15 1 We all know the slogan, "Just Do It," that Nike developed to sell its products. But just do what? Nike is a company-- young and yet mature--developed and respected by popular athletes both past and present, whose icon remains a "swoosh" printed both large and small on many different forms of apparel. The "swoosh" constitutes a dream of being the best because it is associated with the best. Steve Prefontaine, Michael Jordan, and Tiger Woods are all icons that helped Nike promote its excellence by all three being exceedingly successful in their respective sports ("Our History" ½). Many people can prove that Nike is a company that continues to push the boundaries of design and performance, promoting freedom and choice, but these same people...

Words: 2018 - Pages: 9

Premium Essay

Nike

...Most people are familiar with the Nike logo. Most people also know that Nike is a multi-million dollar company that sells name brand shoes worldwide. Millions of pairs of Nike shoes are sold daily, but what people don’t know about Nike shoes is how and where they are made, who makes them, and how Nike spends its money in this process. According to the “Sweatshop Fact Sheet,” Tiger Woods is paid over fifty five thousand dollars a day to be their spokesman. Another famous person that is a spokesman for Nike is Michael Jordan. According to the article “Running Away With the Profits,” (Environmental Action, Academic Search Elite), Michael Jordan is paid twenty million dollars in endorsement fees. Big name sport teams advertise Nike to appeal to the common person. Indonesia is one of many countries around the world that is home to numerous Nike factories. Indonesia is a third world country of 214 million people. The main part of the economy is farmers, with half of these being the labor force. This happens to be an ideal country of choice for Nike to set up their factories for manufacturing their shoes. It allows Nike to take advantage of the local people. These people need to work in these factories to make a living, and they are stuck with the poor working conditions that Nike has provided. One way in which Nike is taking advantage of their workers is through long and hard work hours. According to the article: “We are not machines,” the Nike’s code of conduct states that...

Words: 1297 - Pages: 6

Premium Essay

Nike

...O’Rourke for their helpful comments and assistance during this project. 1 1. Introduction How should global corporations behave in the new international world order? What constitutes good corporate citizenship in a world where the stakeholders are diverse and dispersed around the globe and where no clear or consensual rules and standards exist? These questions shape the behavior of most multinational corporations (MNCs) today. Although multinationals are eager to pursue the opportunities of increased global integration, they are increasingly aware of the reactions which their strategies induce – both at home and abroad. Thus, they tread warily, lacking clear and agreed-upon definitions of good corporate citizenship. Through a case study of Nike, Inc. – a company that has come to symbolize both the benefits and the risks inherent in globalization – this paper examines the various difficulties and complexities companies face as they seek to balance both company performance and good corporate citizenship in today’s global world. 1. The Athletic Footwear Industry The athletic footwear industry experienced an explosive growth in the last two decades. In 1985, consumers in the United States alone spent $5 billion and purchased 250 million pair of shoes.2 In 2001,...

Words: 7820 - Pages: 32

Premium Essay

Nike

...Nike HR Roadmap Page 1 Introduction The Nike Corporation started back in 1957 when the two gentlemen Phil Knight and Bill Bowerman met at the University of Oregon. In 1962 a company in Japan helped market the althetic shoes under the Nike name and logo. Phil night decided to start selling shoes out of the trunk of his car. This was a simple beginning process for the company. From there the company took off. Nike Corporation started off in a very humble way that made them take off to one of the top selling brand of athletic shoes. In this paper we will look at the whole corporation overview and mission. Body There are many reasons that the Nike corporation became successful. Runners really liked the bottom of the running shoe which became a very big seller with its waffle like design. Runners and walkers especially like Nike shoes because of the support that they have on them. "Nike is the active program, our shareholders, our customers reflect the world of family care and provide services to Nike through the Director of Corporate Citizenship." Nike has one mission statement: To carry out the legacy of innovative thinking left by the founding members by developing products that enable athletes of all abilities to maximize their potential while beating competition and creating value for shareholders. Nikes headquarters are located in Beaverton, Oregon in Portland and the company operates in more than 160 countries all over the world with more...

