Free Essay

Physics

In:

Submitted By arindam101aria
Words 131353
Pages 526
SENIOR SECONDARY COURSE

PHYSICS

1
(CORE MODULES)

Coordinators
Dr. Oum Prakash Sharma
Sh. R.S. Dass

NATIONAL INSTITUTE OF OPEN SCHOOLING
A-25, INSTITUTIONAL AREA, SECTOR-62, NOIDA-201301 (UP)

COURSE DESIGN COMMITTEE
CHAIRMAN
Prof. S.C. Garg
Former Pro-Vice Chancellor
IGNOU, Maidan Garhi, Delhi
MEMBERS
Prof. A.R. Verma
Former Director, National
Physical Laboratory, Delhi,
160, Deepali Enclave
Pitampura, Delhi-34

Dr. Naresh Kumar
Reader (Rtd.)
Deptt. of Physics
Hindu College, D.U.

Dr. Oum Prakash Sharma
Asstt. Director (Academic)
NIOS, Delhi

Prof. L.S. Kothari
Prof. of Physics (Retd.)
Delhi University
71, Vaishali, Delhi-11008

Dr. Vajayshree
Prof. of Physics
IGNOU, Maidan Garhi
Delhi

Sh. R.S. Dass
Vice Principal (Rtd.)
BRMVB, Sr. Sec. School
Lajpat Nagar, New Delhi-110024

Dr. G.S. Singh
Prof. of Physics
IIT Roorkee

Sh. K.S. Upadhyaya
Principal
Jawahar Navodaya Vidyalaya
Rohilla Mohammadabad (U.P.)

Dr. V.B. Bhatia
Prof. of Physics (Retd.)
Delhi University
215, Sector-21, Faridabad

COURSE DEVELOPMENT TEAM
CHAIRMAN
Prof. S.C. Garg
Former Pro-Vice Chancellor
IGNOU, Delhi
MEMBERS
Prof. V.B. Bhatia
215, Sector-21,
Faridabad

Prof. B.B. Tripathi
Prof. of Physics (Retd.), IIT Delhi
9-A, Awadhpuri, Sarvodaya Nagar
Lucknow-226016

Sh. K.S. Upadhyaya
Principal
Navodaya Vidyalaya
Rohilla Mohammadabad, (U.P.)

Dr. V.P. Shrivastava
Reader (Physics)
D.E.S.M., NCERT, Delhi

EDITORS TEAM
CHAIRMAN
Prof. S.C. Garg
Former Pro-Vice Chancellor
IGNOU, Delhi
MEMBERS
Prof. B.B. Tripathi
Prof. of Physics (Retd.)
IIT Delhi

Sh. Anil Kumar
Principal
Pratibha Vikas Vidyalaya
Shalimar Bagh, Delhi

Sh. D.C. Pandey
Asstt. Director (Rtd.)
Directorate of Education
Delhi

Sh. Sher Singh
Lecturer (Physics)
Navyug Public School
Lodhi Road, Delhi

Sh. R.S. Dass
Vice-Principal (Rtd.)
BRMVB, Delhi-110024

GRAPHIC ILLUSTRATORS
Vijay Computer
1E, Pocket-1, Mayur Vihar
Phase-1, Delhi

Sh. Mahesh Sharma
NIOS

A Word With You
Dear Learner,
Welcome!
Keen observation, careful experimentation and single minded devotion have helped successive generations of researchers to accumulate vast treasure of knowledge. As you go to higher classes, you will appreciate that the method of sciences is characterised by objectivity, openness to change, innovation, self-correction and dynamism. It is therefore important in these formative years for you to learn science by doing: develop problem solving and experimenting skills to unfold unknown situations.
To encourage this, we have included a number of exercises and activities. These can be performed by using readily available materials to get a feel of the physical principles in operation. This will also provide you an opportunity to reflect on how a scientist works.
Physics has always been an exciting subject. But fundamental discoveries in rapid succession in the early half of the 20th century brought in profound changes in our concepts of space, time, matter and energy. Another phenomenon characteristic of the previous century is the reduction in the time gap between a new discovery and its applications from a decade or so to a few years due to close linking of science and technology. Therefore, future development in knowledge society will heavily depend on the availability of well trained scientific human capital endowed with entrepreneurship capabilities.
This should provide you enough motivation to study science, do well and participate in the process of sustainable growth and national development.
The organisation of the course is generic. It is divided into eight core modules spread over 29 lessons.
Out of two optional modules, which intend to develop professional competencies, you will be required to opt for any one. You will get an opportunity to work in a physics laboratory and make precise measurements using sensitive instruments. This will also give you an opportunity to understand basic physical principles.
As a self-learner, you would be required to demonstrate the ability, capacity and eagerness of Ekalavya.
Your confidence in yourself and genuine interest in learning science should help you develop being an independent learner with drive and initiative. Experience shows that interactive learning is more rewarding. So to ensure your active participation in teaching-learning as also to facilitate selfregulation and pacing, we have given questions in the body of each lesson. You must answer these.
In curriculum design an effort has been made to put thematically coherent topics together for braviety and completeness. Although we have strived hard to lucidly explain various concepts, it is possible that you may still find some concepts/topics difficult to comprehend. You are therefore advised to make a note of your difficulties and discuss them in the counselling sessions as well as amongst peers.
You will find some useful information on the life and works of leading physicists/scientists who have contributed to our vast pool of knowledge. It is sincerely hoped that their lives will inspire you as role models to contribute your best!
Our best wishes are with you.
Curriculum Design and
Course Development Team

A Note From the Director
Dear Learner,
Welcome!
The Academic Department at the National Institute of Open Schooling tries to bring you new programmes is accordance with your needs and requirements. After making a comprehensive study, we found that our curriculum is more functional, related to life situations and simple. The task now was to make it more effective and useful for you. We invited leading educationists of the country and under their guidance, we have been able to revise and update the curriculum in the subject of Physics.
At the same time, we have also removed old, outdated information and added new, relevant things and tried to make the learning material attractive and appealing for you.
I hope you will find the new material interesting and exciting with lots of activities to do. Any suggestions for further improvement are welcome.
Let me wish you all a happy and successful future.

(K. R. Chandrasekaran)
April 2007

HOW TO USE THE STUDY MATERIAL
Your learning material has been developed by a team of physics experts in open and distance learning. A consistent format has been developed for self-study. The following points will give you an idea on how to make best use of the print material.
Title is an advance organisor and conveys an idea about the contents of the lesson.
Reflect on it.
Introduction highlights the contents of the lesson and correlates it with your prior knowledge as well as the natural phenomena in operation in our immediate environment.
Read it thoroughly.
Objectives relate the contents to your desired achievements after you have learnt the lesson. Remember these.
Content of the lesson has been divided into sections and sub-sections depending on thematic unity of concepts. Read the text carefully and make notes on the side margin of the page. After completing each section, answer intext questions and solve numerical problems yourself. This will give you an opportunity to check your understanding. You should continue reading a section till such time that you gain mastery over it.
At some places you will find some text in italics and bold. This indicates that it is important.
You must learn them.
Solved Examples will help you to understand the concepts and fix your ideas. In fact, problem solving is an integral part of training in physics. Do them yourself and note the main concept being taught through a particular example.
Activities are simple experiments which you can perform at your home or work place using readily available (low cost) materials. These will help you to understand physics by doing. Do them yourself and correlate your findings with your observations.
Intext questions are based on the concepts discussed in every section. questions yourself in the space given below the question and then check with the model answers given at the end of the lesson. This will help you progress. If you are not satisfied with the quality and authenticity of your the pages back and study the section again.

Answer these your answers to judge your answers, turn

What you have learnt is essentially summary of the learning points for quick recapitulation.
You may like to add more points in this list.
Terminal exercises in the form of short, long and numerical questions will help you to develop a perspective of the subject, if you answer these meticulously. Discuss your responses with your peers or counsellors.
Answers to intext questions : These will help you to know how correctly you have answered the intext questions.
Audio: For understanding difficult or abstract concepts, audio programmes are available on certain content areas. You may listen to these on FM Gyanvani or may buy the CDs from Priced Publication Unit, NIOS
Video: Video programmes on certain elements related to your subject have been made to clarify certain concepts. You may watch these at your study center or may purchase these CDs from Priced Publication Unit, NIOS. www These are few selected websites that you can access for extended learning.
Studying at a distance requires self-motivation, self-discipline and self-regulation.
Therefore you must develop regular study habit. Drawing a daily schedule will help you in this endeavour. You should earmark a well-ventilated and well-lighted space in your home for your study. However, it should not be noisy or distract your concentration from your work.

Overview of the Learning Material

Module - I
Motion, Force and Energy
1.
2.
3.
4.
5.
6.
7.

1
9.

Module - III
Thermal Physics

Units, Dimensions and Vectors
Motion in a straight line
Laws of Motion
Motion in a Plane
Gravitation
Work Energy and Power
Motion of Rigid Body

10. Kinetic Theory of Gases
11. Thermodynamics
12. Heat Transfer and Solar Energy

Module - IV
Oscillations and Waves

Module - II
Mechanics of Solids and Fluids
8.

13. Simple Harmonic Motion
14. Wave Phenomena

Elastic Properties of Solids

Module - V
Electricity and Magnetism

2
23. Optical Instruments

Module - VII
Atoms and Nuclei

15.
16.
17.
18.

Electric Charge and Electric Field
Electric potential and Capacitors
Electric Current
Magnetism and Magnetic
Effect of Electric Current
19. Electromagnetic induction and
Alternating Current

24.
25.
26.
27.

28. Semiconductors and
Semiconductor Devices
29. Applications of
Semiconductor Devices

20. Reflection and Refraction of Light
21. Dispersion and Scattering of Light
22. Wave Phenomena of Light

Module - IXA
Electronics and Communications

Structure of Atom
Dual Nature of Radiation and Matter
Nuclei and Radioactivity
Nuclear Fission and Fusion

Module - VIII
Semiconductor

Module - VI
Optics and Optical Instruments

30.
31.
32.
33.

Properties of Fluids

3

Electronics in Daily Life
Communication Systems
Communication Technique and Devices
Communication Media

Module - IXB
Photography and
Audio-Videography
30.
31.
32.
33.

Photography Camera
Film Exposing and Processing
Audio-Video Recording
Compact Disc for Audio-Video
Recording

CONTENTS
Name of the Lesson

Page No.

Module - I : Motion, Force and Energy
1.

Units, Dimensions and Vectors

1

2.

Motion in a straight line

26

3.

Laws of Motion

47

4.

Motion in a Plane

72

5.

Gravitation

92

6.

Work Energy and Power

120

7.

Motion of Rigid Body

151

Modul - II : Mechanics of Solids and Fluids
8.

Elastic Properties of Solids

182

9.

Properties of Fluids

199

Module - III : Thermal Physics
10.

Kinetic Theory of Gases

237

11.

Thermodynamics

257

12.

Heat Transfer and Solar Energy

273

Module - IV : Oscillations and Waves
13.

Simple Harmonic Motion

291

14.

Wave Phenomena

308

MODULE - I
MOTION, FORCE AND ENERGY
1.

Units, Dimensions and Vectors

2.

Motion in a straight line

3.

Laws of Motion

4.

Motion in a Plane

5.

Gravitation

6.

Work Energy and Power

7.

Motion of Rigid Body

Units, Dimensions and Vectors

MODULE - 1
Motion, Force and Energy

1
UNITS, DIMENSIONS AND
VECTORS

Notes

In science, particularly in physics, we try to make measurements as precisely as possible.
Several times in the history of science, precise measurements have led to new discoveries or important developments. Obviously, every measurement must be expressed in some units. For example, if you measure the length of your room, it is expressed in suitable units.
Similarly, if you measure the interval between two events, it is expressed in some other units. The unit of a physical quantity is derived, by expressing it in base units fixed by international agreement. The idea of base units leads us to the concept of dimensions, which as we shall see, has important applications in physics.
You will learn that physical quantities can generally be divided in two groups: scalars and vectors. Scalars have only magnitudes while vectors have both magnitude and direction.
The mathematical operations with vectors are somewhat different from those which you have learnt so far and which apply to scalars. The concepts of vectors and scalars help us in understanding physics of different natural phenomena. You will experience it in this course.

Objectives
After studying this lesson, you should be able to: distinguish between the fundamental and derived quantities and give their SI units; write the dimensions of various physical quantities; apply dimensional analysis to check the correctness of an equation and determine the dimensional nature of ‘unknown’ quantities; differentiate between scalar and vector quantities and give examples of each; add and subtract two vectors and resolve a vector into its components; and calculate the product of two vectors.
3.1
1

MODULE - 1
Motion, Force and Energy

Notes

Physics

1.1 Unit of Measurement
The laws of physics are expressed in terms of physical quantities such as distance, speed, time, force, volume, electric current, etc. For measurement, each physical quantity is assigned a unit. For example, time could be measured in minutes, hours or days. But for the purpose of useful communication among different people, this unit must be compared with a standard unit acceptable to all. As another example, when we say that the distance between Mumbai and Kolkata is nearly 2000 kilometres, we have for comparison a basic unit in mind, called a kilometre. Some other units that you may be familiar with are a kilogram for mass and a second for time. It is essential that all agree on the standard units, so that when we say 100 kilometres, or 10 kilograms, or 10 hours, others understand what we mean by them. In science, international agreement on the basic units is absolutely essential; otherwise scientists in one part of the world would not understand the results of an investigation conducted in another part.
Suppose you undertake an investigation on the solubility of a chemical in water. You weigh the chemical in tolas and measure the volume of water in cupfuls. You communicate the results of your investigation to a scientist friend in Japan. Would your friend understand your results?
It is very unlikely that your friend would understand your results because he/she may not be familiar with tola and the cup used in your measerments, as they are not standard units.
Do you now realize the need for agreed standards and units?
Remember that in science, the results of an investigation are considered established only if they can be reproduced by investigations conducted elsewhere under identical conditions.

Measurements in Indian Traditions
Practices of systematic measurement are very old in India. The following quote from
Manusmriti amply illustrates this point :
“The king should examine the weights and balance every six months to ensure true measurements and to mark them with royal stamp.” – Manusmriti, 8th Chapter, sloka–403.
In Harappan Era, signs of systematic use of measurement are found in abundance : the equally wide roads, bricks having dimensions in the ratio 4 : 2 : 1, Ivory scale in
Lothal with smallest division of 1.70 mm, Hexahedral weights of 0.05, 0.1, 0.2, 0.5, 1, 2,
5, 10, 20, 50, 100, 200 and 500 units (1 unit = 20 g)
In Mauriyan Period, the following units of length were prevalent
8 Parmanu
= 1 Rajahkan
8 Rajahkan
= 1 Liksha
8 Liksha
= 1 Yookamadhya
8 Yookamadhya = 1 Yavamadhya
8 Yavamadhya = 1 Angul
8 Angul
= 1 Dhanurmushthi
In Mughal Period, Shershah and Akbar tried to re-establish uniformity of weights and measures. Akbar introduced gaz of 41 digits for measuring length. For measuring area of land, bigha was the unit. 1 bigha was 60 gaz × 60 gaz.
Units of mass and volume were also well obtained in Ayurveda.
2

Units, Dimensions and Vectors

MODULE - 1
Motion, Force and Energy

1.1.1 The SI Units
With the need of agreed units in mind, the 14th General Conference on Weights and
Measures held in 1971, adopted seven base or fundamental units. These units form the
SI system. The name SI is abbreviation for Système International d’Unités for the
International System of units. The system is popularly known as the metric system. The SI units along with their symbols are given in Table 1.1.

Notes

Table 1.1 : Base SI Units
Quantity

Unit

Symbol

Length

metre

m

Mass

kilogram

kg

Time

second

s

Electric Current

ampere

A

Temperature

kelvin

K

Luminous Intensity

candela

cd

Amount of Substance

mole

mol

The mile, yard and foot as units of length are still used for some purposes in India as well in some other countries. However, in scientific work we always use SI units.
As may be noted, the SI system is a metric system. It is quite easy to handle because the smaller and larger units of the base units are always submultiples or multiples of ten. These multiples or submultiples are given special names. These are listed in
Table 1.2.
Table 1.2 : Prefixes for powers of ten
Power of ten
10–18
10–15
10–12
10–9
10–6
10–3
10–2
10–1
101
102
103
106
109
1012
1015

Prefix atto femto pico nano micro milli centi deci deca hecto kilo mega giga tera peta 1018

exa

Symbol a f p n µ m c d da h k M
G
T
P

Example attometre femtometre picofarad nanometre micron milligram centimetre decimetre decagram hectometre kilogram megawatt gigahertz terahertz peta kilogram

(am)
(fm)
(pF)
(nm)
(µm)
(mg)
(cm)
(dm)
(dag)
(hm)
(kg)
(MW)
(GHz)
(THz)
(Pkg)

E

exa kilogram

(Ekg)

Table 1.3 : Order of magnitude of some masses
Mass
kg
Electron
10–30
Proton
10–27
Amino acid
10–25
Hemoglobin
10–22
Flu virus
10–19
Giant amoeba
10–8
Raindrop
10–6
Ant
10–2
Human being
102
Saturn 5 rocket
106
Pyramid
1010
Earth
1024
Sun
1030
Milky Way galaxy
1041
Universe
1052

3.3
3

MODULE - 1
Motion, Force and Energy

Physics
Just to get an idea of the masses and sizes of various objects in the universe, see Table 1.3 and 1.4. Similarly, Table 1.5 gives you an idea of the time scales involved in the universe.

1.1.2 Standards of Mass, Length and Time
Notes
Table 1.4 : Order of magnitude of some lengths
Length
m
Radius of proton
10–15
Radius of atom
10–16
Radius of virus
10–7
Radius of giant amoeba 10–4
Radius of walnut
10–2
Height of human being 100
Height of highest mountain 104
Radius of earth
107
Radius of sun
109
Earth-sun distance
1011
Radius of solar system 1013
Distance to nearest star 1016
Radius of Milky Way galaxy 1021
Radius of visible universe 1026

Once we have chosen to use the SI system of units, we must decide on the set of standards against which these units will be measured. We define here standards of mass, length and time.
(i) Mass : The SI unit of mass is kilogram. The standard kilogram was established in 1887. It is the mass of a particular cylinder made of platinum-iridium alloy, which is an unusually stable alloy. The standard is kept in the International Bureau of Weights and Measures in Paris,
France. The prototype kilograms made of the same alloy
Fig. 1.1 : Prototype of kilogram have been distributed to all countries the world over. For
India, the national prototype is the kilogram no. 57. This is maintained by the National Physical Laboratory, New Delhi (Fig. 1.1).
(ii) Length : The SI unit of length is metre. It is defined in terms of a natural phenomenon:
One metre is defined as the distance travelled by light in vacuum in a time interval of
1/299792458 second.
This definition of metre is based on the adoption of the speed of light in vacuum as
299792458 ms–1
(iii) Time : One second is defined as the time required for a Cesium - 133 (133Cs) atom to undergo 9192631770 vibrations between two hyperfine levels of its ground state.
This definition of a second has helped in the development of a device called atomic clock (Fig. 1.2). The cesium clock maintained by the National Physical Laboratory

Fig. 1.2 : Atomic Clock

4

Units, Dimensions and Vectors
(NPL) in India has an uncertainty of ± 1 × 10–12 s, which corresponds to an accuracy of one picosecond in a time interval of one second.
As of now, clock with an uncertainty of 5 parts in 1015 have been developed. This means that if this clock runs for 1015 seconds, it will gain or lose less than 5 seconds. You can convert 1015s to years and get the astonishing result that this clock could run for 6 million years and lose or gain less than a second. This is not all. Researches are being conducted today to improve upon this accuracy constantly. Ultimately, we expect to have a clock which would run for 1018 second before it could gain or lose a second. To give you an idea of this technological achievement, if this clock were started at the time of the birth of the universe, an event called the Big Bang, it would have lost or gained only two seconds till now. MODULE - 1
Motion, Force and Energy

Notes

Role of Precise Measurements in New Discoveries
A classical example of the fact that precise measurements may lead to new discoveries are the experiments conducted by Lord Rayleigh to determine density of nitrogen. In one experiment, he passed the air bubbles through liquid ammonia over red hot copper contained in a tube and measured the density of pure nitrogen so obtained. In another experiment, he passed air directly over red hot copper and measured the density of pure nitrogen. The density of nitrogen obtained in second experiment was found to be 0.1% higher than that obtained in the first case. The experiment suggested that air has some other gas heavier than nitrogen present in it. Later he discovered this gas – Argon, and got Nobel Prize for this discovery.
Another example is the failed experiment of Michelson and Morley. Using Michelson’s interferometer, they were expecting a shift of 0.4 fringe width in the interference pattern obtained by the superposition of light waves travelling in the direction of motion of the earth and those travelling in a transverse direction. The instrument was hundred times more sensitive to defect the shift than the expected shift. Thus they were expecting to measure the speed of earth with respect to ether and conclusively prove that ether existed. But when they detected no shift, the world of science entered into long discussions to explain the negative results. This led to the concepts of length contraction, time dilation etc and ultimately to the theory of relativity.
Several discoveries in nuclear physics became possible due to the new technique of spectroscopy which enabled detection, with precision, of the traces of new atoms formed in a reaction.

