Free Essay

Optimal Power Allocation in Multi-Relay Mimo Cooperative Networks: Theory and Algorithms

In:

Submitted By mohammedrizwanar
Words 1026
Pages 5
Optimal Power Allocation in Multi-Relay MIMO
Cooperative Networks: Theory and Algorithms

Abstract

Cooperative networking is known to have significant potential in increasing network capacity and transmission reliability. Although there have been extensive studies on applying cooperative networking in multi-hop ad hoc networks, most works are limited to the basic three-node relay scheme and single-antenna systems. These two limitations are interconnected and both are due to a limited theoretical understanding of the optimal power allocation structure in MIMO cooperative networks (MIMO-CN). In this paper, we study the structural properties of the optimal power allocation in MIMO-CN with per-node power constraints. More specifically, we show that the optimal power allocations at the source and each relay follow a matching structure in MIMO-CN. This result generalizes the power allocation result under the basic three-node setting to the multi-relay setting, for which the optimal power allocation structure has been heretofore unknown. We further quantify the performance gain due to cooperative relay and establish a connection between cooperative relay and pure relay. Finally, based on these structural insights, we reduce the MIMO-CN rate maximization problem to an equivalent scalar formulation. We then propose a global optimization method to solve this simplified and equivalent problem.

Architecture

Existing System

In Existing System, the multi-hop ad hoc networks most works are limited to the basic three-node relay scheme and single –antenna systems. These two limitations are interconnected and both are due to a limited theoretical understanding of the optimal power allocation structure in MIMO cooperative networks (MIMO-CN). So, capacity level is very low. Indeed, most of current works on wireless networks attempt to create, adapt, and manage a network on a maze of point-to-point non-cooperative wireless links. Such architectures can be seen as complex networks of simple links.

Disadvantages: 1. Low Network Capacity. 2. Communications are focused on physical layer issues, such as decreasing outage probability and increasing outage capacity, which are only link-wide metrics.

Proposed System

In Proposed system we use Cooperative diversity. It is a cooperative multiple antenna technique for improving or maximizing total network channel capacities for any given set of bandwidths which exploits user diversity by decoding the combined signal of the relayed signal and the direct signal in wireless multi hop networks. A conventional single hop system uses direct transmission where a receiver decodes the information only based on the direct signal while regarding the relayed signal as interference, whereas the cooperative diversity considers the other signal as contribution.

Advantage

1. To make larger or more powerful; increase.
2. To add to, as by illustrations; make complete.
3. To exaggerate.
4. To produce amplification of: amplify an electrical signal.

Modules 1. Three-node relay transmission 2. Network Constraints 3. Relaying Strategies 4. Cooperative Communications & Optimal Power allocation 5. Multi-hop Transmission

Three-node relay transmission With physical layer cooperative communications, there are three transmission manners: direct transmissions, multi-hop transmissions and cooperative transmissions. Direct transmissions and multi-hop transmissions can be regarded as special types of cooperative transmissions. A direct transmission utilizes no relays while a multi-hop transmission does not combine signals at the destination. The cooperative channel is a virtual multiple-input Multiple-output (MIMO) channel, where spatially distributed nodes are coordinated to form a virtual antenna to emulate multi-antenna transceivers.

Network Constraints Two constraint conditions need to be taken into consideration in the network connectivity, which is the basic requirement in topology control. The end-to-end network connectivity is guaranteed via a hop-by-hop manner in the objective function. Every node is in charge of the connections to all its neighbors. If all the neighbor connections are guaranteed, the end-to-end connectivity in the whole network can be preserved. The other aspect that determines network capacity is the path length. An end-to-end transmission that traverses more hops will import more data packets into the network. Although path length is mainly determined by routing, MIMO – CN limits dividing a long link into too many hops locally. The limitation is two hops due to the fact that only two-hop relaying are adopted. Relaying Strategies * Amplify-and-forward * Decode-and-forward
In amplify-and-forward, the relay nodes simply boost the energy of the signal received from the sender and retransmit it to the receiver. In decode-and-forward, the relay nodes will perform physical-layer decoding and then forward the decoding result to the destinations. If multiple nodes are available for cooperation, their antennas can employ a space-time code in transmitting the relay signals. It is shown that cooperation at the physical layer can achieve full levels of diversity similar to a MIMO system, and hence can reduce the interference and increase the connectivity of wireless networks. Cooperative Communications & Optimal Power allocation Cooperative transmissions via a cooperative diversity occupying two consecutive slots. The destination combines the two signals from the source and the relay to decode the information. Cooperative communications are due to the increased understanding of the benefits of multiple antenna systems. Although multiple-input multiple-output (MIMO) systems have been widely acknowledged, it is difficult for some wireless mobile devices to support multiple antennas due to the size and cost constraints. Recent studies show that cooperative communications allow single antenna devices to work together to exploit the spatial diversity and reap the benefits of MIMO systems such as resistance to fading, high throughput, low transmitted power, and resilient networks.