Words: 1557 - Pages: 7

Premium Essay

Nike

...http://essays24.com/Business/Strategy-Ikea/16542.html Nike was established in 1972 by Bill Bowerman and Phil Knight with a mission to bring innovation and inspiration to every athlete in the world. The company started out as an American based footware distributor and evolved globally overtime to include not only footwear, but also apparel and equipment. Nike is one of the most recognized brands in the world and many are extremely familiar with their tag line “Just Do It”. Nike has capitalized on first mover advantage over the years and led the market in innovation. Nike competes in a saturated market with many traditional and potential competitors. To maintain future success Nike needs to focus on new strategies. Nike, who also owns Hurley, Converse, Bauer, and Umbro has several traditional competitors including Reebok, Adidas, UnderArmor, New Balance and Puma. Any company that produces athletic footwear or athletic apparel is a competitor to Nike. Nike also sells sunglasses and fitness equipment. Nike also faces potential competition with other shoe or apparel manufacturers. Sketchers had traditionally produced more fashionable everyday footware but has been extremely focused in the last few years on athletic footware. Their Shaper brand is now widely popular for consumers who like to walk for exercise and their cross-training and running shoes are gaining popularity. It takes little effort for a current shoe manufacturer to change designs and molds to make new...

Words: 1178 - Pages: 5

Premium Essay

Nike

...Blue Ribbon Sports was founded in 1964 by Bill Bowerman and Phillip Knight which later officially became NIKE, Inc. in May 1978. Bowerman and Knight came into agreement with a handshake to start Blue Ribbon Sports with ideas in improvement in athletic footwear design. “ They and the people they hired evolved and grew the company that became NIKE, Inc. from a US-based footwear distributor to a global marketer of athletic footwear, apparel, and equipment that is unrivaled in the world”(Nikebiz June 2009). NIKE, Inc. employs over 30,000 people and its headquarters employ’s more than 7,000 people which is located in Beaverton, Oregon. Nike has more than 700 shops around the world and offices in 45 countries outside the United States. Most of the NIKE, Inc. factories are located Over seas in Asia, China, Taiwan, Pakistan, and many more other countries. In the year of 2008 NIKE, Inc. own several subsidiaries: Cole Haan, Hurley International, LLC, Converse Inc, Umbro NIKE Golf, Ltd. Nike also previous owned but also sold Bauer Hockey and Starter. Nike produces and sells a wide range of products including sports equipment, shoes and apparels for a variety sports activities. NIKE, Inc.’s affiliate businesses contributed approximately $2.7 billion of the company’s $20.9 billion in revenue in May 2011. As part of NIKE, Inc growth strategy, we continue to invest in opportunities that will generate the highest possible long-term returns. “Secret Tournament incorporated advertising, the...

Words: 418 - Pages: 2

Premium Essay

Nike

...German magazine pointed out that the signature Nike air pocket included more than just air it also contained sulfur hexafluoride, or SF6 a potent greenhouse gas more commonly linked to older refrigerators and air conditioners. SF6 breaks up slowly in the atmosphere, which means that even very small amounts have a significant environmental impact. Estimates suggest that at the peak of SF6 production in 1997, Nike air footwear carried a greenhouse effect equivalent to the tailpipes of 1 million automobiles. It took Nike almost 14 years to devise a new air pocket that was a light, durable, and shock-absorbing as the SF6 version. The breakthrough wound up utilizing nitrogen, held in by a redesigned sole that includes 65 wafer-thin layers of plastic film. The new approach, which debuted with Nike’s Air Max 360, allows the air pocket to stretch throughout the sole, giving even more comfort at even less weight. The company has also devised a program that calculates an environmental impact rating for each shoe, based on use of toxic adhesives, curbing of waste, and use of recycled materials. Even the Air Jordan arguably Nike’s flagship shoe was designed with environmental impact in mind, such that the shoe’s sole consists of ground up bits of old Nike sneakers. You won’t see these issues discussed in television or print ads for Nike shoes, however. Unlike Wal-Mart or General electric, which aggressively trumpet their “GREEN” initiatives, NIKE prefers to deemphasize...

Words: 404 - Pages: 2

Premium Essay

Nike

...Company Profile Nike, Inc., together with its subsidiaries, engages in the design, development, marketing, and sales of athletic footwear, apparel, equipment, and accessories, as well as in the provision of services to men, women, and children worldwide. The company offers products in seven categories, including running, basketball, football, men’s training, women’s training, Nike sportswear, and action sports under the Nike and Jordan brand names. It also markets products designed for young children, as well as for other athletic and recreational uses such as baseball, cricket, golf, lacrosse, outdoor activities, football, tennis, volleyball, walking, and wrestling. The company even offers performance equipment for sports activities under the Nike brand name, including bags, socks, sport balls, eyewear, timepieces, digital devices, bats, gloves, protective equipment, and golf clubs; various plastic products to other manufacturers; athletic and casual footwear, apparel, and accessories under the Converse, Chuck Taylor, All Star, One Star, Star Chevron, and Jack Purcell trademarks; and action sports and youth lifestyle apparel and accessories under the Hurley trademark. It sells its products to footwear stores, sporting goods stores, athletic specialty stores, department stores, skate stores, tennis and golf shops, and other retail accounts through Nike-owned retail stores; Internet Websites (direct to consumer operations); and a mix of independent distributors and...