Table 1.5 : Order of magnitude of some time intervals
Interval
s
Time for light to cross nucleus 10–23
Period of visible light
10–15
Period of microwaves
10–10
Half-life of muon
10–6
Period of highest audible sound 10–4
Period of human heartbeat 100
Half-life of free neutron
103
Period of the Earth’s rotation (day)
105
Period of revolution of the
Earth (year)
107
Lifetime of human beings 109
Half-life of plutonium-239 1012
Lifetime of a mountain range 1015
Age of the Earth
1017
Age of the universe
1018

1.1.3. Derived Units
We have so far defined three basic units for the measurement of mass, length and time.
For many quantities, we need units which we get by combining the basic units. These units are called derived units. For example, combination of the units of length and time gives us the derived unit of speed or velocity, m s–1. Another example is the interaction of the unit of length with itself. We get derived units of area and volume as m2 and m3, respectively.
Now are would like you to list all the physical quantities that you are familiar with and the units in which they are expressed.
3.5
5

MODULE - 1
Motion, Force and Energy

Physics
Some derived units have been given special names. Examples of most common of such units are given in Table 1.6.
Table 1.6 : Examples of derived units with special names
Quantity
Force

newton

N

kg m s–2

Pressure

pascal

Pa

N m–2

Energy/work

joule

J

Nm

Power

Notes

Name

Symbol

Unit Symbol

watt

W

J s–1

One of the advantages of the SI system of units is that they form a coherent set in the sense that the product or division of the SI units gives a unit which is also the SI unit of some other derived quantity. For example, product of the SI units of force and length gives directly the SI unit of work, namely, newton-metre (Nm) which has been given a special name joule. Some care should be exercised in the order in which the units are written. For example, Nm should be written in this order. If by mistake we write it as mN, it becomes millinewton, which is something entirely different.
Remember that in physics, a quantity must be written with correct units.
Otherwise, it is meaningless and, therefore, of no significance.
Example 1.1 : Anand, Rina and Kaif were asked by their teacher to measure the volume of water in a beaker.
Anand wrote : 200; Rina wrote : 200 mL; Kaif wrote : 200 Lm
Which one of these answers is correct?
Solution : The first one has no units. Therefore, we do not know what it means. The third is also not correct because there is no unit like Lm. The second one is the only correct answer. It denotes millilitre.
Note that the mass of a book, for example, can be expressed in kg or g. You should not use gm for gram because the correct symbol is g and not gm.

Nomenclature and Symbols
(i) Symbols for units should not contain a full stop and should remain the same in the plural. For example, the length of a pencil should be expressed as 7cm and not
7cm. or 7cms.
(ii) Double prefixes should be avoided when single prefixes are available, e.g., for nanosecond, we should write ns and not mµs; for pico farad we write pF and not µµf.
(iii) When a prefix is placed before the symbol of a unit, the combination of prefix and symbol should be considered as one symbol, which can be raised to a positive

6

Units, Dimensions and Vectors or a negative power without using brackets, e.g., µs–1, cm2, mA2.

MODULE - 1
Motion, Force and Energy

µs–1 = (10–6s)–1 (and not 10–6s–1)
(iv) Do not write cm/s/s for cm s–2. Similarly 1 poise = 1 g s–1cm–1 and not 1 g/s/cm.
(v) When writing a unit in full in a sentence, the word should be spelt with the letter in lower case and not capital, e.g., 6 hertz and not 6 Hertz.

Notes

(vi) For convenience in reading of large numbers, the digits should be written in groups of three starting from the right but no comma should be used: 1 532; 1 568 320.

Albert Abraham Michelson
(1852-1931)
German-American Physicst, inventor and experimenter devised
Michelson’s interferometer with the help of which, in association with Morley, he tried to detect the motion of earth with respect to ether but failed. However, the failed experiment stirred the scientific world to reconsider all old theories and led to a new world of physics.
He developed a technique for increasing the resolving power of telescopes by adding external mirrors. Through his stellar interferometer along with 100′′ Hookes telescope, he made some precise measurements about stars.
Now, it is time to check your progress. Solve the following questions. In case you have any problem, check answers given at the end of the lesson.

Intext Questions 1.1
1. The mass of the sun is 2 × 1030 kg. The mass of a proton is 2 × 10–27 kg. If the sun was made only of protons, calculate the number of protons in the sun?
....................................................................................................................................
2. Earlier the wavelength of light was expressed in angstroms. One angstrom equals
10–8 cm. Now the wavelength is expressed in nanometers. How many angstroms make one nanometre?
....................................................................................................................................
3. A radio station operates at a frequency of 1370 kHz. Express this frequency in GHz.
....................................................................................................................................
4. How many decimetres are there in a decametre? How many MW are there in one
GW?
....................................................................................................................................

3.7
7

MODULE - 1
Motion, Force and Energy

Notes

Physics

1.2 Dimensions of Physical Quantities
Most physical quantities you would come across in this course can be expressed in terms of five basic dimensions : mass (M), length (L), time (T), electrical current (I) and temperature (θ). Since all quantities in mechanics can be expressed in terms of mass, length and time, it is sufficient for our present purpose to deal with only these three dimensions. Following examples show how dimensions of the physical quantities are combinations of the powers of M, L and T :
(i)

Volume requires 3 measurements in length. So it has 3 dimensions in length (L3).

(ii)

Density is mass divided by volume. Its dimensional formula is ML–3.

(iii) Speed is distance travelled in unit time or length divided by time. Its dimensional formula is LT–1.
(iv) Acceleration is change in velocity per unit time, i.e., length per unit time per unit time. Its dimensionsal formula is LT–2.
(v)

Force is mass multiplied by acceleration. Its dimensions are given by the formula
MLT –2.

Similar considerations enable us to write dimensions of other physical quantities.
Note that numbers associated with physical quantities have no significance in dimensional considerations. Thus if dimension of x is L, then dimension of 3x will also be L.
Write down the dimensions of momentum, which is product of mass and velocity and work which is product of force and displacement.
Remember that dimensions are not the same as the units. For example, speed can be measured in ms–1 or kilometre per hour, but its dimensions are always given by length divided by time, or simply LT–1.
Dimensional analysis is the process of checking the dimensions of a quantity, or a combination of quantities. One of the important principles of dimensional analysis is that each physical quantity on the two side of an equation must have the same dimensions. Thus if x = p + q, then p and q will have the same dimensions as x. This helps us in checking the accuracy of equations, or getting the dimensions of a quantity using an equation. The following examples illustrate the use of dimensional analysis.
Example 1.2 : You know that the kinetic energy of a particle of mass m is

1 mv2 while
2

its potential energy is mgh, where v is the velocity of the particle, h is its height from the ground and g is the acceleration due to gravity. Since the two expressions represent the same physical quantity i.e, energy, their dimensions must be the same. Let us prove this by actually writing the dimensions of the two expressions.
Solution : The dimensions of

8

1 mv2 are M.(LT–1)2, or ML2T–2. (Remember that the
2

Units, Dimensions and Vectors numerical factors have no dimensions.) The dimensions of mgh are M.LT–2.L, or
ML2T–2. Clearly, the two expressions are the same and hence represent the same physical quantity. MODULE - 1
Motion, Force and Energy

Let us take another example to find an expression for a physical quantity in terms of other quantities. Example 1.3 : Experience tells us that the distance covered by a car, say x, starting from rest and having uniform acceleration depends on time t and acceleration a. Let us use dimensional analysis to find expression for the distance covered.

Notes

Solution : Suppose x depends on the mth power of t and nth power of a. Then we may write x ∝ tm. an
Expressing the two sides now in terms of dimensions, we get
L1 ∝ Tm (LT–2)n, or, L1 ∝ Tm–2n Ln.
Comparing the powers of L and T on both sides, you will easily get n = 1, and m = 2.
Hence, we have x ∝ t2 a1, or x ∝ at2.
This is as far as we can go with dimensional analysis. It does not help us in getting the numerical factors, since they have no dimensions. To get the numerical factors, we have to get input from experiment or theory. In this particular case, of course, we know that the complete relation is x = (1/2)at2.
Besides numerical factors, other quantities which do not have dimensions are angles and arguments of trigonometric functions (sine, cosine, etc), exponential and logarithmic functions. In sin x, x is said to be the argument of sine function. In ex, x is said to be the argument of the exponential function.
Now take a pause and attempt the following questions to check your progress.

Intext Questions 1.2
1. Experiments with a simple pendulum show that its time period depends on its length (l) and the acceleration due to gravity (g). Use dimensional analysis to obtain the dependence of the time period on l and g .
....................................................................................................................................
2. Consider a particle moving in a circular orbit of radius r with velocity v and acceleration a towards the centre of the orbit. Using dimensional analysis, show that a ∝ v2/r .
....................................................................................................................................
3. You are given an equation: mv = Ft, where m is mass, v is speed, F is force and t is time. Check the equation for dimensional correctness.
....................................................................................................................................
3.9
9

MODULE - 1
Motion, Force and Energy

Physics

1.3 Vectors and Scalars
1.3.1 Scalar and Vector Quantities

Notes

In physics we classify physical quantities in two categories. In one case, we need only to state their magnitude with proper units and that gives their complete description. Take, for example, mass. If we say that the mass of a ball is 50 g, we do not have to add anything to the description of mass. Similarly, the statement that the density of water is 1000 kg m–3 is a complete description of density. Such quantities are called scalars. A scalar quantity has only magnitude; no direction.
On the other hand, there are quantities which require both magnitude and direction for their complete description. A simple example is velocity. The statement that the velocity of a train is 100 km h–1 does not make much sense unless we also tell the direction in which the train is moving. Force is another such quantity. We must specify not only the magnitude of the force but also the direction in which the force is applied. Such quantities are called vectors. A vector quantity has both magnitude and direction.
Displacement
Vector

Actual path of a particle

Some examples of vector quantities which you come across in mechanics are: displacement (Fig. 1.3), acceleration, momentum, angular momentum and torque etc, What about energy? Is it a scalar or a vector?
To get the answer, think if there is a direction associated with energy. If not, it is a scalar.

Fig.1.3 : Displacement vector

B

1.3.2 Representation of Vectors
A vector is represented by a line with an arrow indicating its direction. Take vector AB in Fig. 1.4.
A
The length of the line represents its magnitude on
F
C some scale. The arrow indicates its direction.
Vector CD is a vector in the same direction but its
E
magnitude is smaller. Vector EF is a vector whose
Fig. 1.4 : Directions and magnitude is the same as that of vector CD, but its magnitudes of vectors direction is different. In any vector, the initial point,
(point A in AB), is called the tail of the vector and the final point, (point B in AB) with the arrow mark is called its tip (or head). r A vector is written with an arrow over the letter representing the vector, for example, A . r r
The magnitude of vector A is simply A or | A |. In print, a vector is indicated by a bold letter as A.
D

Two vectors are said to be equal if their magnitudes are equal and they point in the same direction. This means that all vectors which are parallel to each other have the same magnitude and point in the same direction are equal. Three vectors A, B and C shown in
Fig. 1.5 are equal. We say A = B = C. But D is not equal to A.
10

Units, Dimensions and Vectors

MODULE - 1
Motion, Force and Energy

A vector (here D) which has the same magnitude as A but has opposite direction, is called negative of A, or
–A. Thus, D = –A.

A
B

C

D
For respresenting a physical vector quantitatively, we have to invariably choose a proportionality scale. For Fig. 1.5 : Three vectors are equal but fourth instance, the vector displacement vector D is not equal. between Delhi and Agra, which is about
300 km, is represented by choosing a scale 100 km = 1 cm, say. Similarly, we can represent a force of 30 N by a vector of length 3cm by choosing a scale 10N = 1cm.

Notes

From the above we can say that if we translate a vector parallel to itself, it remains unchanged. This important result is used in addition of vectors. Let us sec how.

1.3.3 Addition of Vectors
You should remember that only vectors of the same kind can be added. For example, two forces or two velocities can be added. But a force and a velocity cannot be added.
Suppose we wish to add vectors A and B. First redraw vector A [Fig. 1.6 (a)]. For this draw a line (say pq) parallel to vector A. The length of the line i.e. pq should be equal to the magnitude of the vector. Next draw vector B such that its tail coincides with the tip of vector A. For this, draw a line qr from the tip of A (i.e., from the point q ) parallel to the direction of vector B. The sum of two vectors then is the vector from the tail of A to the tip of B, i.e. the resultant will be represented in magnitude and direction by line pr. You
A

r

s

B

r

p

B

B

B

+A

B

+

+

A

A

A q A
(a)

p

q

A
(b)

Fig. 1.6 : Addition of vectors A and B

can now easily prove that vector addition is commutative. That is, A + B = B + A, as shown in Fig. 1.6 (b). In Fig. 1.6(b) we observe that pqr is a triangle and its two sides pq and qr respectively represent the vectors A and B in magnitude and direction, and the third side pr, of the triangle represents the resultant vector with its direction from p to r.
This gives us a rule for finding the resultant of two vectors :
If two vectors are represented in magnitude and direction by the two sides of a triangle taken in order, the resultant is represented by the third side of the triangle taken in the opposite order. This is called triangle law of vectors.
3.11
11

MODULE - 1
Motion, Force and Energy

Physics
The sum of two or more vectors is called the resultant vector. In Fig. 1.6(b), pr is the resultant of A and B. What will be the resultant of three forces acting along the three sides of a triangle in the same order? If you think that it is zero, you are right.
Let us now learn to calculate resultant of more than two vectors.

C

If you add more than three vectors, you will discover that the resultant vector is the vector from the tail of the first vector to the tip of the last vector.

A

+C

+

B

B

(A + B
)+C
A + (B
+ C)

B

The resultant of more than two vectors, say A, B and C, can be found in the same manner as the sum of two vectors. First we obtain the sum of A and B, and then add the resultant of the two vectors, (A +
B), to C. Alternatively, you could add B and C, and then add A to (B + C) (Fig. 1.7). In both cases you get the same vector. Thus, vector addition is associative. That is, A + (B + C) = (A + B) + C.

Fig.1.7 : Addition of three vectors in two different orders

Notes

A

Many a time, the point of application of vectors is the same. In such situations, it is more convenient to use parallelogram law of vector addition. Let us now learn about it.

1.3.4 Parallelogram Law of Vector Addition
Let A and B be the two vectors and let θ be the angle between them as shown in Fig. 1.8.
To calculate the vector sum, we complete the parallelogram. Here side PQ represents vector A, side PS represents B and the diagonal PR represents the resultant vector R.
Can you recognize that the diagonal PR is the sum vector A + B? It is called the resultant of vectors A and B. The resultant makes an angle α with the direction of vector A.
Remember that vectors PQ and SR are equal to A, and vectors PS and QR are equal, to
B. To get the magnitude of the resultant vector R, drop a perpendicular RT as shown.
Then in terms of magnitudes
S

A

R

B

A+

θ
P

R

B

B

θ

α
A

Q

T

Fig.1.8 : Parallelogram law of addition of vectors

(PR) 2 = (PT)2 + (RT)2
= (PQ + QT)2 + (RT)2
12

Units, Dimensions and Vectors

Motion, Force and Energy

= (PQ)2 + (QT)2 + 2PQ.QT + (RT)2
= (PQ)2 + [(QT)2 + (RT)2] + 2PQ.QT

MODULE - 1

(1.1)

= (PQ)2 + (QR)2 + 2PQ.QT
= (PQ)2 + (QR)2 + 2PQ.QR (QT / QR)

Notes

R 2 = A2 + B2 + 2AB.cosθ
Therefore, the magnitude of R is
R =

A 2 + B2 + 2AB.cos θ

(1.2)

For the direction of the vector R, we observe that tanα =

RT
RT
Bsin θ
= PQ + QT =
PT
A + Bcos θ

(1.3)

So, the direction of the resultant can be expressed in terms of the angle it makes with base vector.

Special Cases
Now, let us consider as to what would be the resultant of two vectors when they are parallel? To find answer to this question, note that the angle between the two parallel vectors is zero and the resultant is equal to the sum of their magnitudes and in the direction of these vectors. Suppose that two vectors are perpendicular to each other. What would be the magnitude of the resultant? In this case, θ = 90º and cos θ = 0.
Suppose further that their magnitudes are equal. What would be the direction of the resultant? Notice that tan α = B/A = 1. So what is α?
Also note that when θ = π, the vectors become anti-parallel. In this case α = 0. The resultant vector will be along A or B, depending upon which of these vectors has larger magnitude. Example 1.4 A cart is being pulled by Ahmed north-ward with a force of magnitude
70 N. Hamid is pulling the same cart in the south-west direction with a force of magnitude
50 N. Calculate the magnitude and direction of the resulting force on the cart.
Solution :
Here, magnitude of first force, say, A = 70 N.
The magnitude of the second force, say, B = 50 N.
Angle θ between the two forces = 135 degrees.
3.13
13

MODULE - 1
Motion, Force and Energy

Physics
So, the magnitude of the resultant is given by Eqn. (1.2) :
(70)2 + (50)2 + 2 × 70 × 50 × cos(135)

R=
=

R

4900 + 2500 - 7000 × sin45

= 49.5 N

135º

The magnitude of R = 49.5 N.

50
N

Notes

70N
45º

The direction is given by Eqn. (1.3):
Fig. 1.9:

50 × sin (135)
B sinθ
50 × cos 45 tan α= A + B cosθ = 70 + 50 cos (135) =
=
70 – 50 sin 45

Resultant of forces inclined at an angle

1.00
Therefore, α = 45.0º (from the tables). Thus R makes an angle of 45º with 70 N force.
That is, R is in North-west direction as shown in Fig. 1.9.

1.3.5 Subtraction of Vectors
How do we subtract one vector from another?
If you recall that the difference of two vectors,
A – B, is actually equal to A + (–B), then you can adopt the same method as for addition of two vectors. It is explained in Fig. 1.10. Draw vector –B from the tip of A. Join the tail of A with the tip of –B. The resulting vector is the difference (A – B).

R
B
Q
–B

A

P
O

A– B

You may now like to check your progress.

Fig. 1.10 : Subtraction of vector B from vector A

Intext Questions 1.3

Given vectors

A

and

B

1. Make diagrams to show how to find the following vectors:
(a) B – A, (b) A + 2B, (c) A – 2B and (d) B – 2A.
....................................................................................................................................
2. Two vectors A and B of magnitudes 10 units and 12 units are anti-parallel. Determine
A + B and A – B.
....................................................................................................................................
3. Two vectors A and B of magnitudes A = 30 units and B = 60 units respectively are inclined to each other at angle of 60 degrees. Find the resultant vector.
....................................................................................................................................

14

Units, Dimensions and Vectors

1.4 Multiplication of Vectors

MODULE - 1
Motion, Force and Energy

1.4.1 Multiplication of a Vector by a Scalar
If we multiply a vector A by a scalar k, the product is a vector whose magnitude is the absolute value of k times the magnitude of
A. This means that the magnitude of the
B
resultant vector is k |A|. The direction of the new vector remains unchanged if k is θ positive. If k is negative, the direction of
A
the new vector is opposite to its original
Fig. 1.11: Projection of B on A direction. For example, vector 3A is thrice the magnitude of vector A, and it is in the same direction as A. But vector –3A is in a direction opposite to vector A, although its magnitude is thrice that of vector A.

Notes

1.4.2 Scalar Product of Vectors
The scalar product of two vectors A and B is written as A.B and is equal to AB cosθ, where θ is the angle between the vectors. If you look carefully at Fig. 1.11, you would notice that B cosθ is the projection of vector B along vector A. Therefore, the scalar product of A and B is the product of magnitude of A with the length of the projection of B along A. Another thing to note is that even if we take the angle between the two vectors as 360 – θ, it does not matter because the cosine of both angles is the same. Since a dot between the two vectors indicates the scalar product, it is also called the dot product.
Remember that the scalar product of two vectors is a scalar quantity.
A familiar example of the scalar product is the work done when a force F acts on a body moving at an angle to the direction of the force. If d is the displacement of the body and θ is the angle between F and d, then the work done by the force is Fdcosθ.
Since dot product is a scalar, it is commutative: A.B = B.A = ABcosθ. It is also distributive:
A.(B + C) = A.B + A.C.

1.4.3 Vector Product of Vectors
Suppose we have two vectors A and B inclined at an angle θ. We can draw a plane which contains these two vectors. Let that plane be called Ω ( (Fig. 1.12 a) which is perpendicular to the plane of paper here. Then the vector product of these vectors, written as A × B, is a vector, say C, whose magnitude is AB sinθ and whose direction is perpendicular to the plane Ω. The direction of the vector C can be found by right-hand rule (Fig. 1.12 b).
Imagine the fingers of your right hand curling from A to B along the smaller angle between them. Then the direction of the thumb gives the direction of the product vector C. If you follow this rule, you can easily see that direction of vector B × A is opposite to that of the vector A × B. This means that the vector product is not commutative. Since a cross is inserted between the two vectors to indicate their vector product, the vector product is also called the cross product.
3.15
15

MODULE - 1

Physics

Motion, Force and Energy
C =A× B

B π θ

Notes

A

–C=B×A

(a)

(b)

Fig.1.12 (a) : Vector product of Vectors; (b) Direction of the product vector C =A × B is given

by the right hand rule. If the right hand is held so that the curling fingers point from A to B through the smaller angle between the two, then the thumb strectched at right angles to fingers will point in the direction of C.
A familiar example of vector product is the angular momentum possessed by a rotating body. To check your progress, try the following questions.

Intext Questions 1.4
1. Suppose vector A is parallel to vector B. What is their vector product? What will be the vector product if B is anti-parallel to A?
....................................................................................................................................
2. Suppose we have a vector A and a vector C =

1
B. How is the direction of vector A
2

× B related to the direction of vector A × C.
....................................................................................................................................
3. Suppose vectors A and B are rotated in the plane which contains them. What happens to the direction of vector C = A × B.
....................................................................................................................................
4. Suppose you were free to rotate vectors A and B through arbitrary amounts keeping them confined to the same plane. Can you make vector C = A × B to point in exactly opposite direction?
....................................................................................................................................
5. If vector A is along the x-axis and vector B is along the y-axis, what is the direction of vector C = A × B? What happens to C if A is along the y-axis and B is along the x-axis? ....................................................................................................................................
6. A and B are two mutually perpendicular vectors. Calculate (a) A . B and (b) A × B.
....................................................................................................................................
16

Units, Dimensions and Vectors

MODULE - 1
Motion, Force and Energy

1.5 Resolution of Vectors
Resolution of vectors is converse of addition of vectors. Here we calculate components of a given vector along any set of coordinate axes. Suppose we have vector A as shown in
Fig. 1.13 and we need to find its components along x and y-axes. Let these components be called Ax and Ay respectively. Simple trigonometry shows that
A x = A cos θ
A y = A sin θ,

and

(1.4)

Notes

(1.5)

where θ is the angle that A makes with the x - axis. What about the components of vector
A along X and Y-axes (Fig. 1.13)? If the angle between the X-axis and A is φ, then
AX = A cos φ y Y
AY

Ay
A

O

θ φ

x

Ax
AX

X
Fig. 1.13 : Resolution of vector A along two sets of coordinates (x, y) and (X, Y)

AY = A sin φ.

and

It must now be clear that the components of a vector are not fixed quantities; they depend on the particular set of axes along which components are required. Note also that the magnitude of vector A and its direction in terms of its components are given by
A = A x2 + A y2 =

AX + AY
2

2

(1.6)

and tan θ = Ay / Ax,

tan φ = AY /AX.