Multi-hop Transmission

Multi-hop transmission can be illustrated using two-hop transmission. When two-hop transmission is used, two time slots are consumed. In the first slot, messages are transmitted from the source to the relay, and the messages will be forwarded to the destination in the second slot. The outage capacity of this two-hop transmission can be derived considering the outage of each hop transmission.

HARDWARE & SOFTWARE REQUIREMENTS: HARDWARE REQUIREMENTS: * System : Pentium IV 2.4 GHz. * Hard Disk : 40 GB. * Floppy Drive : 1.44 Mb. * Monitor : 15 VGA Color. * Mouse : Logitech. * Ram : 512 MB. SOFTWARE REQUIREMENTS: * Operating system : Windows XP Professional. * Coding Language : C#.NET

Similar Documents

Free Essay

Miss

...Integration of EPON and WiMAX Gangxiang Shen and Rodney S. Tucker 14.1 Introduction The Internet today is characterized by a fast growth of bandwidth-intensive services, such as IPTV, video on demand (VoD), and peer-to-peer (P2P) services. To Gangxiang Shen ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN), Department Electrical and Electronic Engineering, The University of Melbourne, Melbourne VIC 3010, Australia, e-mail: egxshen@gmail.com Rodney S. Tucker ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN), Department Electrical and Electronic Engineering, The University of Melbourne, Melbourne VIC 3010, Australia, e-mail: r.tucker@ee.unimelb.edu.au A. Shami et al. (eds.), Broadband Access Networks, Optical Networks, DOI 10.1007/978-0-387-92131-0 14, c Springer Science+Business Media, LLC 2009 UN C OR R Abstract The integration of EPON and WiMAX is a novel research topic that has received extensive interest from both industry and academia. The major motivations behind the integration of EPON and WiMAX involve the potential benefits of fixed mobile convergence (FMC), which uses a single network infrastructure to provide both wired and wireless access services, and a good match of capacity hierarchy between EPON and WiMAX by using EPON as a backhaul (or feeder) to connect multiple disperse WiMAX base stations. This chapter recaps recent progress in the area of integration of EPON and WiMAX. Three different integration...

Words: 8962 - Pages: 36

Free Essay

Wireless Physical Layer Security: an Information Theoretic Approach

...Committee: Hesham El Gamal, Adviser C. Emre K¨ksal o Ness B. Shroff Atilla Eryılmaz c Copyright by Onur Ozan K¨yl¨ o˘lu o u g 2010 ABSTRACT We are in the midst of wireless revolution, and increasing demand continues for wireless applications. This explosive growth, of wireless communications and services, inevitably renders security into a challenging quality of service constraint that must be accounted for in the network design. The state of the art methods in combating the security threats are usually founded on cryptographic approaches. These techniques typically assume limited computational resources at adversaries, are usually derived from unproven assumptions, and most of the time do not offer a measurable security notion. Information theoretic security, on the other hand, eliminates the aforementioned limitations of the cryptographic techniques at the physical layer of communication systems. In this thesis, we concentrate on both the theoretical and the practical aspects of physical layer security. We first start by analyzing elemental interference networks, in particular, two-user channels with an adversary. The problem here is to characterize the fundamental limits on secure transmission rates. Towards this end, we devise coding schemes, forming inner bounds to the capacity region, and compare the achievable rates with outer bounds. This analysis is useful to explore microscopic gains that can be leveraged by the different coding schemes, and our analysis shows that the...

Words: 47476 - Pages: 190

Premium Essay

Capture

...AN INTRODUCTION TO LTE LTE, LTE-ADVANCED, SAE AND 4G MOBILE COMMUNICATIONS Christopher Cox Director, Chris Cox Communications Ltd, UK A John Wiley & Sons, Ltd., Publication This edition first published 2012 © 2012 John Wiley & Sons Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor...