Words: 4852 - Pages: 20

Premium Essay

Nike

...Nike, Inc: Cost of Capital CASE SUMMARY In this case, Kimi Ford, a portfolio manager at NorthPoint Group, a mutual fund company, manages the NorthPoint Large-Cap Fund. This fund invests mostly in Fortune 500 companies with an emphasis on value investing. Some of the top holdings of the NorthPoint Large-Cap Fund include; ExxonMobil, McDonalds and GM, these stocks are generally old-economy stocks. Over 2000 and the first half of 2001, the NorthPoint Large-Cap Fund performed very well, earning a 20.7% return in 2000; over the same time, the S7P 500 fell 10.1%. The current time is July 2001 and just a year prior, there was an analyst meeting at Nike to review fiscal year 2001 performance. During this meeting, Nike revealed a plan for revitalizing the company. The company was in need of a kick start as sales were stuck at $9 billion and there was a drop in net income from $800 million to $580 million. To re-energize sales, Nike was going to produce more mid-priced athletic shoes, an area where Nike was weak in previous years. Nike also announced that it was going to push its apparel line which has been growing extremely well. With this new information, Kimi Ford is now considering purchasing Nike shares for the NorthPoint Large-Cap Fund. She reviewed numerous analysts’ reports but felt that there was no clear guidance on whether or not to buy the stock. To make a better decision, she decided to perform her own analysis. In this case, we will provide Kimi Ford with a...

Words: 1600 - Pages: 7

Premium Essay

Nike

...Nike: A Look Inside | June 22 2010 | By Bobby Bedsole, Matt Currie, & Brady Stoker | [Type the document subtitle] | Table of Contents Executive Summery External Analysis 1) Industry/Competition- Five Forces Current Rivalry opportunities/ Threats Potential Entrant Opportunities/ Threats Bargaining Power of Buyer Opportunities/ Threats Bargaining Power of Supplier Opportunities/ threats Substitute Products Opportunities/ Threats 2) General External Environment General Economic Opportunities/ Threats Demographic Opportunities/ Threats Sociocultural Opportunities/ Threats Political-Legal Opportunities/ Threats Technological Opportunities/ Threats Internal Analysis 1) Capabilities Assessment 2) Assessing the Primary Activities in the Value Chain a) Inbound and outbound Logistics b) Marketing c) Production Support Activities in the Value Chain a) Technological Development b) Human Relations Management c) Firm Infrastructure 3) Internal Audit of Functional Areas a) Management b) Information Systems c) Research and Development Financial Analysis- Conclusion Executive Summary Nikes Mission Statement: Our goal is to carry on his legacy of innovative thinking, whether to develop products that help athletes of every level of ability reach their potential, or to create business opportunities that set Nike apart from the competition and provide value for our shareholders...

Words: 13360 - Pages: 54

Premium Essay

Nike

...Research Documents The Research Paper Factory Join Search Browse Saved Papers Home Page » Business and Management Nike: the Sweatshop Debate In: Business and Management Nike: the Sweatshop Debate Nike: The Sweatshop Debate Summary: Nike is one of the foremost marketers of athletic shoes and apparel on the world. It established in 1972 with a handshake between two visionary Oregonians-Bowerman and his university runner Phil knight. It has annual revenue of $10 billion and it sells in total 140 countries. Nike does not do any manufacturing process only it designs and markets its products. It has 600 factories around the world that employ some 550,000 people. Nike is recognizable for its “swoosh” logo or the faces of its celebrate. Nike being one of the largest sportswear manufacturers, they don’t have any factories of their own but they manufacture through the subcontractors. Here lies the accusation that Nike’s subcontractors manufacture the shoes and the other products in sweatshops. This accusation though denied by the management of the Nike inc, however was seen by a report titled “48 hours” by Roberta Baskin. Besides this many other human right organizations like the global exchange and many others published their reports against the Nike incorporation. In response to these accusations Nike took many steps that included appointing a work assessment officer named Andrew Young, a former US ambassador to the UN, and also taking steps against...

Words: 351 - Pages: 2