(1.7)

So, if we are given the components of a vector, we can combine them as in these equations to get the vector.

1.6 Unit Vector
At this stage we introduce the concept of a unit vector. As the name suggests, a unit vector has unitary magnitude and has a specified direction. It has no units and no dimensions.
ˆ
ˆ
As an example, we can write vector A as A n where a cap on n (i.e. n ) denotes a unit vector in the direction of A. Notice that a unit vector has been introduced to take care of
3.17
17

MODULE - 1
Motion, Force and Energy

Physics the direction of the vector; the magnitude has been taken care of by A. Of particular importance are the unit vectors along coordinate axes. Unit vector along x-axis is denoted
ˆ
by ˆ , along y-axis by ˆ and along z-axis by k . Using this notation, vector A, whose j i components along x and y axes are respectively Ax and Ay, can be written as
A = Ax ˆ + Ay ˆ . j i

Notes

(1.8)

Another vector B can similarly be written as
B = Bx ˆ + By ˆ . j i

(1.9)

The sum of these two vectors can now be written as
A + B = (Ax + Bx) ˆ + (Ay + By) ˆ j i

(1.10)

By the rules of scalar product you can show that
ˆ ˆ =1, ˆ ˆ =1, k .k =1, ˆ . ˆ = 0, ˆ .k = 0, and ˆ ˆ = 0
ˆ ˆ
i. i
j. j i j i ˆ
j.k

(1.11)

The dot product between two vectors A and B can now be written as
A . B = (Ax ˆ + Ay ˆ ). (Bx ˆ + By ˆ ) j j i i
= AxBx ( ˆ . ˆ ) + AxBy ( ˆ . ˆ ) + AyBx ( ˆ . ˆ ) + AyBy ( ˆ . ˆ ) j i j j i i i j
= AxBx + AyBy,

(1.12)

Here, we have used the results contained in Eqn. (1.11). y Example 1.4 On a coordinate system (showing all the four quadrants) show the following vectors:

B
C

j j j i i
A = 4ˆ + 0ˆ , B = 0ˆ + 5ˆ , C = 4ˆ + 5ˆ , i j
D = 6ˆ – 4ˆ . i Find their magnitudes and directions.
Solution : The vectors are given in component form. i The factor multiplying ˆ is the x component and the

-x

x
A
D
–4
-y
Fig. 1.14

j factor multiplying ˆ is the y component. All the vectors are shown on the coordinate grid (Fig. 1.14).

The components of A are Ax = 4, Ay = 0. So, the magnitude of A = 4. Its direction is

⎛ Ay ⎞ tan −1 ⎜
⎟ in accordance with Eqn. (1.7). This quantity is zero, since Ay = 0. This makes
⎝ Ax ⎠ it to be along the x-axis, as it is. Vector B has x-component = 0, so it lies along the y-axis and its magnitude is 5.
18

Units, Dimensions and Vectors
Let us consider vector C. Here, Cx = 4 and Cy = 5. Therefore, the magnitude of C is
C=

MODULE - 1
Motion, Force and Energy

–1
42 + 52 = 41 . The angle that it makes with the x-axis is tan (Cy /Cx) = 51.3

degrees. Similarly, the magnitude of D is D =
(0.666) = –33.7º (in the fourth quadrant).

–1
–1
60 . Its direction is tan (Dy/Dx) = tan

Example 1.5 Calculate the product C . D for the vectors given in Example 1.4.

Notes

Solution : The dot product of C with D can be found using Eqn. (1.12):
C . D = CxDx + CyDy = 4×6 + 5×(-4) = 24 – 20 = 4.
The cross product of two vectors can also be written in terms of the unit vectors. For this we first need the cross product of unit vectors. For this remember that the angle between i j the unit vectors is a right angle. Consider, for example, ˆ × ˆ . Sine of the angle between them is one. The magnitude of the product vector is also 1. Its direction is perpendicular to j i the xy - plane containing ˆ and ˆ , which is the z-axis. By the right hand rule, we also find that this must be the positive z-axis. And what is the unit vector in the positive
ˆ
z - direction. The unit vector k . Therefore,
ˆ
ˆ × ˆ = k. i j
Using similar arguments, we can show,
ˆ ˆ
ˆ × k =ˆ, k × ˆ = ˆ , ˆ × ˆ = – k , k × ˆ = –ˆ, ˆ × k = – ˆ ,
ˆ i ˆ
ˆ
j j i j j i i i j and
ˆ
ˆ
ˆ × ˆ = ˆ × ˆ = k × k = 0. i i j j

(1.13)
(1.14)
(1.15)

Example 1.6 Calculate the cross product of vectors C and D given in Example (1.4).
Solution : We have j j i i
C × D = (4 ˆ + 5 ˆ ) × (6 ˆ – 4 ˆ ) j i j j
= 24 ( ˆ × ˆ ) –16 ( ˆ × ˆ ) + 30 ( ˆ × ˆ ) –20 ( ˆ × ˆ ) i i i j
Using the results contained in Eqns. (1.13 – 1.15), we can write
ˆ
ˆ
ˆ
C × D = –16 k – 30 k = – 46 k

So, the cross product of C and D is a vector of magnitude 46 and in the negative z direction. Since C and D are in the xy-plane, it is obvious that the cross product must be perpendicular to this plane, that is, it must be in the z-direction.

Intext Questions 1.5
1. A vector A makes an angle of 60 degrees with the x-axis of the xy-system of coordinates.
If its magnitude is 50 units, find its components in x, y directions. If another vector B of the same magnitude makes an angle of 30 degrees with the X-axis of the XYsystem of coordinates. Find its components now. Are they same as before?
....................................................................................................................................

3.19
19

MODULE - 1
Motion, Force and Energy

Physics j j i i
2. Two vectors A and B are given respectively as 3 ˆ – 4 ˆ and –2 ˆ + 6 ˆ . Sketch them on the coordinate grid. Find their magnitudes and the angles that they make with the x-axis (see Fig. 1.14).

....................................................................................................................................
3. Calculate the dot and cross product of the vectors given in the above question.

Notes

....................................................................................................................................
You now know that each term in an equation must have the same dimensions. Having learnt vectors, we must now add this: For an equation to be correct, each term in it must have the same character: either all of them be vectors or all of them be scalars. What You Have Learnt
Every physical quantity must be measured in some unit and also expressed in this unit. The SI system has been accepted and followed universally for scientific reporting. Base SI units for mass, length and time are respectively kg, m and s. In addition to base units, there are derived units.
Every physical quantity has dimensions. Dimensional analysis is a useful tool for checking correctness of equations.
In physics, we deal generally with two kinds of quantities, scalars and vectors. A scalar has only magnitude. A vector has both direction and magnitude.
Vectors are added according to the parallelogram rule.
The scalar product of two vectors is a scalar.
The vector product of two vectors is a vector perpendicular to the plane containing the two vectors.
Vectors can be resolved into components along a specified set of coordinates axes.

Terminal Exercise
1.

2.

Meteors are small pieces of rock which enter the earth’s atmosphere occasionally at very high speeds. Because of friction caused by the atmosphere, they become very hot and emit radiations for a very short time before they get completely burnt.
The streak of light that is seen as a result is called a ‘shooting star’. The speed of a meteor is 51 kms–1 In comparison, speed of sound in air at about 200C is 340 ms–1
Find the ratio of magnitudes of the two speeds.

3.

20

A unit used for measuring very large distances is called a light year. It is the distance covered by light in one year. Express light year in metres. Take speed of light as
3 × 108 m s–1.

The distance covered by a particle in time t while starting with the initial velocity u and moving with a uniform acceleration a is given by s = ut + (1/2)at2. Check the

Units, Dimensions and Vectors correctness of the expression using dimensional analysis.
4.

6.

7.

8.

Motion, Force and Energy

Newton’s law of gravitation states that the magnitude of force between two particles of mass m1 and m2 separated by a distance r is given by
F=G

5.

MODULE - 1

m1m 2 r2 where G is the universal constant of gravitation. Find the dimensions of G.
Hamida is pushing a table in a certain direction with a force of magnitude 10 N. At the same time her, classmate Lila is pushing the same table with a force of magnitude
8 N in a direction making an angle of 60o to the direction in which Hamida is pushing.
Calculate the magnitude of the resultant force on the table and its direction.
A physical quantity is obtained as a dot product of two vector quantities. Is it a scalar or a vector? What is the nature of a physical quantity obtained as cross product of two vectors?
John wants to pull a cart applying a force parallel to the ground. His friend Ramu suggests that it would be easier to pull the cart by applying a force at an angle of 30 degrees to the ground. Who is correct and why?

Notes

j j i i Two vectors are given by 5 ˆ – 3 ˆ and 3 ˆ – 5 ˆ . Calculate their scalar and vector products. Answers to Intext Questions
1.1
1.

Mass of the sun = 2 × 1030 kg
Mass of a proton = 2 × 10–27 kg
( No of protons in the sun =

2.

2 × 1030 kg
= 1057 .
2 × 10 −27 kg

1 angstrom = 10–8 cm = 10–10 m
1 nanometer (nm) = 10–9 m



1 nm/1 angstrom = 10–9 m /10–10 m = 10 so 1 nm = 10 Å

3.

1370 kHz = 1370 × 103 Hz = (1370 × 103 )/109 GHz = 1.370 × 10–3 GHz

4.

1 decameter (dam) = 10 m
1 decimeter (dm) = 10–1 m



1 dam = 100 dm
1 MW = 106 W
1 GW = 109 W



1 GW = 103 MW
3.21
21

MODULE - 1
Motion, Force and Energy

Physics

1.2
1.

Notes

Dimension of length = L
Dimension of time = T
Dimensions of g = LT–2
Let time period t be proportional to lα and gβ
Then, writing dimensions on both sides T = Lα (LT–2)β = Lα+β T–2β
Equating powers of L and T, α + β = 0, 2β = –1 ⇒ β = –1/2 and α = 1/2 l So, t α g .

Dimension of a = LT–2
Dimension of v = LT–1
Dimension of r = L
Let a be proportional to vα and rβ
Then dimensionally,
LT–2 = (LT–1)α Lβ = Lα+β T–α
Equating powers of L and T, α + β = 1, α = 2, ⇒ α = –1
So, α ∝ v2/r
3. Dimensions of mv = MLT–1
Dimensions of Ft = MLT–2 T1 = MLT–1
Dimensions of both the sides are the same, therefore, the equation is dimensionally correct. 2.

1.3
1.

Suppose

A+

(a)

(b)
A

22

B

B

Units, Dimensions and Vectors

MODULE - 1
Motion, Force and Energy

A

–2A
A – 2B

(c)

–2B

(d)

B–

2A

B

Notes
2.

A
⎯⎯⎯⎯→

10 units

B
←⎯⎯⎯⎯

12 units

B = −12 units
←⎯⎯⎯⎯⎯⎯

A = 10 units

A + B = 10 + (–12)
= –2 units also A = 10 units

–B = + 12 units

A – B = 22 units

3.

| A + B | = 77 units

1.4
1.

If A and B are parallel, the angle θ between them is zero. So, their cross product
A × B = AB sin θ = 0.
If they are antiparallel then the angle between them is 180o. Therefore,
A × B = AB sin θ = 0, because sin 180o = 0.

2.

If magnitude of B is halved, but it remains in the same plane as before, then the direction of the vector product C = A × B remains unchanged. Its magnitude may change. 3.23
23

MODULE - 1
Motion, Force and Energy

Physics
Since vectors A and B rotate without change in the plane containing them, the direction of C = A × B will not change.

4.

Suppose initially the angle between A and B is between zero and 180o. Then C = A
× B will be directed upward perpendicular to the plane. After rotation through arbitrary amounts, if the angle between them becomes > 180o, then C will drop underneath but perpendicular to the plane.

5.

If A is along x-axis and B is along y-axis, then they are both in the xy plane. The vector product C = A × B will be along z-direction. If A is along y-axis and B is along x-axis, then C is along the negative z-axis.

6.

Notes

3.

(a) A . B = |A| |B| cos θ = 0 when θ = 90º
(b) A × B = |A| |B| sin θ = |A| |B| as sin θ = 1 at θ = 90º

1.5
1.

When A makes an angle of 60o with the x-axis:
Ax = A cos 60 = 50 . ½ = 25 units
Ay = A sin 60 = 50.√3/2 = 50 . 0.866
= 43.3 units
When A makes an angle of 30o with the x-axis
Ax = 50 cos 30 = 50 . 0.866 = 43.3 units
Ay = 50 sin 30 = 50 . ½ = 25 units
The components in the two cases are obviously not the same.

2.

The position of vectors on the coordinate grid is shown in Fig. 1.14.
Suppose A makes an angle θ with the x-axis, then tan θ = – 4/3 ⇒ θ = tan–1(– 4/3)
= –53o 6′ or 306o 54′ after taking account of the quadrant in which the angle lies.
If B makes an angle φ with the x-axis, then tan φ = 6/–2 = –3 ⇒ φ = tan–1(–3)
= 108o 24′

3.

The dot product of A and B: j j i i
A . B = (3 ˆ – 4 ˆ ).(–2 ˆ +6 ˆ ) j j i i
= –6( ˆ . ˆ ) – 24( ˆ . ˆ ) = –30 j i j j i j i i because ˆ . ˆ = ˆ . ˆ = 0, and ˆ . ˆ = ˆ . ˆ = 1

The cross product of A and B: j j i i
A × B = (3 ˆ – 4 ˆ ) × (–2 ˆ + 6 ˆ )
ˆ
ˆ
ˆ
j i i j
= 18 ( ˆ × ˆ ) + 8 ( ˆ × ˆ ) = 18 k – 8 k = 10 k

24

Units, Dimensions and Vectors on using Eqs.(1.14) and (1.15). So, the cross product is in the direction of z-axis, since A and B lie in the xy plane.

MODULE - 1
Motion, Force and Energy

Answers to Terminal Problems
1.

1 ly = 9.4673 × 1015 m.

2.

Speed of meteor
51
3
=
=
Speed of sound in air of 20º C 340 20

5.

⎛1⎞
15.84 N and α = tan–1 ⎜ ⎟
⎝2⎠

8.

A . B = 30

(

) (

Notes

)

i j i j A × B = 5 ˆ − 3 ˆ × 3 ˆ − 5 ˆ is a single vector C such that |C| = 16 units along negative z-direction.

3.25
25

MODULE - 1

Physics

Motion, Force and Energy

2
Notes

MOTION IN A STRAIGHT LINE

We see a number of things moving around us. Humans, animals, vehicles can be seen moving on land. Fish, frogs and other aquatic animals move in water. Birds and aeroplanes move in air. Though we do not feel it, the earth on which we live also revolves around the sun as well as its own axis. It is, therefore, quite apparent that we live in a world that is very much in constant motion. Therefore to understand the physical world around us, the study of motion is essential. Motion can be in a straight line(1D), in a plane(2D) or in space(3D). If the motion of the object is only in one direction, it is said to be the motion in a straight line. For example, motion of a car on a straight road, motion of a train on straight rails, motion of a freely falling body, motion of a lift, and motion of an athlete running on a straight track, etc.
In this lesson you will learn about motion in a straight line. In the following lessons, you will study the laws of motion, motion in plane and other types of motion.

Objectives
After studying this lesson, you should be able to, distinguish between distance and displacement, and speed and velocity; explain the terms instantaneous velocity, relative velocity and average velocity; define acceleration and instantaneous acceleration; interpret position - time and velocity - time graphs for uniform as well as nonuniform motion; derive equations of motion with constant acceleration; and describe motion under gravity; and solve numericals based on equations of motion.

2.1 Speed and Velocity
We know that the total length of the path covered by a body is the distance travelled by it. But the difference between the initial and final position vectors of a body is called its displacement. Basically, displacement is the shortest distance between the two positions and has a certain direction. Thus, the displacement is a vector quantity but
26

Motion in a Straight Line distance is a scalar. You might have also learnt that the rate of change of distance with time is called speed but the rate of change of displacement is known as velocity. Unlike speed, velocity is a vector quantity. For 1-D motion, the directional aspect of the vector is taken care of by putting + and – signs and we do not have to use vector notation for displacement, velocity and acceleration for motion in one dimension.

2.1.1 Average Velocity

MODULE - 1
Motion, Force and Energy

Notes

When an object travels a certain distance with different velocities, its motion is specified by its average velocity. The average velocity of an object is defined as the displacement per unit time. Let x1 and x2 be its positions at instants t1 and t2, respectively. Then mathematically we can express average velocity as v= displacement time taken x2 – x1

∆x

= t –t =
∆t
2
1

(2.1)

where x2 – x1 signifies change in position (denoted by ∆x) and t2 – t1 is the corresponding change in time (denoted by ∆t). Here the bar over the symbol for velocity ( v ) is standard notation used to indicate an average quantity. Average velocity can be represented as vav also. The average speed of an object is obtained by dividing the total distance travelled by the total time taken:
Average speed =

total distancetravelled total time taken

(2.2)

If the motion is in the same direction along a straight line, the average speed is the same as the magnitude of the average velocity. However, this is always not the case (see example
2.2).
Following examples will help you in understanding the difference between average speed and average velocity.
Example 2.1 : The position of an object moving along the x-axis is defined as x = 20t2, where t is the time measured in seconds and position is expressed in metres. Calculate the average velocity of the object over the time interval from 3s to 4s.
Solution : Given, x = 20t2
Note that x and t are measured in metres and seconds. It means that the constant of proportionality (20) has dimensions ms–2.
We know that the average velocity is given by the relation x –x

v = 2 1 t2 – t1

At t1 = 3s,
3.27
27

MODULE - 1

Physics

Motion, Force and Energy

x 1 = 20 × (3)2
= 20 × 9 = 180 m
Similarly, for t 2 = 4s x 2 = 20 × (4)2

Notes

= 20 × 16 = 320 m

x2 − x1
140 m
(320 − 180) m v =
=
= 1 s = 140 ms–1
(4 − 3) s t2 − t1



Hence, average velocity = 140 ms–1.
Example 2.2 : A person runs on a 300m circular track and comes back to the starting point in 200s. Calculate the average speed and average velocity.
Solution : Given,
Total length of the track = 300m.
Time taken to cover this length = 200s
Hence,
average speed =

=

total distance travelled time taken
300
ms–1 = 1.5 ms–1
200

As the person comes back to the same point, the displacement is zero. Therefore, the average velocity is also zero.
Note that in the above example, the average speed is not equal to the magnitude of the average velocity. Do you know the reason?

2.1.2 Relative Velocity
When we say that a bullock cart is moving at 10km h–1 due south, it means that the cart travels a distance of 10km in 1h in southward direction from its starting position. Thus it is implied that the referred velocity is with respect to some reference point. In fact, the velocity of a body is always specified with respect to some other body. Since all bodies are in motion, we can say that every velocity is relative in nature.
The relative velocity of an object with respect to another object is the rate at which it changes its position relative to the object / point taken as reference. For example, if vA and vB are the velocities of the two objects along a straight line, the relative velocity of B with respect to A will be vB– vA.

28

Motion in a Straight Line
The rate of change of the relative position of an object with respect to the other object is known as the relative velocity of that object with respect to the other.

MODULE - 1
Motion, Force and Energy

Importance of Relative Velocity
The position and hence velocity of a body is specified in relation with some other body. If the reference body is at rest, the motion of the body can be described easily
.You will learn the equations of kinematics in this lesson. But what happens, if the reference body is also moving? Such a motion is seen to
A
B be of the two body system by a stationary observer.
However, it can be simplified by invoking the concept of O xA(0) xB(0) relative motion.

Notes

Let the initial positions of two bodies A and B be xA(0) and xB(0). If body A moves along positive x-direction with velocity vA and body B with velocity vB, then the positions of points A and B after t seconds will be given by x A(t) = xA(0) + vAt xB(t) = xB(0) + vBt
Therefore, the relative separation of B from A will be xBA(t) = xB(t) – xA(t) = xB(0) – xA(0) + (vB – vA) t
= xBA(0) + vBAt where vBA = (vB – vA) is called the relative velocity of B with respect to A. Thus by applying the concept of relative velocity, a two body problem can be reduced to a single body problem.
Example 2.3 : A train A is moving on a straight track (or railway line) from North to
South with a speed of 60km h–1. Another train B is moving from South to North with a speed of 70km h–1. What is the velocity of B relative to the train A?
Solution : Considering the direction from South to North as positive, we have velocity (vB) of train B = + 70km h–1 and, velocity (vA) of train A = – 60km h–1
Hence, the velocity of train B relative to train A
= vB – vA
= 70 – (– 60) = 130km h–1.
In the above example, you have seen that the relative velocity of one train with respect to the other is equal to the sum of their respective velocities. This is why a train moving in a direction opposite to that of the train in which you are travelling appears to be travelling very fast. But, if the other train were moving in the same direction as your train, it would appear to be very slow.
3.29
29

MODULE - 1
Motion, Force and Energy

Notes

Physics

2.1.3 Acceleration
While travelling in a bus or a car, you might have noticed that sometimes it speeds up and sometimes it slows down. That is, its velocity changes with time. Just as the velocity is defined as the time rate of change of displacement, the acceleration is defined as time rate of change of velocity. Acceleration is a vector quantity and its SI unit is m s–2. In one dimension, there is no need to use vector notation for acceleration as explained in the case of velocity. The average acceleration of an object is given by,
Final velocity - Initial velocity
Average acceleration ( a ) = Time taken for change in velocity v2 – v1

∆v

(2.3) a = t − t = ∆t
2
1
In one dimensional motion, when the acceleration is in the same direction as the motion or velocity (normally taken to be in the positive direction), the acceleration is positive. But the acceleration may be in the opposite direction of the motion also. Then the acceleration is taken as negative and is often called deceleration or retardation. So we can say that an increase in the rate of change of velocity is acceleration, whereas the decrease in the rate of change of velocity is retardation.
Example 2.4 : The velocity of a car moving towards the East increases from 0 to 12ms–
1
in 3.0 s. Calculate its average acceleration.
Solution : Given, v 1 = 0 m s–1 v 2 = 12 m s–1 t = 3.0 s
(12.0m s –1 )
3.0s
= 4.0 m s–2

a =

Intext Questions 2.1
1.