Words: 124044 - Pages: 497

Free Essay

Nit-Silchar B.Tech Syllabus

...NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR Bachelor of Technology Programmes amï´>r¶ JH$s g§ñWmZ, m¡Úmo{ à VO o pñ Vw dZ m dY r V ‘ ñ Syllabi and Regulations for Undergraduate PROGRAMME OF STUDY (wef 2012 entry batch) Ma {gb Course Structure for B.Tech (4years, 8 Semester Course) Civil Engineering ( to be applicable from 2012 entry batch onwards) Course No CH-1101 /PH-1101 EE-1101 MA-1101 CE-1101 HS-1101 CH-1111 /PH-1111 ME-1111 Course Name Semester-1 Chemistry/Physics Basic Electrical Engineering Mathematics-I Engineering Graphics Communication Skills Chemistry/Physics Laboratory Workshop Physical Training-I NCC/NSO/NSS L 3 3 3 1 3 0 0 0 0 13 T 1 0 1 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 4 1 1 0 0 0 0 0 0 2 0 0 0 0 P 0 0 0 3 0 2 3 2 2 8 0 0 0 0 0 2 2 2 2 0 0 0 0 0 2 2 2 6 0 0 8 2 C 8 6 8 5 6 2 3 0 0 38 8 8 8 8 6 2 0 0 40 8 8 6 6 6 2 2 2 40 6 6 8 2 Course No EC-1101 CS-1101 MA-1102 ME-1101 PH-1101/ CH-1101 CS-1111 EE-1111 PH-1111/ CH-1111 Course Name Semester-2 Basic Electronics Introduction to Computing Mathematics-II Engineering Mechanics Physics/Chemistry Computing Laboratory Electrical Science Laboratory Physics/Chemistry Laboratory Physical Training –II NCC/NSO/NSS Semester-4 Structural Analysis-I Hydraulics Environmental Engg-I Structural Design-I Managerial Economics Engg. Geology Laboratory Hydraulics Laboratory Physical Training-IV NCC/NSO/NSS Semester-6 Structural Design-II Structural Analysis-III Foundation Engineering Transportation Engineering-II Hydrology &Flood...

Words: 126345 - Pages: 506

Premium Essay

Damsel

...2014-2015 Undergraduate Academic Calendar and Course Catalogue Published June 2014 The information contained within this document was accurate at the time of publication indicated above and is subject to change. Please consult your faculty or the Registrar’s office if you require clarification regarding the contents of this document. Note: Program map information located in the faculty sections of this document are relevant to students beginning their studies in 2014-2015, students commencing their UOIT studies during a different academic year should consult their faculty to ensure they are following the correct program map. i Message from President Tim McTiernan I am delighted to welcome you to the University of Ontario Institute of Technology (UOIT), one of Canada’s most modern and dynamic university communities. We are a university that lives by three words: challenge, innovate and connect. You have chosen a university known for how it helps students meet the challenges of the future. We have created a leading-edge, technology-enriched learning environment. We have invested in state-of-the-art research and teaching facilities. We have developed industry-ready programs that align with the university’s visionary research portfolio. UOIT is known for its innovative approaches to learning. In many cases, our undergraduate and graduate students are working alongside their professors on research projects and gaining valuable hands-on learning, which we believe is integral...

Words: 195394 - Pages: 782

Free Essay

Maglev

...*3963103* [3963] – 103 T.E. (Petroleum) (Semester – I) Examination, 2011 DRILLING & PRODUCTION OPERATIONS (2003 Course) Time : 3 Hours Max. Marks : 100 Instructions : 1) Question Nos. 1 and 5 are compulsory. Out of the remaining attempt 2 questions from Section I and 2 questions from Section II. 2) Answers to the two Sections should be written in separate books. 3) Neat diagrams must be drawn wherever necessary. 4) Black figures to the right indicate full marks. 5) Use of Logarithmic Tables, Slide Rule, Mollier Charts, Electronic Pocket Calculator and Steam Tables is allowed. 6) Assume suitable data, if necessary. SECTION – I 1. What are different systems on a drilling rig ? Explain any one in detail with suitable diagramme. 18 2. a) Calculate Bottom hole pressure if well depth is 2500 m and mud weight is 1.2 gm/cc. b) Calculate mud weight if mud gradient is 0.87 psi/ft. ′ c) Calculate volume bbl/meter for drill pipe O.D. = 5′ inch and I.D. = 4.276 inch. 2 2 2 10 8 8 16 d) Draw circulation system on a drilling rig. 3. a) Discuss IADC classification of a bit in details. b) Discuss different factors affecting rate of penetration in details. 4. Write short note on : i) Coring ii) Fishing tools iii) BOP iv) Directional well P.T.O. [3963] – 103 -2- *3963103* SECTION – II 5. a) Discuss different types of casings and function of the casings in brief. b) Discuss different types of well completion techniques. 6. a) Discuss primary cementation process with...

Words: 172166 - Pages: 689