Is it possible for a moving body to have non-zero average speed but zero average velocity during any given interval of time? If so, explain.
..................................................................................................................................

2.

A lady drove to the market at a speed of 8 km h–1. Finding market closed, she came back home at a speed of 10 km h–1. If the market is 2km away from her home, calculate the average velocity and average speed.
..................................................................................................................................

3.

Can a moving body have zero relative velocity with respect to another body? Give an example. ..................................................................................................................................

4.

30

A person strolls inside a train with a velocity of 1.0 m s–1 in the direction of motion of the train. If the train is moving with a velocity of 3.0 m s–1, calculate his

Motion in a Straight Line
(a) velocity as seen by passengers in the compartment, and (b) velocity with respect to a person sitting on the platform.

MODULE - 1
Motion, Force and Energy

..................................................................................................................................

2.2 Position - Time Graph

Notes

If you roll a ball on the ground, you will notice that at different times, the ball is found at different positions. The different positions and corresponding times can be plotted on a graph giving us a certain curve. Such a curve is known as position-time curve.
Generally, the time is represented along x-axis whereas the position of the body is represented along y-axis.

position(m)

40

Let us plot the position - time graph for a body at rest at a distance of 20m from the origin. What will be its position after 1s, 2s, 3s, 4s and 5s? You will find that the graph is a straight line parallel to the time axis, as shown in Fig. 2.1

30
20
10
1

2
3
time(s)

4

5

Fig. 2.1 : Position-time graph for a body at rest

2.2.1 Position-Time Graph for Uniform Motion
Now, let us consider a case where an object covers equal distances in equal intervals of time. For example, if the object covers a distance of 10m in each second for 5 seconds, the positions of the object at different times will be as shown in the following table.
Time (t) in s

1

2

3

4

5

Position (x) in m

10

20

30

40

50

The graph is a straight line inclined with the x-axis. A motion in which the velocity of the moving object is constant is known as uniform motion.
Its position-time graph is a straight line inclined to the time axis.
In other words, we can say that when a moving object covers equal distances in equal intervals of time, it is in uniform motion. 50
40
position(m)

In order to plot this data, take time along x-axis assuming 1cm as 1s, and position along y-axis with a scale of 1cm to be equal to 10m. The position-time graph will be as shown in Fig.2.2

30
20

B x2 ∆x
A

θ

C

x1

10 t1 1

∆t
2
3 time(s) t2
4

5

Fig. 2.2 : Position-time graph for uniform motion

3.31
31

MODULE - 1
Motion, Force and Energy

2.2.2 Position-Time Graph for Non-Uniform Motion
Let us now take an example of a train which starts from a station, speeds up and moves with uniform velocity for certain duration and then slows down before steaming in the next station. In this case you will find that the distances covered in equal intervals of time are not equal. Such a motion is said to be non-uniform motion. If the distances covered in successive intervals are increasing, the motion is said to be x2 accelerated motion. The position-time
B
graph for such an object is as shown in
Fig.2.3.
position (m) →

Notes

Physics

x1

C

A t2 t1
Time(s) →

Fig. 2.3 : Position-time graph of accelerated motion as a continuous curve Note that the position-time graph of accelerated motion is a continuous curve.
Hence, the velocity of the body changes continuously. In such a situation, it is more appropriate to define average velocity of the body over an extremely small interval of time or instantaneous velocity. Let us

learn to do so now.

2.2.3 Interpretation of Position - Time Graph
As you have seen, the position - time graphs of different moving objects can have different shapes. If it is a straight line parallel to the time axis, you can say that the body is at rest
(Fig. 2.1). And the straight line inclined to the time axis shows that the motion is uniform
(Fig.2.2). A continuous curve implies continuously changing velocity.
(a) Velocity from position - time graph : The slope of the straight line of position - time graph gives the average velocity of the object in motion. For determining the slope, we choose two widely separated points (say A and B) on the straight line (Fig.2.2) and form a triangle by drawing lines parallel to y-axis and x-axis. Thus, the average velocity of the object v =

∆x
BC
x2 − x1
=
=
∆t
AC t2 − t1

(2.4)

Hence, average velocity of object equals the slope of the straight line AB.

Example 2.5 : The position - time graphs of two bodies A and B are shown in Fig. 2.4. Which of these has greater velocity? Solution : Body A has greater slope and hence greater velocity. 32

Position (m) →

It shows that greater the value of the slope (∆x/∆t) of the straight line position - time graph, more will be the average velocity. Notice that the slope is also equal to the tangent of the angle that the straight line makes with a horizontal line, i.e., tan θ = ∆x/∆t. Any two corresponding ∆x and ∆t intervals can be used to determine
A
the slope and thus the average velocity during that time internal.
B

Time (s) →

Fig. 2.4 :

Positiontime graph of

Motion in a Straight Line

Displacement (m)

(b) Instantaneous velocity : As you have learnt, a body having uniform motion along a straight line has the same velocity at every instant. But in the case of non-uniform motion, the position - time graph is a curved line, as shown in Fig.2.5. As a result, the slope or the average velocity varies, depending on the size of the time intervals selected. The velocity of the particle at
4
any instant of time or at some point of its path is called
∆x 0 its instantaneous velocity.
∆r
Note that the average velocity over a time interval
∆t is given by v =

∆x
. As ∆t is made smaller and
∆t

smaller the average velocity approaches instantaneous velocity.

Motion, Force and Energy

Notes

0

3

2

∆x

1
∆t

0

In the limit ∆t → 0, the slope (∆x/∆t) of a line tangent to the curve at that point gives the instantaneous velocity. However, for uniform motion, the average and instantaneous velocities are the same.

MODULE - 1

1

2
Time (s)

3

4

Fig. 2.5 : Displacement-time graph for nonuniform motion

position(m) →

Example 2.6 : The position - time graph for the motion of an object for 20 seconds is shown in Fig. 2.6. What distances and with what speeds does it travel in time intervals (i)
0 s to 5 s, (ii) 5 s to 10 s, (iii) 10 s to 15 s and (iv) 15 s to 17.5 s? Calculate the average speed for this total journey.

C

12

D

8
4

B

O

E F

A
2.5 5

10
15 17.5 20 time(s) →

Fig. 2.6: Position-time graph

Solution :
i) During 0 s to 5 s, distance travelled = 4 m

4m
4m
Distance
–1
= (5 – 0) s = 5 s = 0.8 m s
Time
ii) During 5 s to 10 s, distance travelled = 12 – 4 = 8 m
∴ speed =

(12 – 4) m 8 m
–1
∴ speed = (10 – 5) s = 5 s = 1.6 m s iii) During 10 s to 15 s, distance travelled = 12 – 12 = 0 m
∴speed =

Distance
0
= =0
5
Time

iv) During 15 s to 17.5 s, distance travelled = 12 m

3.33
33

MODULE - 1

Physics

Motion, Force and Energy

12 m
∴ Speed = 2.5 s = 4.8 m s–1
Now we would like you to pause for a while and solve the following questions to check your progress.

Notes

Intext Questions 2.2
1.

Draw the position-time graph for a motion with zero acceleration.
..................................................................................................................................

2.

The following figure shows the displacement - time graph for two students A and B who start from their school and reach their homes. Look at the graphs carefully and answer the following questions.

displacement (m) →

(i) Do they both leave school at the same time?
..................................................................................................................................
B
(ii) Who stays farther from the school?
A
700
..............................................................
600

(iii) Do they both reach their respective houses at the same time?
..............................................................

500
400
300

(iv) Who moves faster?
..............................................................

200 school 1

A

B time (t) →

(a)

34

7

(v) At what distance from the school do they cross each other?
..............................................................

Under what conditions is average velocity of a body equal to its instantaneous velocity?
..................................................................................................................................
Which of the following graphs is not possible? Give reason for your answer?
..................................................................................................................................
distance →

4.

3
4
5
6
time (minutes) →

C

displacement →

3.

2

C

A

B time (t) →

(b)

Motion in a Straight Line

MODULE - 1
Motion, Force and Energy

2.3 Velocity - Time Graph
Just like the position-time graph, we can plot velocity-time graph. While plotting a velocity-time graph, generally the time is taken along the x-axis and the velocity along the y-axis. 2.3.1 Velocity-Time Graph for Uniform Motion

Notes

As you know, in uniform motion the velocity of the body remains constant, i.e., there is no change in the velocity with time. The velocity-time graph for such a uniform motion is a straight line parallel to the time axis, as shown in the Fig. 2.6. velocity (ms–1)

–1 velocity (m s )

40
30
20

A

v = 20ms

–1

B

10

t
3 2
1 t1 2
Time (s)

B

v2

C

M v1 L

A

t1 t2

P

K N

4

D time (s)

Fig. 2.6 : Velocity-time graph for uniform motion

Fig. 2.7 :Velocity-time graph for motion with three different stages of constant acceleration

2.3.2 Velocity-Time Graph for Non-Uniform Motion

v2 - v1

∆v

MP

= a = t -t =
∆t
LP
2 1
= slope of the straight line

velocity (v)

If the velocity of a body changes uniformly with time, its acceleration is constant. The velocity-time graph for such a motion is a straight line inclined to the time axis. This is shown in
Fig. 2.7 by the straight line AB. It is clear from
C
the graph that the velocity increases by equal amounts in equal intervals of time. The average acceleration of the body is given by
B
A θ θB θ

A
C
Since the slope of the straight line is constant,
O
the average acceleration of the body is constant. time (t)
However, it is also possible that the rate of Fig. 2.8 : Velocity-time graph for a motion with varying acceleration variation in the velocity is not constant. Such a motion is called non-uniformly accelerated motion. In such a situation, the slope of the velocity-time graph will vary at every instant, as shown in Fig.2.8. It can be seen that θA, θB and θC are different at points A, B and C.

2.3.3 Interpretation of Velocity-Time Graph
Using v – t graph of the motion of a body, we can determine the distance travelled by it and the acceleration of the body at different instants. Let us see how we can do so.
3.35
35

MODULE - 1

Physics

Notes

ve locity(m –1) s Motion, Force and Energy

v2

B a v1

v2– v1= ∆ v b A c t2 t1 t2 – t1= ∆ t t tim (s e )
Fig. 2.9 : Velocity-time graph of non-uniformly accelerated motion

(a) Determination of the distance travelled by the body : Let us again consider the velocity-time graph shown in Fig. 2.7. The portion AB shows the motion with constant acceleration, whereas the portion CD shows the constantly retarded motion.
The portion BC represents uniform motion (i.e., motion with zero acceleration).
For uniform motion, the distance travelled by the body from time t1 to t2 is given by s = v (t2 – t1) = the area under the curve between t1 and t2 Generalising this result for Fig. 2.7, we find that the distance travelled by the body between time t1 and t2 s = area of trapezium KLMN
= (½) × (KL + MN) × KN
= (½) × (v1 + v2) × (t2 – t1)

(b) Determination of the acceleration of the body : We know that acceleration of a body is the rate of change of its velocity with time. If you look at the velocity-time graph given in the Fig.2.9, you will note that the average acceleration is represented by the slope of the chord AB, which is given by average acceleration ( a ) =

∆v v 2 − v1
=
.
∆t
t2 − t1

If the time interval ∆t is made smaller and smaller, the average acceleration becomes instantaneous acceleration. Thus, instantaneous acceleration

dv ab limit ∆v
=
= slope of the tangent at (t = t) = a = ∆t → 0 bc dt
∆t
Thus, the slope of the tangent at a point on the velocity-time graph gives the acceleration at that instant.

(ii) Calculate the distances travelled by these bodies in first 3s.
(iii) Which of these three bodies covers the maximum distance at the end of their journey?
(iv) What are the velocities at t = 2s?
Solution :
(i) As the slope of the v-t graph for body A is
36

A

–1 veloeity (m s )

Example 2.7 : The velocity-time graphs for three different bodies A,B and C are shown in Fig. 2.9(a).
(i) Which body has the maximum acceleration and how much?

6
5
4
3
2
1
O

A'

B

B′

C

C1

1 2 3 4 5 6
Time (s)
Fig. 2.9(a) : Velocity-time graph of uniformly accelerated motion of three different bodies Motion in a Straight Line maximum, its acceleration is maximum: a= MODULE - 1
Motion, Force and Energy

6−0 6
∆v
=
= = 2 ms–2.
3−0 3
∆t

(ii) The distance travelled by a body is equal to the area of the v-t graph.
∴ In first 3s,

Notes

the distance travelled by A = Area OA′L
= (½) × 6 × 3 = 9m. the distance travelled by B = Area OB′L
= (½) × 3 × 3 = 4.5 m. the distance travelled by C = (½) × 1 × 3 = 1.5 m.
(iii) At the end of the journey, the maximum distance is travelled by B.
= (½) × 6 × 6 = 18 m.
(iv) Since v-t graph for each body is a straight line, instantaneous acceleration is equal to average acceleration.
At 2s, the velocity of A = 4 m s–1 the velocity of B

= 2 m s–1

the velocity of C

= 0.80 m s–1 (approx.)

Intext Questions 2.3
1.

The motion of a particle moving in a straight line is depicted in the adjoining v – t graph. (i) Describe the motion in terms of velocity, acceleration and distance travelled (ii) Find the average speed.

v (m –1) → s ....................................................................................
2.

What type of motion does the adjoining graph represent
- uniform motion, accelerated motion or decelerated motion? Explain.
....................................................................................

t (s)→
20
–1

v (ms )

3.

0
5
-10

15

22

t (s)

Using the adjoining v -t graph, calculate the (i) average velocity, and (ii) average speed of the particle for the time interval 0 – 22 seconds. The particle is moving in a straight line all the time.
............................................................................
3.37
37

MODULE - 1

Physics

Motion, Force and Energy

2.4 Equations of Motion

Notes

As you now know, for describing the motion of an object, we use physical quantities like distance, velocity and acceleration. In the case of constant acceleration, the velocity acquired and the distance travelled in a given time can be calculated by using one or more of three equations. These equations, generally known as equations of motion for constant acceleration or kinematical equations, are easy to use and find many applications.

2.4.1 Equation of Uniform Motion
In order to derive these equations, let us take initial time to be zero i.e. t1 = 0. We can then assume t2 = t to be the elapsed time. The initial position (x1) and initial velocity (v1) of an object will now be represented by x0 and v0 and at time t they will be called x and v
(rather than x2 and v2). According to Eqn. (2.1), the average velocity during the time t will be v =

x − x0
.
t

(2.4)

2.4.2 First Equation of Uniformly Accelerated Motion
The first equation of uniformly accelerated motion helps in determining the velocity of an object after a certain time when the acceleration is given. As you know, by definition
Acceleration (a) =

v 2 − v1
Change in velocity
=
t2 − t1
Time taken

If at t1 = 0, v1 = v0 and at t2 = t, v2 = v. Then

v − v0 t v = v0 + at

a =


(2.5)
(2.6)

Example 2.8 : A car starting from rest has an acceleration of 10ms–2. How fast will it be going after 5s?
Solution : Given,
Initial velocity

v0 = 0

Acceleration

a = 10 ms–2

Time

t = 5s

Using first equation of motion v = v0 + at we find that for t = 5s, the velocity is given by v = 0 + (10 ms–2) × (5s)
= 50 ms–1
38

Motion in a Straight Line

Motion, Force and Energy

2.4.2 Second Equation of Uniformly Accelerated Motion
Second equation of motion is used to calculate the position of an object after time t when it is undergoing constant acceleration a.

B

The distance travelled = area under v – t graph

v(m –1) → s v

Suppose that at t = 0, x1 = x0; v1 = v0 and at t = t, x2 = x; v2 = v.

Notes
A

D

= Area of trapezium
OABC

C
O

t (s →
)

=

MODULE - 1

1
(CB + OA) × OC
2

x – x0 = ½ (v + v0) t

t

Fig. 2.10 : v–t graph for uniformly accelerated motion Since v = v0 + at, we can write x – x0 = ½ (v0 + at + v0)t
= v0t + ½ at2 x = x0 + v0t + ½ at2

or

(2.7)

Example 2.9 : A car A is travelling on a straight road with a uniform speed of 60 km h–1.
Car B is following it with uniform velocity of 70 km h–1. When the distance between them is 2.5 km, the car B is given a decceleration of 20 km h–1. At what distance and time will the car B catch up with car A?
Solution : Suppose that car B catches up with car A at a distance x after time t.
For car A, the distance travelled in t time, x = 60 × t.
For car B, the distance travelled in t time is given by x′ = x0 + v0t + ½ at2
= 0 + 70 × t + ½ (–20) × t2 x′ = 70 t – 10 t2
But the distance between two cars is x′ – x = 2.5

or

(70 t – 10 t2) – (60 t) = 2.5
10 t2 – 10 t + 2.5 = 0

It gives t = ½ hour


x = 70t – 10t2
= 70 × ½ – 10 × (½)2
= 35 – 2.5 = 32.5 km.

3.39
39

MODULE - 1
Motion, Force and Energy

Physics

2.4.4 Third Equation of Uniformly Accelerated Motion
The third equation is used in a situation when the acceleration, position and initial velocity are known, and the final velocity is desired but the time t is not known. From Eqn. (2.7.), we can write x – x0 = ½ (v + v0) t.

Notes

Also from Eqn. (2.6), we recall that t =

v – v0 a Substituting this in above expression we get

⎛ v − v0 ⎞ x – x0 = ½ (v + v0) ⎜

⎝ a ⎠


2a (x – x0) = v2 – v0



2 v2 = v0 + 2a (x – x0)

(2.8)

Thus, the three equations for constant acceleration are v = v0 + at x = x0 + v0t + ½ at2
2
v2 = v 0 + 2a (x – x0)

and

Example 2.10 : A motorcyclist moves along a straight road with a constant acceleration of 4m s–2. If initially she was at a position of 5m and had a velocity of 3m s–1, calculate
(i) the position and velocity at time t = 2s, and
(ii) the position of the motorcyclist when its velocity is 5ms–1.
Solution : We are given x 0 = 5m, v0 = 3m s–1, a = 4 ms–2.
(i) Using Eqn. (2.7) x = x0 + v0t + ½ at2
= 5 + 3 × 2 + ½ × 4 × (2)2 = 19m
From Eqn. (2.6) v = v0 + at
= 3 + 4 × 2 = 11ms–1
Velocity, v = 11ms–1.
(ii) Using equation

40

Motion in a Straight Line

MODULE - 1
Motion, Force and Energy

2 v 2 = v0 + 2a (x – x0)

(5)2 = (3)2 + 2 × 4 × (x – 5)


x = 7m

Hence position of the motor cyclist (x) = 7m.

Notes

2.5 Motion under gravity
You must have noted that when we throw a body in the upward direction or drop a stone from a certain height, they come down to the earth. Do you know why they come to the earth and what type of path they follow? It happens because of the gravitational force of the earth on them. The gravitational force acts in the vertical direction. Therefore, motion under gravity is along a straight line. It is a one dimensional motion. The free fall of a body towards the earth is one of the most common examples of motion with constant acceleration. In the absence of air resistance, it is found that all bodies, irrespective of their size or weight, fall with the same acceleration. Though the acceleration due to gravity varies with altitude, for small distances compared to the earth’s radius, it may be taken constant throughout the fall. For our practical use, the effect of air resistance is neglected.
The acceleration of a freely falling body due to gravity is denoted by g. At or near the earth’s surface, its magnitude is approximately 9.8 ms–2. More precise values, and its variation with height and latitude will be discussed in detail in lesson 5 of this book.

Galileo Galilei (1564 – 1642)
He was born at Pisa in Italy in 1564. He enunciated the laws of falling bodies. He devised a telescope and used it for astronomical observations.
His major works are : Dialogues about the Two great Systems of the
World and Conversations concerning Two New Sciences. He supported the idea that the earth revolves around the sun.
Example 2.11 : A stone is dropped from a height of 50m and it falls freely. Calculate the
(i) distance travelled in 2 s, (ii) velocity of the stone when it reaches the ground, and
(iii) velocity at 3 s i.e., 3 s after the start.
Solution : Given
Height h = 50 m and Initial velocity v0 = 0
Consider, initial position (y0) to be zero and the origin at the starting point. Thus, the y-axis
(vertical axis) below it will be negative. Since acceleration is downward in the negative y-direction, the value of a = – g = –9.8 ms–2.
(i) From Eqn. (2.7), we recall that y = y0 + v0t + ½ at2
3.41
41

MODULE - 1
Motion, Force and Energy

Physics
For the given data, we get y = 0 + 0 – ½ gt2 = –½ × 9.8 × (2)2
= –19.6m.
The negative sign shows that the distance is below the starting point in downward direction.

Notes

(ii) At the ground y = –50m,
Using equation (2.8),
2
v 2 = v 0 + 2a (y – y0)

= 0 + 2 (–9.8) (–50 – 0) v = 9.9 ms–1
(iii) Using v = v0 + at, at t = 3s, we get

v = 0 + (–9.8) × 3 v = –29.4 ms–1
This shows that the velocity of the stone at t = 3 s is 29.4 m s–1 and it is in downward direction. Note : It is important to mention here that in kinematic equations, we use certain sign convention according to which quantities directed upwards and rightwards are taken as positive and those downwards and leftward are taken as negative.
Take a pause and solve the following questions.

Intext Questions 2.4
1.

A body starting from rest covers a distance of 40 m in 4s with constant acceleration along a straight line. Compute its final velocity and the time required to cover half of the total distance.
..................................................................................................................................

2.

A car moves along a straight road with constant aceleration of 5 ms–2. Initially at 5m, its velocity was 3 ms–1 Compute its position and velocity at t = 2 s.
..................................................................................................................................

3.

With what velocity should a body be thrown vertically upward so that it reaches a height of 25 m? For how long will it be in the air?
..................................................................................................................................

4.

A ball is thrown upward in the air. Is its acceleration greater while it is being thrown or after it is thrown?
..................................................................................................................................

42

Motion in a Straight Line

MODULE - 1
Motion, Force and Energy

What You Have Learnt
The ratio of the displacement of an object to the time interval is known as average velocity. The total distance travelled divided by the time taken is average speed.

Notes

The rate of change of the relative position of an object with respect to another object is known as the relative velocity of that object with respect to the other.
The change in the velocity in unit time is called acceleration.
The position-time graph for a body at rest is a straight line parallel to the time axis.
The position-time graph for a uniform motion is a straight line inclined to the time axis.
A body covering equal distance in equal intervals of time, however small, is said to be in uniform motion.
The velocity of a particle at any one instant of time or at any one point of its path is called its instantaneous velocity.
The slope of the position-time graph gives the average velocity.
The velocity-time graph for a body moving with constant acceleration is a straight line inclined to the time axis.
The area under the velocity-time graph gives the displacement of the body.
The average acceleration of the body can be computed by the slope of velocity-time graph. The motion of a body can be described by following three equations :
(i)

v = v0 + at

(ii)

x = x0 + v0 t + ½ at2

(iii)

2 v 2 = v0 + 2a.(x – x0)

Terminal Exercise
1. Distinguish between average speed and average velocity.
2. A car C moving with a speed of 65 km h–1 on a straight road is ahead of motorcycle
M moving with the speed of 80 km h–1 in the same direction. What is the velocity of
M relative to A?
3. How long does a car take to travel 30m, if it accelerates from rest at a rate of
2.0 m s2?
4. A motorcyclist covers half of the distance between two places at a speed of
30 km h–1 and the second half at the speed of 60 kmh–1. Compute the average speed of the motorcycle.

3.43
43

MODULE - 1
Motion, Force and Energy

Physics
5. A duck, flying directly south for the winter, flies with a constant velocity of 20 km h–1 to a distance of 25 km. How long does it take for the duck to fly this distance?
6. Bangalore is 1200km from New Delhi by air (straight line distance) and 1500 km by train. If it takes 2h by air and 20h by train, calculate the ratio of the average speeds.

Notes

7. A car accelerates along a straight road from rest to 50 kmh–1 in 5.0 s. What is the magnitude of its average acceleration?
8. A body with an initial velocity of 2.0 ms–1 is accelerated at 8.0 ms–2 for 3 seconds.
(i) How far does the body travel during the period of acceleration? (ii) How far would the body travel if it were initially at rest?
9. A ball is released from rest from the top of a cliff. Taking the top of the cliff as the reference (zero) level and upwards as the positive direction, draw (i) the displacementtime graph, (ii) distance-time graph (iii) velocity-time graph, (iv) speed-time graph.
10. A ball thrown vertically upwards with a velocity v0 from the top of the cliff of height h, falls to the beach below. Taking beach as the reference (zero) level, upward as the positive direction, draw the motion graphs. i.e., the graphs between (i) distance-time,
(ii) velocity-time, (iii) displacement-time, (iv) speed - time graphs.
11. A body is thrown vertically upward, with a velocity of 10m/s. What will be the value of the velocity and acceleration of the body at the highest point?
12. Two objects of different masses, one of 10g and other of 100g are dropped from the same height. Will they reach the ground at the same time? Explain your answer.
13. What happens to the uniform motion of a body when it is given an acceleration at right angle to its motion?
14. What does the slope of velocity-time graph at any instant represent?

Answers to Intext Questions
2.1
1. Yes. When body returns to its initial postion its velocity is zero but speed is non-zero.
2+2
4
–1
2 = 9 × 20 = 8.89 km h , average velocity = 0
+
8 10

2. Average speed = 2

3. Yes, two cars moving with same velocity in the same direction, will have zero relative velocity with respect to each other.
4. (a) 1 m s–1
(b) 2 m s–1

2.2
1. See Fig. 2.2.
2. (i) A, (ii) B covers more distance, (iii) B, (iv) A, (v) When they are 3km from the
44

Motion in a Straight Line

MODULE - 1
Motion, Force and Energy

starting point of B.
3. In the uniform motion.
4. (a) is wrong, because the distance covered cannot decrease with time or become zero. Notes

2.3
1. (i) (a) The body starts with a zero velocity.
(b) Motion of the body between start and 5th seconds is uniformly accelerated. It has been represented by the line OA. a= 15 − 0
= 3 m s–2
5−0

(c) Motion of the body between 5th and 10th second is a uniform motion (represented by AB). a =

15 − 15 0
=
= 0 m s–2.
15 − 5 10

(d) Motion between 15th and 25th second is uniformly retarded. (represented by the line BC). a =

0 − 15
= – 1.5 m s–2.
25 − 15

(ii) (a) Average speed =

Distance covered Area of OA BC
=
time taken
(25 − 0)

⎛1

⎛1

⎜ ×15 × 5) ⎟ + (15 × 10) + ⎜ × 15 × 10 ⎟ 525

⎝2
⎠=
= 10.5 m s–1.
=⎝2
25
50

(b) Deccelerated Velocity decreases with time.
⎛ 20 × 15 ⎞
⎛ 10 × 7 ⎞
(c) Total distance covered = ⎜
⎟m + ⎜
⎟ m = 185 m.
⎝ 2 ⎠
⎝ 2 ⎠

⎛ 185 ⎞ −1
∴ average speed = ⎜
⎟ ms = 8.4 ms–1.
⎝ 22 ⎠
⎛ 20 × 15 ⎞
⎛ 10 × 7 ⎞
Total displacement = ⎜
⎟m − ⎜
⎟ m = 115 m.
⎝ 2 ⎠
⎝ 2 ⎠

∴ average velocity =

115 −1 ms = 5.22 m s–1.
22
3.45
45

MODULE - 1
Motion, Force and Energy

Physics

2.4
1. Using x = x0 + v0t + ½ at2
40 =

Notes

1
× a × 16
2

⇒ a = 5 ms–2
2
Next using v2 = v 0 + 2a (x – x0)

v = 20 m s–1,
20 = 0 +

1
× 5 × t2 ⇒ t = 2 2 s
2

2. Using Eqn.(2.9), x = 21m, and using Eqn.(2.6), v = 13 m s–1.
3. At maximum height v = 0, using Eqn. (2.10), v0 = 7 10 ms–1 = 22.6 m s–1.
The body will be in the air for the twice of the time it takes to reach the maximum height. 4. The acceleration of the ball is greater while it is thrown.

Answers to Terminal Exercises
2. 15 km h–1
3. 5.47 s
4. 40 ms–1
5. 1.25 h
6. 8 : 1
7. 2.8 m s–2 (or 3000 km h–2)
8. (i) 42 m (ii) 36 m
11. O and 9.8 m s–2.

46

Laws of Motion

MODULE - 1
Motion, Force and Energy

3
LAWS OF MOTION

Notes

I n the previous lesson you learnt to describe the motion of an object in terms of its displacement, velocity and acceleration. But an important question is : what makes an object to move? Or what causes a ball rolling along the ground to come to a stop? From our everyday experience we know that we need to push or pull an object if we wish to change its position in a room. Similarly, a football has to be kicked in order to send it over a large distance. A cricket ball has to be hit hard by a batter to send it across the boundary for a six. You will agree that muscular activity is involved in all these actions and its effect is quite visible.
There are, however, many situations where the cause behind an action is not visible. For example, what makes rain drops to fall to the ground? What makes the earth to go around the sun? In this lesson you will learn the basic laws of motion and discover that force causes motion. The concept of force developed in this lesson will be useful in different branches of physics. Newton showed that force and motion are intimately connected. The laws of motion are fundamental and enable us to understand everyday phenomena.

Objectives
After studying this lesson, you should be able to : explain the significance of inertia; state Newton’s laws of motion and illustrate them with examples; explain the law of conservation of momentum and illustrate it with examples; define coefficient of friction and distinguish between static friction, kinetic friction and rolling friction; suggest different methods of reducing friction and highlight the role of friction in every-day life; and analyse a given situation and apply Newton’s laws of motion using free body diagrams. 3.1 Concepts of Force and Inertia
We all know that stationary objects remain wherever they are placed. These objects
3.47
47

MODULE - 1
Motion, Force and Energy

Notes

Physics cannot move on their own from one place to another place unless forced to change their state of rest. Similarly, an object moving with constant velocity has to be forced to change its state of motion. The property of an object by which it resists a change in its state of rest or of uniform motion in a straight line is called inertia. Mass of a body is a measure of its inertia.
In a way, inertia is a fantastic property. If it were not present, your books or classnotes could mingle with those of your younger brother or sister. Your wardrobe could move to your friend’s house creating chaos in life. You must however recall that the state of rest or of uniform motion of an object are not absolute. In the previous lesson you have learnt that an object at rest with respect to one observer may appear to be in motion with respect to some other observer. Observations show that the change in velocity of an object can only be brought, if a net force acts on it.
You are very familiar with the term force. We use it in so many situations in our everyday life. We are exerting force when we are pulling, pushing, kicking, hitting etc. Though a force is not visible, its effect can be seen or experienced. Forces are known to have different kinds of effects :
(a) They may change the shape and the size of an object. A balloon changes shape depending on the magnitude of force acting on it.
(b) Forces also influence the motion of an object. A force can set an object into motion or it can bring a moving object to rest. A force can also change the direction or speed of motion.
(c) Forces can rotate a body about an axis. You will learn about it in lesson seven.

3.1.1 Force and Motion
Force is a vector quantity. For this reason, when several forces act on a body simultaneously, a net equivalent force can be calculated by vector addition, as discussed in lesson 1.
Motion of a body is characterised by its displacement, velocity etc. We come across many situations where the velocity of an object is either continuously increasing or decreasing.
For example, in the case of a body falling freely, the velocity of the body increases continuously, till it hits the ground. Similarly, in the case of a ball rolling on a horizontal surface, the velocity of the ball decreases continuously and ultimately becomes zero.
From experience we know that a net non-zero force is required to change the state of a body. For a body in motion, the velocity will change depending on the direction of the force acting on it. If a net force acts on a body in motion, its velocity will increase in magnitude, if the direction of the force and velocity are same. If the direction of net force acting on the body is opposite to the direction of motion, the magnitude of velocity will decrease. However, if a net force acts on a body in a direction perpendicular to its velocity, the magnitude of velocity of the body remains constant (see Sec 4.3). Such a force changes only the direction of velocity of the body. We may therfore conclude that velocity of a body changes as long as a net force is acting on it.

3.1.2 First Law of Motion
When we roll a marble on a smooth floor, it stops after some time. It is obvious that its

48

Laws of Motion velocity decreases and ultimately it becomes zero. However, if we want it to move continuously with the same velocity, a force will have to be constantly applied on it.

MODULE - 1
Motion, Force and Energy

We also see that in order to move a trolley at constant velocity, it has to be continuously pushed or pulled. Is there any net force acting on the marble or trolley in the situations mentioned here?

Motion and Inertia

Notes

Galileo carried out experiments to prove that in the absence of any external force, a body would continue to be in its state of rest or of uniform motion in a straight line.
He observed that a body is accelerated while moving down an inclined plane
(Fig. 3.1 a) and is retarded while moving up an inclined plane (Fig. 3.1 b). He argued that if the plane is neither inclined upwards nor downwards (i.e. if it is a horizontal plane surface), the motion of the body will neither be accelerated not retarded. That is, on a horizontal plane surface, a body will move with a uniform speed/velocity (if there is no external force).

Fig. 3.1 : Motion of a body on inclined and horizontal planes

In another thought experiment, he considered two inclined planes facing each other, as shown in Fig. 3.2. The inclination of the plane PQ is same in all the three cases, whereas the inclination of the plane RS in Fig. 3.2 (a) is more than that in (b) and (c).
The plane PQRS is very smooth and the ball is of marble. When the ball is allowed to roll down the plane PQ, it rises to nearly the same height on the face RS. As the inclination of the plane RS decreases, the balls moves a longer distance to rise to the same height on the inclined plane (Fig. 3.2b). When the plane RS becomes horizontal, the ball keeps moving to attain the same height as on the plane PQ, i.e. on a horizontal plane, the ball will keep moving if there is no friction between the plane and the ball.
Fina P l osition

Initia P ition l os
P A

Fina P ition l os
B S

P

Q

R

Q

R

(a
)

S

h

h

h h B

A

(b)

P
Where is thefina position? l h
Q
(c)

R

S

Fig. 3.2 : Motion of a ball along planes inclined to each other

3.49
49

MODULE - 1

Physics

Motion, Force and Energy

Sir Issac Newton
(1642–1727)

Notes

Newton was born at Wollsthorpe in England in 1642. He studied at
Trinity College, Cambridge and became the most profound scientist.
The observation of an apple falling towards the ground helped him to formulate the basic law of gravitation. He enunciated the laws of motion and the law of gravitation. Newton was a genius and contributed significantly in all fields of science, including mathematics. His contributions are of a classical nature and form the basis of the modern science. He wrote his book “Principia” in Latin and his book on optics was written in English.
You may logically ask : Why is it necessary to apply a force continuously to the trolley to keep it moving uniformly? We know that a forward force on the cart is needed for balancing out the force of friction on the cart. That is, the force of friction on the trolley can be overcome by continuously pushing or pulling it.
Isaac Newton generalised Galileo’s conclusions in the form of a law known as Newton’s first law of motion, which states that a body continues to be in a state of rest or of uniform motion in a straight line unless it is acted upon by a net external force.
As you know, the state of rest or motion of a body depends on its relative position with respect to an observer. A person in a running car is at rest with respect to another person in the same car. But the same person is in motion with respect to a person standing on the road. For this reason, it is necessary to record measurements of changes in position, velocity, acceleration and force with respect to a chosen frame of reference.
A reference frame relative to which a body in translatory motion has constant velocity, if no net external force acts on it, is known as an inertial frame of reference. This nomenclature follows from the property of inertia of bodies due to which they tend to preserve their state (of rest or of uniform linear motion). A reference frame fixed to the earth (for all practical purposes) is considered an inertial frame of reference.
Now you may like to take a break and answer the following questions.

Intext Questions 3.1
1. Is it correct to state that a body always moves in the direction of the net external force acting on it?
....................................................................................................................................
2. What physical quantity is a measure of the inertia of a body?
....................................................................................................................................
3. Can a force change only the direction of velocity of an object keeping its magnitude constant? ....................................................................................................................................

50

Laws of Motion
4. State the different types of changes which a force can bring in a body when applied on it.

MODULE - 1
Motion, Force and Energy

....................................................................................................................................

3.2 Concept of Momentum
Notes
You must have seen that a fielder finds it difficult to stop a cricket ball moving with a large velocity although its mass is small. Similarly, it is difficult to stop a truck moving with a small velocity because its mass is large. These examples suggest that both, mass and velocity of a body, are important, when we study the effect of force on the motion of the body. The product of mass m of a body and its velocity v is called its linear momentum p.
Mathmatically, we write p = mv
In SI units, momentum is measured in kg ms–1. Momentum is a vector quantity. The direction of momentum vector is the same as the direction of velocity vector. Momentum of an object, therefore, can change on account of change in its magnitude or direction or both.
The following examples illustrate this point.
Example 3.1 Aman weights 60 kg and travels with velocity 1.0 m s–1 towards Manoj who weights 40 kg, and is moving with 1.5 m s–1 towards Aman. Calculate their momenta.
Solution : For Aman momentum = mass × velocity
= (60 kg) × (1.0 m s–1)
= 60 kg ms–1
For Manoj momentum = 40 kg × (– 1.5 ms–1)
= – 60 kg ms–1
Note that the momenta of Aman and Manoj have the same magnitude but they are in opposite directions.
Example 3.2 A 2 kg object is allowed to fall freely at t = 0 s. Callculate its momentum at (a) t = 0, (b) t = 1 s and (c) t = 2 s during its free-fall.
Solution : (a) As velocity of the object at t = 0 s is zero, the initial momentum of the object will also be zero.
(b) At t = 1s, the velocity of the object will be 9.8 ms–1 [use v = v0 + at] pointing downward.
So the momentum of the object will be p 1 = (2 kg) × (9.8 ms–1) = 19.6 kg ms–1 pointing downward.
3.51
51

MODULE - 1
Motion, Force and Energy

Physics
(c) At t = 2 s, the velocity of the object will be 19.6 m s–1 pointing downward. So the momentum of the object will now be p 2 = (2 kg) × (19.6 ms–1) = 39.2 kg ms–1 pointing downward.

Notes

Thus, we see that the momentum of a freely-falling body increases continuously in magnitude and points in the same direction. Now think what causes the momentum of a freely-falling body to change in magnitude?
Example 3.3 A rubber ball of mass 0.2 kg strikes a rigid wall with a speed of
10 ms–1 and rebounds along the original path with the same speed. Calculate the change in momentum of the ball.
Solution : Here the momentum of the ball has the same magnitude before and after the impact but there is a reversal in its direction. In each case the magnitude of momentum is
(0.2 kg)×(10 ms–1) i.e. 2 kg ms–1.
If we choose initial momentum vector to be along + x axis, the final momentum vector will be along –x axis. So pi = 2 kg ms–1, pf = –2 kg ms–1. Therefore, the change in momentum of the ball, pf – pi = (–2 kg ms–1) – (2 kg ms–1) = – 4 kg ms–1.
Here negative sign shows that the momentum of the ball changes by 4 kg ms–1 in the direction of –x axis. What causes this change in momentum of the ball?
In actual practice, a rubber ball rebounds from a rigid wall with a speed less than its speed before the impact. In such a case also, the magnitude of the momentum will change.

3.3 Second Law of Motion
You now know that a body moving at constant velocity will have constant momentum.
Newton’s first law of motion suggests that no net external force acts on such a body.
In Example 3.2 we have seen that the momentum of a ball falling freely under gravity increases with time. Since such a body falls under the action of gravitational force acting on it, there appears to be a connection between change in momentum of an object, net force acting on it and the time for which it is acting. Newton’s second law of motion gives a quantitative relation between these three physical quantities. It states that the rate of change of momentum of a body is directly proportional to the net force acting on the body. Change in momentum of the body takes place in the direction of net external force acting on the body.
This means that if ∆p is the change in momentum of a body in time ∆t due to a net external force F, we can write
F ∝

or

52

∆p
∆t

F =k

∆p
∆t

Laws of Motion

MODULE - 1
Motion, Force and Energy

where k is constant of proportionality.
By expressing momentum as a product of mass and velocity, we can rewrite this result as
⎛ ∆v ⎞
F = k m⎜

⎝ ∆t ⎠

F =kma

(as

∆v
= a)
∆t

Notes
(3.1)

The value of the constant k depends upon the units of m and a. If these units are chosen such that when the magnitude of m = 1 unit and a = 1 unit, the magnitude of F is also be 1 unit. Then, we can write
1 = k . 1. 1
i.e.,

k =1

Using this result in Eqn. (3.1), we get
F =ma

(3.2)

In SI units, m = 1 kg, a = 1 m s–2. Then magnitude of external force
F = 1 kg × 1 ms–2 = 1 kg ms–2
= 1 unit of force

(3.3)

This unit of force (i.e., 1 kg m s–2) is called one newton.
Note that the second law of motion gives us a unit for measuring force. The SI unit of force i.e., a newton may thus, be defined as the force which will produce an acceleration of 1 ms–2 in a mass of 1 kg.
Example 3.3 A ball of mass 0.4 kg starts rolling on the ground at 20 ms–1 and comes to a stop after 10s. Calculate the force which stops the ball, assuming it to be constant in magnitude throughout.
Solution : Given m= 0.4 kg, initial velocity u = 20 ms–1, final velocity v = 0 m s–1 and t = 10s. So

0.4 kg ( − 20 ms –1 ) m(v – u )
=
|F| = m|a| =
10 s t =

– 0.8 kg m s–2 = – 0.8 N

Here negative sign shows that force on the ball is in a direction opposite to that of its motion. Example 3.4 A constant force of magnitude 50 N is applied to a body of 10 kg moving initially with a speed of 10 m s–1. How long will it take the body to stop if the force acts in a direction opposite to its motion.
3.53
53

MODULE - 1
Motion, Force and Energy

Physics
Solution : Given m = 10 kg, F = –50 N, v0 = 10 ms–1 and v = 0. We have to calculate t.
Since
F = ma we can write

⎛ v − v0 ⎞
F = m⎜

⎝ t ⎠

Notes



or

⎛ 0 − 10 m s –1 ⎞

–50 N = 10 kg ⎜ t ⎝


–100 kgms –1
100 kg ms –1 t =
=
= 2 s.
–50 N
50 kg m s –2

It is important to note here that Newton’s second law of motion, as stated here is applicable to bodies having constant mass. Will this law hold for bodies whose mass changes with time, as in a rocket?

Intext Questions 3.2
1. Two objects of different masses have the same momentum. Which of them is moving faster? ....................................................................................................................................
2. A boy throws up a ball with a velocity v0. If the ball returns to the thrower with the same velocity, will there be any change in
(a) momentum of the ball?.....................................................................................
(b) magnitude of the momentum of the ball?............................................................
3. When a ball falls from a height, its momentum increases. What causes increase in its momentum? ....................................................................................................................................
4. In which case will there be larger change in momentum of the object?
(a) A 150 N force acts for 0.1 s on a 2 kg object initially at rest.
(b) A 150 N force acts for 0.2 s on a 2 kg. object initially at rest.
....................................................................................................................................
5. An object is moving at a constant speed in a circular path. Does the object have constant momentum? Give reason for your answer.
....................................................................................................................................

54

Laws of Motion

Motion, Force and Energy

3.4 Forces in Pairs
It is the gravitational pull of the earth, which allows an object to accelerate towards the earth. Does the object also pull the earth? Similarly when we push an almirah, does the almirah also push us? If so, why don’t we move in the direction of that force? These situations compel us to ask whether a single force such as a push or a pull exists? It has been observed that actions of two bodies on each other are always mutual. Here, by action and reaction we mean ‘forces of interaction’. So, whenever two bodies interact, they exert force on each other. One of them is called ‘action’ and the other is called
‘reaction’. Thus, we can say that forces always exist in pairs.

3.4.1 Third Law of Motion
On the basis of his study of interactions between bodies, Newton formulated third law of motion: To every action, there is an equal and opposite reaction. MODULE - 1

Notes

F2

F1

Here by ‘action’ and ‘reaction’ we mean force. Thus, when a book placed on a table exerts some force on the table, the latter, also exerts a force of equal Fig 3.3 : A book placed on a table exerts a force F1 (equal to its magnitude on the book in the upward direction, as weight mg) on the table, while shown in Fig. 3.3. Do the forces F1 and F2 shown the table exerts a force F2 on here cancel out? It is important to note that F1 and the book.
F2 are acting on different bodies and therefore, they do not cancel out.
The action and reaction in a given situation appear as a pair of forces. Any one of them cannot exist without the other.
If one goes by the literal meaning of words, reaction always follows an action, whereas action and reaction introduced in Newton’s third law exist simultaneously. For this reason, it is better to state Newton’s third law as when two objects interact, the force exerted by one object on the other is equal in magnitude and opposite in direction to the force exerted by the latter object on the former.
Vectorially, if F12 is the force which object 1 experiences due to object 2 and F21 is the force which object 2 experiences due to object 1, then according to Newton’s third law of motion, we can write
F 12 = –F21

(3.4)

3.4.2 Impulse
The effect of force applied for a short duration is called impulse. Impulse is defined as the product of force (F) and the time duration (∆t) for which the force is applied.
i.e.,

Impulse = F.∆t

If the initial and final velocities of body acted upon by a force F are u and v respectively then we can write
3.55
55

MODULE - 1

Physics

Motion, Force and Energy
Impulse =

mv −mu
. ∆t
∆t

= mv – m u
= pf – p i

Notes

= ∆p
That is, impulse is equal to change in linear momentum.
Impulse in a vector quantity and its SI unit is kgms–1 (or N s).

Intext Questions 3.3
1. When a high jumper leaves the ground, where does the force which throws the jumper upwards come from?
....................................................................................................................................
2. Identify the action - reaction forces in each of the following situations:
(a) A man kicks a football.....................................................................................
(b) Earth pulls the moon.......................................................................................
(c) A ball hits a wall...............................................................................................
3. “A person exerts a large force on an almirah to push it forward but he is not pushed backward because the almirah exerts a small force on him”. Is the argument given here correct? Explain.
....................................................................................................................................

3.5 Conservation of Momentum
It has been experimentally shown that if two bodies interact, the vector sum of their momenta remains unchanged, provided the force of mutual interaction is the only force acting on them. The same has been found to be true for more than two bodies interacting with each other. Generally, a number of bodies interacting with each other are said to be forming a system. If the bodies in a system do not interact with bodies outside the system, the system is said to be a closed system or an isolated system. In an isolated system, the vector sum of the momenta of bodies remains constant. This is called the law of conservation of momentum.
Here, it follows that it is the total momentum of the bodies in an isolated system remains unchanged but the momentum of individual bodies may change, in magnitude alone or direction alone or both. You may now logically ask : What causes the momentum of individual bodies in an isolated system to change? It is due to mutual interactions and their strengths.

56

Laws of Motion
Conservation of linear momentum is applicable in a wide range of phenomena such as collisions, explosions, nuclear reactions, radioactive decay etc.

MODULE - 1
Motion, Force and Energy

3.5.1 Conservation of Momentum as a Consequence of
Newton’s Laws
According to Newton’s second law of motion, Eqn. (3.1), the change in momentum ∆p of a body, when a force F acts on it for time ∆t, is

Notes

∆p = F ∆t
This result implies that if no force acts on the body, the change in momentum of the body will be zero. That is, the momentum of the body will remain unchanged. This agrument can be extended to a system of bodies as well.
Newton’s third law can also be used to arrive at the same result. Consider an isolated system of two bodies A and B which interact with each other for time ∆t. If FAB and FBA are the forces which they exert on each other, then in accordance with Newton’s third law
FAB = – FBA or or or or

∆p A
∆t

=–

∆p B
∆t

∆pA + ∆pB = 0 or
∆p total = 0 p total = constant

That is, there is no change in the momentum of the system. In other words, the momentum of the system is conserved.

3.5.2 A Few Illustrations of Conservation of Momentum
a) Recoil of a gun : When a bullet is fired from a gun, the gun recoils. The velocity v2 of the recoil of the gun can be found by using the law of conservation of momentum. Let m be the mass of the bullet being fired from a gun of mass M. If v1 is the velocity of the bullet, then momentum will be said to be conserved if the velocity v2 of the gun is given by mv1 + Mv2 = 0 or or

mv1 = – Mv2 v2 = −

m v1 M

(3.5)

Here, negative sign shows that v2 is in a direction opposite to v1. Since m << M, the recoil velocity of the gun will be considerably smaller than the velocity of the bullet.
b) Collision : In a collision, we may regard the colliding bodies as forming a system. In the absence of any external force on the colliding bodies, such as the force of friction, the
3.57
57

MODULE - 1
Motion, Force and Energy

Physics system can be considered to be an isolated system. The forces of interaction between the colliding bodies will not change the total momentum of the colliding bodies.
Collision of the striker with a coin of carrom or collision between the billiared balls may be quite instructive for the study of collision between elastic bodies.

Notes

Example 3.5 : Two trolleys, each of mass m, coupled together are moving with initial velocity v. They collide with three identical stationary trolleys coupled together and continue moving in the same direction. What will be the velocity of the trolleys after the impact?
Solution : Let v′ be the velocity of the trolleys after the impact.
Momentum before collision = 2 mv
Momentum after collision = 5 mv′
In accordance with the law of conservation of momentum, we can write
2mv = 5 mv′ or v′ =

2 v 5

c) Explosion of a bomb : A bomb explodes into fragments with the release of huge energy. Consider a bomb at rest initially which explodes into two fragments A and B. As the momentum of the bomb was zero before the explosion, the total momentum of the two fragments formed will also be zero after the explosion. For this reason, the two fragments will fly off in opposite directions. If the masses of the two fragments are equal, the velocities of the two fragments will also be equal in magnitude.
d) Rocket propulsion : Flight of a rocket is an important practical application of conservation of momentum. A rocket consists of a shell with a fuel tank, which can be considered as one body. The shell is provided with a nozzle through which high pressure gases are made to escape. On firing the rocket, the combustion of the fuel produces gases at very high pressure and temperature. Due to their high pressure, these gases escape from the nozzle at a high velocity and provide thrust to the rocket to go upward due to the conservation of momentum of the system. If M is the mass of the rocket and m is the mass of gas escaping per second with a velocity v, the change in momentum of the gas in t second = m vt.
If the increase in velocity of the rocket in t second is V, the increase in its momentum =
MV. According to the principle of conservation of momentum, mvt + MV = 0 or V mv =a=–
M
t

i.e., the rocket moves with an acceleration a =–

58

mv
M

Laws of Motion

MODULE - 1
Motion, Force and Energy

3.6 Friction
You may have noticed that when a batter hits a ball to make it roll along the ground, the ball does not continue to move forever. It comes to rest after travelling some distance. Thus, the momentum of the ball, which was imparted to it during initial push, tends to be zero.
We know that some force acting on the ball is responsible for this change in its momentum.
Such a force, called the frictional force, exists whenever bodies in contact tend to move with respect to each other. It is the force of friction which has to be overcome when we push or pull a body horizontally along the floor to change its position.

Notes

Force of friction is a contact force and always acts along the surfaces in a direction opposite to that of the motion of the body. It is commonly known that friction is caused by roughness of the surfaces in contact. For this reason deliberate attempts are made to make the surfaces rough or smooth depending upon the requirement.
Friction opposes the motion of objects, causes wear and tear and is responsible for loss of mechanical energy. But then, it is only due to friction that we are able to walk, drive vehicles and stop moving vehicles. Friction thus plays a dual role in our lives. It is therefore said that friction is a necessary evil.

3.6.1 Static and Kinetic Friction
We all know that certain minimum force is required to move an object over a surface. To illustrate this point, let us consider a block resting on some horizontal surface, as shown in
Fig.3.4. Let some external force Fext be applied on the block. Initially the block does not move. This is possible only if some other force is acting on the block. The force is called the force of static friction and is represented by symbol fs. As Fext is increased, fs also increases and remains equal to Fext in magnitude until it reaches a critical value fs(max).
When Fext is increased further, the block starts to slide and is then subject to kinetic friction. It is common experience that the force needed to set an object in motion is larger than the force needed to keep it moving at constant velocity. For this reason, the maximum value of static friction fs between a pair of surfaces in contact will be larger than the force of kinetic friction fk between them. Fig. 3.5 shows the variation of the force of friction with the external force.
For a given pair of surfaces in contact, you may like to know the factors on which fs(max) and fk depend? It is an experimental fact that fs(max) is directly proportional to the normal force FN. i.e. fs(max) α FN

or

fs(max) = µs FN

(3.6)

where µs is called the coefficient of static friction. The normal force FN of the surface on the block can be found by knowing the force with which the block presses the surface.
Refer to Fig. 3.4. The normal force FN on the block will be mg, where m is mass of the block. Since fs = Fext for fs < fs max, we can write fs < µs FN.
3.59
59

MODULE - 1
Motion, Force and Energy

Physics
It has also been experimentally found that maximum force of static friction between a pair of surfaces is independent of the area of contact. fs FN
Fext

Notes

fs

(max)

fk

fs

smooth sliding
Fext

mg
Fig. 3.4 : Forces acting on the block

(at rest)

Fig. 3.5 : Variation of force of friction with external force

Similarly, we can write fk = µk FN

Fig. 3.6 : Normal force on the block

where µ k is the coefficient of kinetic friction. In general, µs > µk. Moreover, coefficients µs and µk are not really constants for any pair of surfaces such as wood on wood or rubber on concrete, etc. Values of µs and µk for a given pair of materials depend on the roughness of surfaces, there

cleanliness, temperature, humidity etc.
Example 3.6 A 2 kg block is resting on a horizontal surface. The coefficient of static friction between the surfaces in contact is 0.25. Calculate the maximum magnitude of force of static friction between the surfaces in contact.
Solution :
Here m = 2 kg and µs= 0.25. From Eqn. (3.6), we recall that fs(max) = µsFN
= µs mg
= (0.25) (2 kg) (9.8 ms–2)
= 4.9 N.
Example 3.7 A 5 kg block is resting on a horizontal surface for which µk = 0.1. What will be the acceleration of the block if it is pulled by a 10 N force acting on it in the horizontal direction?
Solution :
As fk= µk FN and FN = mg, we can write

60

Laws of Motion f k = µk mg

MODULE - 1
Motion, Force and Energy

= (0.1) (5 kg) (9.8 ms–2)
= 4.9 kg ms–2 = 4.9 N
Net force on the block = Fext – fk

Notes

= 10 N – 4.9 N
= 5.1 N
Hence,
acceleration = a =

51 N
.
Fnet
= 5kg = 1.02 ms–2 m So the block will have an acceleration of 1.02 ms–2 in the direction of externally applied force.

3.6.2 Rolling Friction
It is a common experience that pushing or pulling objects such as carts on wheels is much easier. The motion of a wheel is different from sliding motion. It is a rolling motion. The friction in the case of rolling motion is known as rolling friction. For the same normal force, rolling friction is much smaller than sliding friction. For example, when steel wheels roll over steel rails, rolling friction is about 1/100th of the sliding friction between steel and steel. Typical values for coefficient of rolling friction µr are 0.006 for steel on steel and
0.02 – 0.04 for rubber on concrete.
We would now like you to do a simple activity :

Activity 3.1
Place a heavy book or a pile of books on a table and try to push them with your fingers.
Next put three or more pencils below the books and now push them again. In which case do you need less force? What do you conclude from your experience?

3.6.3 Methods of Reducing Friction
Wheel is considered to be greatest invention of mankind for the simple reason that rolling is much easier than sliding. Because of this, ball bearings are used in machines to reduce friction. In a ballbearing, steel balls are placed between two co-axial cylinders, as shown in Fig.3.6. Generally one of the two cylinders is allowed to turn with respect to the other. Here the rotation of the balls is almost frictionless. Ball-bearings find application in almost all types of vehicles and in electric motors such as electric fans etc.
Use of lubricants such as grease or oil between the

Fig. 3.6 : Balls in the ball-bearing

3.61
61

MODULE - 1
Motion, Force and Energy

Notes

Physics surfaces in contact reduces friction considerably. In heavy machines, oil is made to flow over moving parts. It reduces frictional force between moving parts and also prevents them from getting overheated. In fact, the presence of lubricants changes the nature of friction from dry friction to fluid friction, which is considerably smaller than the former.
Flow of compressed and purified air between the surfaces in contact also reduces friction. It also prevents dust and dirt from getting collected on the moving parts.

Fluid Friction
Bodies moving on or through a liquid or gas also face friction. Shooting stars (meteors) shine because of the heat generated by air-friction. Contrary to solid friction, fluid friction depends upon the shape of the bodies. This is why fishes have a special shape and fast moving aeroplanes and vehicles are also given a fish-like shape, called a stream-line shape. Fluid friction increases rapidly with increase in speed. If a car is run at a high speed, more fuel will have to be burnt to overcome the increased fluid (air) friction. Car manufactures advise us to drive at a speed of
40-45 km h–1 for maximum efficiency.

3.7 The Free Body Diagram Technique
Application of Newton’s laws to solve problems in mechanics becomes easier by use of the free body diagram technique. A diagram which shows all the forces acting on a body in a given situation is called a free body diagram (FBD). The procedure to draw a free body diagram, is described below :
1.

Draw a simple, neat diagram of the system as per the given description.

2.

Isolate the object of interest. This object will be called the Free Body now.

3.

Consider all external forces acting on the free body and mark them by arrows touching the free body with their line of action clearly represented.

4.

Now apply Newton’s second law ΣF = m a

(or ΣFx = m ax and ΣFy = m ay )
Remember : (i) A net force must be acting on the object along the direction of motion. (ii)
For obtaining a complete solution, you must have as many independent equations as the number of unknowns.
Example 3.8 : Two blocks of masses m1 and m2 are connected by a string and placed on a smooth horizontal surface. The block of mass m2 is pulled by a force F acting parallel to the horizontal surface. What will be the acceleration of the blocks and the tension in the string connecting the two blocks (assuming it to be horizontal)?
Solution : Refer to Fig. 3.7. Let a be the acceleration of the blocks in the direction of F and let the tension in the string be T. On applying ΣF = ma in the component form to the free body diagram of system of two bodies of masses m1 and m2, we get

62

Laws of Motion

Motion, Force and Energy

N

N – (m1 + m2) g = 0 and MODULE - 1

m
1

F = (m1 + m2)a

T

T

m
2

F

m1 + m2

F

F

⇒ a = m +m
1
2

(m1 + m2) g

Notes

Fig 3.7: Free body diagram for two blocks connected by a string

On applying ΣF = ma in the component form to the free body diagram of m1 we get
N1 – m1g = 0

and

FG
H



T = m1a
F

T = m1 m + m
1
2

FG
H

or

m1

IJ
K

N1

a
T
m1g

IJ
K

N2

a

T

F

m2g

T = m + m .F
1
2

Fig 3.8

Apply ΣF = ma once again to the free body diagram of m2 and see whether you get the same expressions for a and T.
Example 3.9 : Two masses m1 and m2 (m1 > m2) are connected at the two ends of a light inextensible string that passes over a light frictionless fixed pulley. Find the acceleration of the masses and the tension in the string connecting them when the masses are released.
Solution : Let a be acceleration of mass m 1 downward. The acceleration of mass m2 will also be a only but upward. (Why?). Let
T be the tension in the string connecting the two masses.
On applying ΣF = ma to m1 and m2 we get m1g – T = m1a

On solving equations (1) and (2) for a and T we get

FG m - m IJ .g
Hm +m K
1

2

1

2

T m2 T a m1g
T

T – m2g = m2a

a=

T m1 FG 2m m IJ
H
K

a m2g Fig. 3.9

1 2

T = m +m a
1
2

At this stage you can check the prediction of the results thus obtained for the extreme values of the variables (i.e. m1 and m2). Either take m1 = m2 or m1 >> m2 and see whether a and T take values as expected.
Example 3.10 : A trolley of mass M = 10 kg is connected to a block of mass m = 2 kg with the help of massless inextensible string passing over a light frictionless pulley as shown in Fig. 3.10 (a). The coefficient of kinetic friction between the trolley and the
3.63
63

MODULE - 1
Motion, Force and Energy

Physics surface (µk) = 0.02. Find,
a) acceleration of the trolley, and
b) tension in the string.

Notes

M

Solution : Fig (b) and (c) shows the free body diagrams of the trolley and the block respectively. Let a be the acceleration of the block and the trolley.
For the trolley,

F N = Mg and

FN

a

T a T

FK

T – fk = Ma where fk = µk FN
= µk Mg
So

m

(a)

T – µk Mg = Ma

For the block mg – T= ma

mg

Mg
(b)

(c)
Fig. 3.10

...(1)
...(2)

On adding equations (1) and (2) we get mg – µk Mg = (M + m) a or a =

mg − µ k Mg
(2 kg) (9.8ms−2 ) − (0.02) (10 kg) (9.8 ms −2 )
=
M +m
(10 kg + 2 kg)

19.6 kg ms −2 − 1.96 kg ms −2
=
= 1.47 ms–2
12 kg

So

a = 1.47 ms–2

From equation (2) T = mg – ma = m (g – a)
= 2 kg (9.8 ms–2 – 1.47 ms–2)
= 2 kg (8.33 ms–2)
So

T = 16.66 N

Intext Questions 3.4
1. A block of mass m is held on a rough inclined surface of inclination θ. Show in a diagram, various forces acting on the block.
....................................................................................................................................
2. A force of 100 N acts on two blocks A and B of masses 2 kg and 3 kg respectively, placed in contact on a smooth horizontal surface as shown.
F
A B
What is the magnitude of force which block A exerts on block
Fig. 3.11
B?
....................................................................................................................................

64

Laws of Motion
3. What will be the tension in the string when a 5kg object suspended from it is pulled up with MODULE - 1
Motion, Force and Energy

(a) a velocity of 2ms–1?
(b) an acceleration of 2ms–2?
....................................................................................................................................

Notes

3.8 Elementary Ideas of Inertial and Non Inertial Frames
To study motion in one dimension (i.e. in a straight line) a reference point (origin) is enough.
But, when it comes to motions in two and three dimensions, we have to use a set of reference lines to specify the position of a point in space. This set of lines is called frame of reference.
Every motion is described by an observer. The description of motion will change with the change in the state of motion of the observer. For example, let us consider a box lying on a railway platform. A person standing on the platform will say that the box is at rest. A person in a train moving with a uniform velocity v will say that the box is moving with velocity –v. But, what will be the description of the box by a person in a train having acceleration (a). He/she will find that the box is moving with an acceleration (– a).
Obviously, the first law of motion is failing for this observer.
Thus a frame of reference is fixed with the observer to describe motion. If the frame is stationary or moving with a constant velocity with respect to the object under study (another frame of reference), then in this frame law of inertia holds good. Therefore, such frames are called inertial frames. On the other hand, if the observer’s frame is accelerating, then we call it non-inertial frame.
For the motion of a body of mass m in a non-inertial frame, having acceleration (a), we may apply second law of motion by involving a psuedo force m a. In a rotating body, this force is called centrifugal force.

Intext Questions 3.5
1.

A glass half filled with water is kept on a horizontal table in a train. Will the free surface of water remain horizontal as the train starts?
.................................................................................................................................

2.

When a car is driven too fast around a curve it skids outwards. How would a passenger sitting inside explain the car’s motion? How would an observer standing on a road explain the event?
.................................................................................................................................

3.

A tiny particle of mass 6 × 10–10 kg is in a water suspension in a centrifuge which is being rotated at an angular speed of 2π × 103 rad s–1. The particle is at a distance of
4 cm from the axis of rotation. Calculate the net centrifugal force acting on the
3.65
65

MODULE - 1

Physics

Motion, Force and Energy

particle.
.................................................................................................................................
4.

Notes

What must the angular speed of the rotation of earth so that the centrifugal force makes objects fly off its surface? Take g = 10 m s–2.
.................................................................................................................................

5. In the reference frame attached to a freely falling body of mass 2 kg, what is the magnitude and direction of inertial force on the body?
....................................................................................................................................

What You Have Learnt
The inertia of a body is its tendency to resist any change in its state of rest or uniform motion.
Newton’s first law states that a body remains in a state of rest or of uniform motion in a straight line as long as net external force acting on it is zero.
For a single particle of mass m moving with velocity v we define a vector quantity p called the linear momentum as p = m v.
Newton’s second law states that the time rate of change of momentum of a body is proportional to the resultant force acting on the body.
According to Newton’s second law, acceleration produced in a body of constant mass is directly proportional to net external force acting on the body : F = m a.
Newton’s third law states that if two bodies A and B interact with each other, then the force which body A exerts on body B will be equal and opposite to the force which body B exerts on body A.
According to the law of conservation of momentum, if no net external force acts on a system of particles, the total momentum of the system will remain constant regardless of the nature of forces between them.
Frictional force is the force which acts on a body when it attempts to slide, or roll along a surface. The force of friction is always parallel to the surfaces in contact and opposite to the direction of motion of the object.
The maximum force of static friction fs(max) between a body and a surface is proportional to the normal force FN acting on the body. This maximum force occurs when the body is on the verge of sliding.
For a body sliding on some surface, the magnitude of the force of kinetic friction fk is given by fk = µk FN where µk is the coefficient of kinetic friction for the surfaces in contact. Use of rollers and ball-bearings reduces friction and associated energy losses considerably as rolling friction is much smaller than kinetic friction.

66

Laws of Motion
Newton’s laws of motion are applicable only in an inertial frame of reference. An inertial frame is one in which an isolated object has zero acceleration.

MODULE - 1
Motion, Force and Energy

For an object to be in static equilibrium, the vector sum of all the forces acting on it must be zero. This is a necessary and sufficient conditions for point objects only.

Notes

Terminal Exercise
1.

2.

Which of the following will always be in the direction of net external force acting on the body?
(a) displacement
(b) velocity
(c) acceleration
(d) Change is momentum.
When a constant net external force acts on an object, which of the following may not change? (a) position
(b) speed
(c) velocity
Justify your answer with an example each.

(d) acceleration

3.

A 0.5 kg ball is dropped from such a height that it takes 4s to reach the ground.
Calculate the change in momentum of the ball.

4.

In which case will there be larger change in momentum of a 2 kg object:
(a) When 10 N force acts on it for 1s ?
(b) When 10 N force acts on it for 1m ?
Calculate change in momentum in each case.

5.

A ball of mass 0.2 kg falls through air with an acceleration of 6 ms–2. Calculate the air drag on the ball.

6.

A load of mass 20 kg is lifted with the help of a rope at a constant acceleration. The load covers a height of 5 m in 2 seconds. Calculate the tension in the rope. In a rocket m changes with time. Write down the mathmatical form of Newton’s law in this case and interpret it physically.

7.

A ball of mass 0.1 kg moving at 10 m s–1 is deflected by a wall at the same speed in the direction shown. What is the magnitude of the change in momentum of the ball?

Fig 3.12

3.67
67

MODULE - 1
Motion, Force and Energy

Physics
Find the average recoil force on a machine gun that is firing 150 bullets per minute, each with a speed of 900 m s–1. Mass of each bullet is 12 g.

9.

Notes

8.

Explain why, when catching a fast moving ball, the hands are drawn back while the ball is being brought to rest.

10. A constant force of magnitude 20 N acts on a body of mass 2 kg, initially at rest, for
2 seconds. What will be the velocity of the body after
(a) 1 second from start? (b) 3 seconds from start?
11. How does a force acting on a block in the direction shown here keep the block from sliding down the vertical wall?

30º

Wall

Fig 3.13

12. A 1.2 kg block is resting on a horizontal surface. The coefficient of static friction between the block and the surface is 0.5. What will be the magnitude and direction of the force of friction on the block when the magnitude of the external force acting on the block in the horizontal direction is
(a) 0 N ?

(b) 4.9 N ?

(c) 9.8 N ?

13. For a block on a surface the maximum force of static friction is 10N. What will be the force of friction on the block when a 5 N external force is applied to it parallel to the surface on which it is resting?
14. What minimum force F is required to keep a 5 kg block at rest on an inclined plane of inclination 300. The coefficient of static friction between the block and the inclined plane is 0.25.
15. Two blocks P and Q of masses m1 = 2 kg and m2 = 3 kg respectively are placed in contact with each other on horizontal frictionless surface. Some external force F = 10
N is applied to the block P in the direction parallel to the surface. Find the following
(a) acceleration of the blocks
(b) force which the block P exerts on block Q.
16. Two blocks P and Q of masses m1 = 2 kg and m2 = 4 kg are connected to a third block R of mass M as shown
68

m1

m2

P

Q
Fig 3.14

R
M

Laws of Motion

MODULE - 1

in Fig. 3.14 For what maximum value of M will the system be in equilibrium? The Motion, Force and Energy frictional force acting on each block is half the force of normal reaction on it.
17. Explain the role of friction in the case of bicycle brakes. What will happen if a few drops of oil are put on the rim?
18. A 2 kg block is pushed up an incline plane of inclination θ = 370 imparting it a speed of
20 m s–1. How much distance will the block travel before coming to rest? The coefficient of kinetic friction between the block and the incline plane is µk = 0.5.

Notes

Take g = 10 m s–2 and use sin 370 = 0.6, cos 370 = 0.8.

Answers to Intext Questions
3.1
1.

No. The statement is true only for a body which was at rest before the application of force. 2.

Inertial mass

3.

Yes, as in uniform circular motion.

4.

A force can change motion. It can also deform bodies.

3.2
1.

Object of smaller mass

2.

(a) Yes (b) No.

3.

Momentum of the falling ball increases because gravitational force acts on it in the direction of its motion and hence velocity increases.

4.

In case (b) the change in momentum will be larger. It is the F ∆t product that gives the


change in momentum. ⎜ as F ∝

5.

∆p ⎞

∆t ⎠

No. Though the speed is constant, the velocity of the object changes due to change in direction. Hence its momentum will not be constant.

3.3
1.

The jumper is thrown upwards by the force which the ground exerts on the jumper.
This force is the reaction to the force which the jumper exerts on the ground.

2.

(a) The force with which a man kicks a football is action and the force which the football exerts on the man will be its reaction.
(b) The force with which earth pulls the moon is action and the force which the moon exerts on the earth will be its reaction.
(c) If the force which the ball exerts on the wall is the action then the force which the wall exerts on the ball will be its reaction.
3.69
69

MODULE - 1
Motion, Force and Energy

Physics
3.

No. The arguement is not correct. The almirah moves when the push by the person exceeds the frictional force between the almirah and the floor. He does not get pushed backward due to a large force of friction that he experiences due to the floor.
On a slippery surface, he will not be able to push the almirah foward.

3.4
Notes
FN

s mg in θ

θ

fs

θ

mg

mg cos θ

Fig. 3.15

2.

40 N

3.

(a) (5 × 9.8) N
(b) F = (5 × 2) N + (5 × 9.8) N = 59 N

3.5
(1) When the train starts it has an acceleration, say a. Thus the total force acting on water in the frame of reference attached to the train is
F=mg–ma
where m is the mass of the water and the glass. (Fig. 3.16). The surface of the water takes up a position normal to F as shown.
–ma

ma

F

mg

Fig. 3.16

(2) To the passenger sitting inside, a centrifugal force (–mv2/r) acts on the car. The greater v is the larger r would be. To an observer standing on the road, the car moving in a curve has a centripetal acceleration given by v2/r. Once again, the greater is v, the larger will be r.
(3) The net centrifugal force on the particle is F = mω2r = (6 × 10–10 kg) × (2π ×
103 rad s–1)2 × (0.04 m) = 9.6 × 10–4 N.
(4) For an object to fly off centrifugal force (= centripetal force) should be just more than the weight of a body. If r is the radius of the earth then as v = rω

70

mv 2
= mg r Laws of Motion

Motion, Force and Energy

r 2ω 2
=g
r

or, angular speed ω =

g/r

∴ Any angular speed more than
5.

MODULE - 1

g / r will make objects fly off.

Zero (as it is a case of free fall of a body).

Notes

Answers to Terminal Problems
1.

(d)

2.

(a) if internal forces developed within the material counter bank the external force. A it happens in case of force applied on a wall.
(b) It force is applied at right angles to the direction of motion of the body, the force changes the direction of motion of body and not to speed.

3.

v = 0 + (–g) × 4
|v| = 40 m s–1
∴ ∆P = m (v – u) = (0.5 × 40) = 20 kg m s–2

4.

When 10 N force acts for 1s.

5.

0.76 N

7.

250 N.

8.

27 N

10. (a) 10 m s–1 (b) 20 m s–1
12. (a) 0 N (b) 4.9 N (c) ~7.5 N
13. 5 N
14. 14.2 N
15. (a) 2 m s–2 (b) 6 N
16. 3 kg
18. 20 m

3.71
71

MODULE - 1

Physics

Motion, Force and Energy

4
Notes

MOTION IN A PLANE
I n the preceding two lessons you have studied the concepts related to motion in a straight line. Can you describe the motion of objects moving in a plane, i.e, in two dimensions, using the concepts discussed so far. To do so, we have to introduce certain new concepts.
An interesting example of motion in two dimensions is the motion of a ball thrown at an angle to the horizontal. This motions is called a projectile motion.
In this lesson you will learn to answer questions like : What should be the position and speed of an aircraft so that food or medicine packets dropped from it reach the people affected by floods or an earthquake? How should an athlete throw a discuss or a javelin so that it covers the maximum horizontal distance? How should roads be designed so that cars taking a turn around a curve do not go off the road? What should be the speed of a satellite so that it moves in a circular orbit around the earth? And so on.
Such situations arise in projectile motion and circular motion. We will introduce the concepts of angular speed, centripetal acceleration, and centripetal force to explain this kind of motion. Objectives
After studying this lesson, you should be able to : explain projectile motion and circular motion and give their examples; derive expressions for the time of flight, range and maximum height of a projectile; derive the equation of the trajectory of a projectile; derive expressions for velocity and acceleration of a particle in circular motion; and define radial and tangential acceleration.

4.1 Projectile Motion
The first breakthrough in the description of projectile motion was made by Galileo. He showed that the horizontal and vertical motions of a slow moving projectile are mutually independent. This can be understood by doing the following activity.
72

Motion in a Plane
Take two cricket balls. Project one of them horizontally from the top of building. At the same time drop the other ball downward from the same height. What will you notice?
You will find that both the balls hit the ground at the same time. This shows that the downward acceleration of a projectile is the same as that of a freely falling body. Moreover, this takes place independent of its horizontal motion. Further, measurement of time and distance will show that the horizontal velocity continues unchanged and takes place independent of the vertical motion.

MODULE - 1
Motion, Force and Energy

Notes

In other words, the two important properties of a projectile motion are :
(i) a constant horizontal velocity component
(i) a constant vertically downward acceleration component.
The combination of these two motions results in the curved path of the projectile.
Refer to Fig. 4.1. Suppose
A
B vH a boy at A throws a ball with vv vA an initial horizontal speed.
According to Newton’s vv vH second law there will be no acceleration in the vv horizontal direction unless a vH C horizontally directed force
D
acts on the ball. Ignoring
Fig 4.1: Curved path of a projectile vv friction of air, the only force acting on the ball once it is free from the hand of the boy is the force of gravity.
Hence the horizontal speed vH of the ball does not change. But as the ball moves with this speed to the right, it also falls under the action of gravity as shown by the vector’s vv
2
2 representing the vertical component of the velocity. Note that v = v H + v v and is tangential

to the trajectory.
Having defined projectile motion, we would like to determine how high and how far does a projectile go and for how long does it remain in air. These factors are important if we want to launch a projectile to land at a certain target - for instance, a football in the goal, a cricket ball beyond the boundary and relief packets in the reach of people marooned by floods or other natural disasters.

4.1.1 Maximum Height, Time of Flight and Range of a Projectile
Let us analyse projectile motion to determine its maximum height, time of flight and range.
In doing so, we will ignore effects such as wind or air resistance. We can characterise the initial velocity of an object in projectile motion by its vertical and horizontal components.
Let us take the positive x-axis in the horizontal direction and the positive y-axis in the vertical direction (Fig. 4.2).
Let us assume that the initial position of the projectile is at the origin O at t = 0. As you
3.73
73

MODULE - 1
Motion, Force and Energy

Physics know, the coordinates of the origin are x = 0, y = 0. Now suppose the projectile is launched with an initial velocity v0 at an angle θ0, known as the angle of elevation, to the x-axis. Its components in the x and y directions are, v ox = vo cos θ0 v oy = vo sin θ0

and

Notes

(4.1 a)
(4.1 b)

y

V0

O

hmax

θ0

x
R

Fig 4.2 : Maximum height, time of flight and range of a projectile

Let ax and ay be the horizontal and vertical components, respectively, of the projectile’s acceleration. Then a x = 0; ay = –g = –9.8 m s–2

(4.2)

The negative sign for ay appears as the acceleration due to gravity is always in the negative y direction in the chosen coordinate system.
Notice that ay is constant. Therefore, we can use Eqns. (2.6) and (2.9) to write expressions for the horizontal and vertical components of the projectile’s velocity and position at time
t. These are given by
Horizontal motion

vx = vox,

since ax = 0

x = voxt = v0 cos θ0t
Vertical motion

vy = voy – g t = v0 sin θ0 – gt y = voyt – ½g t2 = v0 sin θ0t – ½g t2

(4.3a)
(4.3b)
(4.3c)
(4.3d)

The vertical position and velocity components are also related through Eqn. (2.10) as
2
2
– g y = ½ (v y – v oy )

(4.3e)

You will note that the horizontal motion, given by Eqns. (4.3a and b), is motion with constant velocity. And the vertical motion, given by Eqns. (4.3c and d), is motion with constant
(downward) acceleration. The vector sum of the two respective components would give us the velocity and position of the projectile at any instant of time.
Now, let us make use of these equations to know the maximum height, time of flight and range of a projectile.
(a) Maximum height : As the projectile travels through air, it climbs upto some maximum
74

Motion in a Plane height (h) and then begins to come down. At the instant when the projectile is at the maximum height, the vertical component of its velocity is zero. This is the instant when the projectile stops to move upward and does not yet begin to move downward.
Thus, putting vy = 0 in Eqns. (4.3c and e), we get

MODULE - 1
Motion, Force and Energy

0 = voy – g t,

Notes

Thus the time taken to rise taken to the maximum height is given by t =

v oy g =

v 0 sin θ0 g (4.4)

At the maximum height h attained by the projectile, the vertical velocity is zero. Therefore, applying v2 – u2 = 2 a s = 2 g h, we get the expression for maximum height : h= 2 v 0 sin 2 θ0

(as v = 0 and u = v0 sin θ)

2g

(4.5)

Note that in our calculation we have ignored the effects of air resistance. This is a good approximation for a projectile with a fairly low velocity.
Using Eqn.(4.4) we can also determine the total time for which the projectile is in the air.
This is termed as the time of flight.
(b) Time of flight : The time of flight of a projectile is the time interval between the instant of its launch and the instant when it hits the ground. The time t given by Eq.(4.4) is the time for half the flight of the ball. Therefore, the total time of flight is given by
T = 2t =

2 v 0 sin θ0 g (4.6)

Finally we calculate the distance travelled horizontally by the projectile. This is also called its range.
(c) Range : The range R of a projectile is calculated simply by multiplying its time of flight and horizontal velocity. Thus using Eqns. (4.3b) and (4.4), we get
R = (vox) (2 t)
= (v0 cos θ0)
2
= v0

(2 v0 sin θ0 ) g (2sin θ0 cos θ0 ) g Since 2 sin θ cos θ = sin 2θ, the range R is given by
R=

2 v0 sin 2θ0 g (4.7)
3.75
75

MODULE - 1
Motion, Force and Energy

Physics
From Eqn. (4.7) you can see that the range of a projectile depends on its initial speed v0, and its direction given by θ0.

Notes

Now can you determine the angle at which a disc, a hammer or a javelin should be thrown so that it covers maximum distance horizontally? In other words, let us find out the angle for which the range would be maximum?
Clearly, R will be maximum for any given speed when sin 2θ0 = 1 or 2θ0 = 900.
Thus, for R to be maximum at a given speed v0, θ0 should be equal to 450.
Let us determine these quantities for a particular case.
Example 4.1 : In the centennial (on the occasion of its centenary) Olympics held at
Atlanta in 1996, the gold medallist hammer thrower threw the hammer to a distance of
19.6m. Assuming this to be the maximum range, calculate the initial speed with which the hammer was thrown. What was the maximum height of the hammer? How long did it remain in the air? Ignore the height of the thrower’s hand above the ground.
Solution : Since we can ignore the height of the thrower’s hand above the ground, the launch point and the point of impact can be taken to be at the same height. We take the origin of the coordinate axes at the launch point. Since the distance covered by the hammer is the range, it is equal to the hammer’s range for θ0 = 450. Thus we have from Eqn.(4.7):
2
v0
R = g or

v0 =

Rg

It is given that R = 19.6 m. Putting g = 9.8 ms–2 we get
(19.6m) × (9.8 ms –2 ) = 9.8 2 ms–1 = 14.01ms–1

v0 =

The maximum height and time of flight are given by Eqns. (4.5) and (4.6), respectively.
Putting the value of v0 and sin θ0 in Eqns. (4.5) and (4.6), we get

(

)

2

⎛1⎞
9.8 2 m s × ⎜ ⎟
⎝2⎠
= 4.9 m
Maximum height, h =
–2
2 × 9.8ms

Time of flight, T =

(

2

2 –2

)

2 × 9.8 2 m s –1
9.8 m s

–2

×

1
=2s
2

Now that you have studied some concepts related to projectile motion and their applications, you may like to check your understanding. Solve the following problems.

76

Motion in a Plane

MODULE - 1
Motion, Force and Energy

Intext Questions 4.1
1.

Identify examples of projectile motion from among the following situations :
(a) An archer shoots an arrow at a target
(b) Rocks are ejected from an exploding volcano

Notes

(c) A truck moves on a mountainous road
(d) A bomb is released from a
Fig 4.3 : Trajectories of a projectile bomber plane. [Hint :
Remember that at the time of release the bomb shares the horizontal motion of the plane.]
(e) A boat sails in a river.
..................................................................................................................................
2.

Three balls thrown at different angles reach the same maximum height (Fig.4.3):
(a) Are the vertical components of the initial velocity the same for all the balls? If not, which one has the least vertical component?
(b) Will they all have the same time of flight?
(c) Which one has the greatest horizontal velocity component?
..................................................................................................................................

3.

An athelete set the record for the long jump with a jump of 8.90 m. Assume his initial speed on take off to be 9.5 ms–1. How close did he come to the maximum possible range in the absence of air resistance? Take g = 9.78 ms–2.
..................................................................................................................................

4.2 The Trajectory of a Projectile
The path followed by a projectile is called its trajectory. Can you recognise the shapes of the trajectories of projectiles shown in Fig. 4.1, 4.2 and 4.3.
Although we have discussed quite a few things about projectile motion, we have still not answered the question: What is the path or trajectory of a projectile? So let us determine the equation for the trajectory of a projectile.
It is easy to determine the equation for the path or trajectory of a projectile. You just have to eliminate t from Eqns. (4.3b) and (4.3d) for x and y. Substituting the value of t from Eqn.
(4.3b) in Eqn.(4.3d) we get

3.77
77

MODULE - 1

Physics

Motion, Force and Energy

2
1 gx y = voy x –
2
2 v ox v ox

x ⎞

⎜ as t = v ⎟ ox ⎠


(4.8 a)

Using Eqns. (4.1 a and b), Eqn (4.8a) becomes y = (tan θ0) x –

Notes

g x2 2(v 0 cos θ0 )2

(4.8 b)

as voy = v0 sin θ and vox = v0 cos θ.
Eqn. (4.8) is of the form y = a x + b x2, which is the equation of a parabola. Thus, if air resistance is negligible, the path of any projectile launched at an angle to the horizontal is a parabola or a portion of a parabola. In Fig 4.3 you can see some trajectories of a projectile at different angles of elevation.
Eqns. (4.5) to (4.7) are often handy for solving problems of projectile motion. For example, these equations are used to calculate the launch speed and the angle of elevation required to hit a target at a known range. However, these equations do not give us complete description of projectile motion, if distance covered are very large. To get a complete description, we must include the rotation of the earth also. This is beyond the scope of this course.
Now, let us summarise the important equations describing projectile motion launched from a point (x0, y0) with a velocity v0 at an angle of elevation, θ0.
Equations of Projectile Motion: ax = 0

ay = – g

(4.9 a)

vx = v0 cos θ0

vy = v0 sin θ – g t

(4.9 b)

x = x0 + (v0 cos θ0)t

y = y0 + (v0 sin θ) t –(½) g t2

(4.9 c)

Equation of trajectory: y = y0 + (tan θ) (x – x0) –

g
(x – x0)2
2(v0 cos θ0 )2

(4.9 d)

Note that these equations are more general than the ones discussed earlier. The initial coordinates are left unspecified as (x0, y0) rather than being placed at (0,0). Can you derive this general equation of the projectile trajectory? Do it before proceeding further?
Thus far you have studied motion of objects in a plane, which can be placed in the category of projectile motion. In projectile motion, the acceleration is constant both in magnitude and direction. There is another kind of two-dimensional motion in which acceleration is constant in magnitude but not in direction. This is uniform circular motion, and you will learn about in the following section.

78

Motion in a Plane

MODULE - 1
Motion, Force and Energy

Evangelista Torricelli
(1608 – 1647)
Italian mathematician and a student of Galelio Galili, he invented mercury barometer, investigated theory of projectiles, improved telescope and invented a primitive microscope. Disproved that nature abhors vacuum, presented torricellis theorem.

Notes

4.3 Circular Motion
Look at Fig. 4.4a. It shows the position vectors r1 and r2 of a particle in uniform circular motion at two different instants of time t1 and t2, respectively. The word ‘uniform’ refers to constant speed. We have said that the speed of the particle is constant. What about its velocity? To find out velocity, recall the definition of average velocity and apply it to points
P1 and P2: v av =

∆r r2 – r1
=
∆t t2 – t1

(4.10 a)

The motion of a gramophone record, a grinding wheel at constant speed, the moving hands of an ordinary clock, a vehicle turning around a corner are examples of circular motion.
The movement of gears, pulleys and wheels also involve circular motion. The simplest kind of circular motion is uniform circular motion. The most familiar example of uniform circular motion are a point on a rotating fan blade or a grinding wheel moving at constant speed. One of the example of uniform circular motion is an artificial satellite in circular orbit around the earth. We have been benefitted immensely by the INSAT series of satellites and other artificial satellites. So let us now learn about uniform circular motion.

4.3.1 Uniform Circular Motion
By definition, uniform circular motion is motion with constant speed in a circle.
|v 2|

r2 t1 (a)

∆r r1 P2

P2

t2

=v

|v1| = v

P1

r

P1

(b)

Fig. 4.4 (a): Positions of a particle in uniform circular motion; (b): Uniform circular motion

The vector ∆r is shown in Fig. 4.4a. Now suppose you make the time interval ∆t smaller
3.79
79

MODULE - 1
Motion, Force and Energy

Physics and smaller so that it approaches zero. What happens to ∆r? In particular, what is the direction of ∆r? It approaches the tangent to the circle at point P1 as ∆t tends to zero.
Mathematically, we define the instantaneous velocity at point P1 as
∆r

dr

limit
=
v = ∆t → 0
∆t dt

Notes

Thus, in uniform circular motion, the velocity vector changes continuously. Can you say why? This is because the direction of velocity is not constant. It goes on changing continuously as the particle travels around the circle (Fig. 4.4b). Because of this change in velocity, uniform circular motion is accelerated motion. The acceleration of a particle in uniform circular motion is termed as centripetal acceleration. Let us learn about it in some detail.
Centripetal acceleration : Consider a particle of mass m moving with a uniform speed v in a circle. Suppose at any instant its position is at A and its motion is directed along AX.
After a small time ∆t, the particle reaches B and its velocity is represented by the tangent at B directed along BY.
Let r and r′ be the position vectors and v and v′ ; the velocities of the particle at A and B

respectively as shown in Fig. 4.5 (a). The change in velocity ∆v is obtained using the triangle law of vectors. As the path of the particle is circular and velocity is along its tangent, v is perpendicular to r and v′ is perpendicular to ∆r. As the average acceleration
∆v ⎞

⎜a =
⎟ is along ∆v, it (i.e., the average acceleration) is perpendicular to ∆r.
∆t ⎠


Let the angle between the position vectors r and r′ be ∆θ. Then the angle between

velocity vectors v and v′ will also be ∆θ as the velocity vectors are always perpendicular to the position vectors.
To determine the change in velocity ∆v due to the change in direction, consider a point O outside the circle. Draw a line OP parallel to and equal to AX (or v) and a line OQ parallel to and equal to BY (or v′). As |v| = |v′ |, OP = OQ. Join PQ. You get a triangle OPQ (Fig. 4.5b)

v

X

B
A

v′

Y
P

r′

r ∆θ

v

C

∆θ
O

(a)
Fig. 4.5

80

∆v

v′
(b)

Q

Motion in a Plane
Now in triangle OPQ, sides OP and OQ represent velocity vectors v and v′ at A and B

respectively. Hence, their difference is represented by the side PQ in magnitude and direction. In other words the change in the velocity equal to PQ in magnitude and direction takes place as the particle moves from A to B in time ∆t.


MODULE - 1
Motion, Force and Energy

Acceleration = Rate of change of velocity a =

PQ ∆v
=
∆t
∆t

Notes

As ∆t is very small AB is also very small and is nearly a straight line. Then ∆ ACB and
∆POQ are isosceles triangles having their included angles equal. The triangles are, therefore, similar and hence,

PQ
OP
=
CA
AB
∆v
v
=
v. ∆t r or

[as magnitudes of velocity vectors v1 and v2 = v (say)]

∆v v2 =
∆t
r

or

But

∆v is the acceleration of the particle. Hence
∆t

v2 r Since v = r ω, the magnitude of centripetal force in given by

Centripetal acceleration, a =

m v2
= m rω2. r As ∆t is very small, ∆θ is also very small and ∠OPQ = ∠OQP = 1 right angle.

F =ma=

Thus PQ is perpendicular to OP, which is parallel to the tangent AX at A. Now AC is also perpendicular to AX. Therefore AC is parallel to PQ. It shows that the contripetal force at any point acts towards the centre along the radius.
It shows that some minimum centripetal force has to be applied on a body to make it move in a circular path. In the absence of such a force, the body will move in a straight line path.
To experience this, you can perform a simple activity.

Activity 4.1
Take a small piece of stone and tie it to one end of a string. Hold the other end with your fingers and then try to whirl the stone in a horizontal or vertical circle. Start with a small speed of rotation and increase it gradually. What happens when the speed of rotation is
3.81
81

MODULE - 1
Motion, Force and Energy

Physics low? Do you feel any pull on your fingers when the stone is whirling. What happens to the stone when you leave the end of the string you were holding? How do you explain this?

Activity 4.2
Notes

Take an aluminium channel of length one metre and bend it in the form shown in the diagram with a circular loop in the middle. Take help of some technical preson if required.

Fig. 4.5: The ball will loop if it starts rolling from a point high enough on the incline

Roll down a glass marble from different heights of the channel on the right hand side, and see whether the marble is able to loop the loop in each case or does it need some minimum height (hence velocity) below which the marble will not be able to complete the loop and fall down. How do you explain it?

Some Applications of Centripetal Force
(i) Centrifuges : These are spinning devices used for separating materials having different densities. When a mixture of two materials of different densities placed in a vessel is rotated at high speed, the centripetal force on the heavier material will be more. Therefore, it will move to outermost position in the vessel and hence can be separated. These devises are being used for uranium enrichment. In a chemistry laboratory these are used for chemical analysis.

woler

mercury

Action of a centrifuge Fig. 4.6: When mercury and water are rotated in a dish, the water stays inside.
Centripetal force, like gravitational force, is greater for the more dense substance.

(ii) Mud clings to an automobile tyre until the speed becomes too high and then it flies off tangentially (Fig. 4.7).

82

Motion in a Plane

MODULE - 1
Motion, Force and Energy

Notes

Fig. 4.7: Mud or water on a fast-turning wheel flies off tangentially

(iii) Planetary motion : The Earth and the other planets revolving round the sun get necessary centripetal force from the gravitational force between them and the sun.
Example 4.2 : Astronauts experience high acceleration in their flights in space. In the training centres for such situations, they are placed in a closed capsule, which is fixed at the end of a revolving arm of radius 15 m. The capsule is whirled around in a circular path, just like the way we whirl a stone tied to a string in a horizontal circle. If the arm revolves at a rate of 24 revolutions per minute, calculate the centripetal acceleration of the capsule.
Solution : The circumference of the circular path is 2π × (radius) = 2π × 15 m. Since the capsule makes 24 revolutions per minute or 60 s, the time it takes to go once around this circumference is

60
s. Therefore,
24

speed of the capsule, v =

2πr 2π × 15 m
= (60/24) s = 38 ms–1
T

The magnitude of the centripetal acceleration

(38 ms –1 ) 2 v2 =
= 96 ms–2 a =
15 m r Note that centripetal acceleration is about 10 times the acceleration due to gravity.

Intext Questions 4.2
1.

In uniform circular motion, (a) Is the speed constant? (b) Is the velocity constant? (c)
Is the magnitude of the acceleration constant? (d) Is acceleration constant? Explain.
...................................................................................................................................

2.

An athlete runs around a circular track with a speed of 9.0 ms–1 and a centripetal acceleration of 3 ms–2. What is the radius of the track?
...................................................................................................................................

3.

The Fermi lab accelerator is one of the largest particle accelerators. In this accelerator, protons are forced to travel in an evacuated tube in a circular orbit of diameter 2.0 km
3.83
83

MODULE - 1
Motion, Force and Energy

Physics at a speed which is nearly equal to 99.99995% of the speed of light. What is the centripetal acceleration of these protons? Take c = 3 × 108 ms–1.
...................................................................................................................................

4.4 Applications of Uniform Circular Motion
Notes
So far you have studied that an object moving in a circle is accelerating. You have also studied Newton’s laws in the previous lesson. From Newton’s second law we can say that as the object in circular motion is accelerating, a net force must be acting on it.
What is the direction and magnitude of this force? This is what you will learn in this section. Then we will apply Newton’s laws of motion to uniform circular motion. This helps us to explain why roads are banked, or why pilots feel pressed to their seats when they fly aircrafts in vertical loops.
Let us first determine the force acting on a particle that keeps it in uniform circular motion.
Consider a particle moving with constant speed v in a circle of radius r. From Newton’s second law, the net external force acting on a particle is related to its acceleration by mv 2 mv 2
(4.19)
ˆ , |F| = r r r This net external force directed towards the centre of the circle with magnitude given by
Eqn. (4.19) is called centripetal force. An important thing to understand and remember is that the term ‘centripetal force’ does not refer to a type of force of interaction like the force of gravitation or electrical force. This term only tells us that the net force of a certain magnitude acting on a particle in uniform circular motion is directed towards the centre. It does not tell us how this force is provided.

F = −

Thus, the force may be provided by the gravitational attraction between two bodies. For example, in the motion of a planet around the sun, the centripetal force is provided by the gravitational force between the two. Similarly, the centripetal force for a car travelling around a bend is provided by the force of friction between the road and the car’s tyres and/or by the horizontal component of normal reaction of banked road. You will understand these ideas better when we apply them in certain concrete situations.

4.4.1 Banking of Roads
While riding a bicycle and taking a sharp turn, you may have felt that something is trying to throw you away from your path. Have you ever thought as to why does it happen?
You tend to be thrown out because enough centripetal force has not been provided to keep you in the circular path. Some force is provided by the friction between the tyres and the road, but that may not be sufficient. When you slow down, the needed centripetal force decreases and you manage to complete this turn.
Consider now a car of mass m, travelling with speed v on a curved section of a highway
(Fig.4.6). To keep the car moving uniformly on the circular path, a force must act on it directed towards the centre of the circle and its magnitude must be equal to mv2/r. Here r is the radius of curvature of the curved section.
84

Motion in a Plane

MODULE - 1
Motion, Force and Energy

FN cos θ

A

FN

FN cos θ

FN sin θ
Fr

θ

X

FN sin θ

O mg (a)

FN

θ

Notes

mg

(c)

(b)

Fig.4.6 : A car taking a turn (a) on a level road; (b) on a banked road; and (c) Forces on the car with FN resolved into its rectangular components. Generally θ is not as large as shown here in the diagram. Now if the road is levelled, the force of friction between the road and the tyres provides the necessary centripetal force to keep the car in circular path. This causes a lot of wear and tear in the tyre and may not be enough to give it a safe turn. The roads at curves are, therefore, banked, where banking means the raising of the outer edge of the road above the level of the inner edge (Fig. 4.6). As a matter of fact, roads are designed to minimise reliance on friction. For example, when car tyres are smooth or there is water or snow on roads, the coefficient of friction becomes negligible. Roads are banked at curves so that cars can keep on track even when friction is negligible.
Let us now analyse the free body diagram for the car to obtain an expression for the angle of banking, θ, which is adjusted for the sharpness of the curve and the maximum allowed speed. Consider the case when there is no frictional force acting between the car tyres and the road. The forces acting on the car are the car’s weight mg and FN, the force of normal reaction. The centripetal force is provided by the horizontal component of FN. Thus, resolving the force FN into its horizontal and vertical components, we can write m v2
(4.20a)
r
Since there is no vertical acceleration, the vertical component of FN is equal to the car’s weight: (4.20b)
FN cos θ = m g
We have two equations with two unknowns, i.e., FN and θ. To determine θ, we eliminate
FN. Dividing Eqn. (4.20 a) by Eqn. (4.20 b), we get

FN sin θ =

m v2 / r v2 tan θ =
=
mg rg or

θ = tan

–1

v2 rg (4.21)

How do we interpret Eqn. (4.21) for limits on v and choice of θ? Firstly, Eqn.(4.21) tells us that the angle of banking is independent of the mass of the vehicle. So even large trucks and other heavy vehicles can ply on banked roads.
3.85
85

MODULE - 1
Motion, Force and Energy

Notes

Physics
Secondly, θ should be greater for high speeds and for sharp curves (i.e., for lower values of r). For a given θ, if the speed is more than v, it will tend to move towards the outer edge of the curved road. So a vehicle driver must drive within prescribed speed limits on curves. Otherwise, the will be pushed off the road. Hence, there may be accidents.
Usually, due to frictional forces, there is a range of speeds on either side of v. Vehicles can maintain a stable circular path around curves, if their speed remains within this range. To get a feel of actual numbers, consider a curved path of radius 300 m. Let the typical speed of a vehicle be 50 ms–1. What should the angle of banking be? You may like to quickly use
Eqn.(4.21) and calculate θ. θ = tan

–1

(50 ms –1 )2
= tan–1 (0.017) = 10
(300 m) (9.8 ms –2 )

You may like to consider another application.

4.4.2 Aircrafts in vertical loops
On Republic Day and other shows by the Indian Air Force, you might have seen pilots flying aircrafts in loops (Fig. 4.8a). In such situations, at the bottom of the loop, the pilots feel as if they are being pressed to their seats by a force several times the force of gravity.
Let us understand as to why this happens. Fig. 4.8b shows the ‘free body’ diagram for the pilot of mass m at the bottom of the loop.

N

+ v mg
(a)

(b)

Fig.4.8 : (a) Aircrafts in vertical loops, (b) Free-body diagram for the pilot at the lowest point.

The forces acting on him are mg and the normal force N exerted by the seat. The net vertically upward force is N – mg and this provides the centripetal acceleration:
N – mg = m a or or

N – mg = m v2/r
N = m (g + v2/r)

In actual situations, if v = 200 ms–1 and r = 1500 m, we get



(200 m s –1 )2
N = m g ⎢1 + (9.8 m s –2 × 1500 m) ⎥ = m g × 3.7


So the pilots feel as though force of gravity has been magnified by a factor of 3.7. If this
86

Motion in a Plane force exceeds set limits, pilots may even black out for a while and it could be dangerous for them and for the aircraft.

MODULE - 1
Motion, Force and Energy

Intext Questions 4.3
1.

Aircrafts usually bank while taking a turn when flying at a constant speed (Fig.4.8). Explain why aircrafts do bank? Draw a free body diagram for this aircraft.
(Fa is the force exerted by the air on the aircraft).
Suppose an aircraft travelling at a speed v = 100 ms–1 makes a turn at a banking angle of 300. What is the radius of curvature of the turn? Take g = 10 ms–2.

L cos θ
L
θ θ Notes

L sin θ

mg

2.

Calculate the maximum speed of a car which makes a turn of radius 100 m on a horizontal road. The coefficient of friction between the tyres and the road is 0.90.
Take g = 10 ms–2.
.................................................................................................................................

3.

An interesting act performed at variety shows is to swing a bucket of water in a vertical circle such that water does not spill out while the bucket is inverted at the top of the circle. For this trick to be performed sucessfully, the speed of the bucket must be larger than a certain minimum value. Derive an expression for the minimum speed of the bucket at the top of the circle in terms of its radius R. Calculate the speed for
R = 1.0 m.
.................................................................................................................................

What You Have Learnt
Projectile motion is defined as the motion which has constant velocity in a certain direction and constant acceleration in a direction perpendicular to that of velocity: ax = 0

ay = – g

vx = v0 cos θ

vy = v0 sin θ –g t

x = x0 + (v0 cos θ) t

y = y0 + (v0 sin θ) –½ –g t2

2 v 0 sin 2θ
Height h = g Time of flight T =

2v 0 sin θ g 2 v 0 sin 2θ
Range of the projectile R = g 3.87
87

MODULE - 1

Physics

Motion, Force and Energy
Equation of the Trajectory of a projectile

y = (tan θ0) x –

g x2 2(v 0 cos θ0 )2

Circular motion is uniform when the speed of the particle is constant. A particle undergoing uniform circular motion in a circle of radius r at constant speed v has a centripetal acceleration given by

Notes

v2 ar = –
ˆ
r r where r is the unit vector directed from the centre of the circle to the particle. The
ˆ
speed v of the particle is related to its angular speed ω by v = r ω.

The centripetal force acting on the particle is given by
F = m ar =

m v2
ˆ = m r ω2 r r

Terminal Exercise
1.

Why does a cyclist bend inward while taking a turn on a circular path?

2.

Explain why the outer rail is raised with respect to the inner rail on the curved portion of a railway track?

3.

If a particle is having circular motion with constant speed, will its acceleration also be constant? 4.

A stone is thrown from the window of a bus moving on horizontal road. What path will the stone follow while reaching the ground; as seen by a observer standing on the road? 5.

A string can sustain a maximum force of 100 N without breaking. A mass of 1kg is tied to one end of the piece of string of 1m long and it is rotated in a horizontal plane.
Compute the maximum speed with which the body can be rotated without breaking the string?

6.

A motorcyclist passes a curve of radius 50 m with a speed of 10 m s–1. What will be the centripetal acceleration when turning the curve?

7.

A bullet is fired with an initial velocity 300 ms–1 at an angle of 300 with the horizontal.
At what distance from the gun will the bullet strike the ground?

8.

The length of the second’s hand of a clock is 10 cm. What is the speed of the tip of this hand?

9.

You must have seen actors in Hindi films jumping over huge gaps on horse backs and motor cycles. In this problem consider a daredevil motor cycle rider trying to cross a gap at a velocity of 100 km h–1. (Fig. 4.9). Let the angle of incline on either side be
450. Calculate the widest gap he can cross.

10. A shell is fired at an angle of elevation of 300 with a velocity of 500 m s–1. Calculate the vertical and horizontal components of the velocity, the maximum height that the shell reaches, and its range.
11. An aeroplane drops a food packet from a height of 2000 m above the ground while in

88

Motion in a Plane horizontal flight at a constant speed of 200 kmh–1. How long does the packet take to fall to the ground? How far ahead (horizontally) of the point of release does the packet land?

MODULE - 1
Motion, Force and Energy

r m 45º

Notes

45º
R

M

Fig. 4.9

Fig. 4.10

12. A mass m moving in a circle at speed v on a frictionless table is attached to a hanging mass M by a string through a hole in the table (Fig.4.10). Determine the speed of the mass m for which the mass M would remain at rest.
13. A car is rounding a curve of radius 200 m at a speed of 60 kmh–1. What is the centripetal force on a passenger of mass m = 90 kg?

Answers to Intext Questions
4.1
(1) (a), (b), (d)
(2) (a) Yes

(b) Yes

(c) The ball with the maximum range.

(3) Maximum Range
2
v0
(9.5 ms –1 ) 2
=
= 9.23 m
9.78 ms –2 g Thus, the difference is 9.23 m – 8.90 m = 0.33 m.

4.2
(1) (a) Yes (b) No (c) Yes

(d) No

The velocity and acceleration are not constant because their directions are changing continuously. (2) Since a= (3)

(9.0 ms –1 ) 2 v2 v2
,r=
=
= 27 m
3 ms –2 r α c2 (3×108 ms –1 ) 2
=
r
10 ×103 m
= 9 × 1013 ms–2

a=

3.89
89

MODULE - 1
Motion, Force and Energy

Physics

4.3
(1) This is similar to the case of banking of roads. If the aircraft banks, there is a component of the force L exerted by the air along the radius of the circle to provide the centripetal acceleration. Fig.4.11 shows the free body diagram. The radius of curvature is
2

Notes



v2
100 ms –1
=⎜
R = o ⎟ = 10 3 m = 17.3 m
–2
g tan θ0
⎝ 10 ms × tan 30 ⎠
L

L cos θ θ 30º

θ

L sin θ

mg
Fig.4.11

(2) The force of friction provides the necessary centripetal acceleration : mv 2 r Since the road is horizontal N – mg

F s = µsN =

mv 2
Thus µs mg = r or v 2 = µsg r or v = (0.9 × 10 m s–2 × 100 m)½ v = 30 ms–1.

(3) Refer to Fig. 4.12 showing the free body diagram for the bucket at the top of the circle. In order that water in the bucket does not spill but keeps moving in the circle, the force mg should provide the centripetal acceleration. At the top of the circle. mv 2 r = Rg

mg = or v 2

∴ v = Rg

Fig. 4.12

90

Fig. 4.13

Motion in a Plane
This is the minimum value of the bucket’s speed at the top of the vertical circle. For
R = 1.0 m and taking g = 10 ms–2 we get

MODULE - 1
Motion, Force and Energy

v = 10 m s–1 = 3.2 ms–1

Answers to Terminal Problems
5.

10 ms–1

6.

2 ms–2

7.

900 3 m

8.

1.05 × 10–3 ms–1

9.

77.1 m

Notes

10. vx = 250 3 ms–1 vy = 250 ms–1
Vertical height = 500 m
Horizontal range = 3125 m
11. t = 20 s, 999.9 m
12. v =

mgr m 13. 125 N

3.91
91

MODULE - 1

Physics

Motion, Force and Energy

5
Notes

GRAVITATION
H ave you ever thought why a ball thrown upward always comes back to the ground?
Or a coin tossed in air falls back on the ground. Since times immemorial, human beings have wondered about this phenomenon. The answer was provided in the 17th century by
Sir Isaac Newton. He proposed that the gravitational force is responsible for bodies being attracted to the earth. He also said that it is the same force which keeps the moon in its orbit around the earth and planets bound to the Sun. It is a universal force, that is, it is present everywhere in the universe. In fact, it is this force that keeps the whole universe together. In this lesson you will learn Newton’s law of gravitation. We shall also study the acceleration caused in objects due to the pull of the earth. This acceleration, called acceleration due to gravity, is not constant on the earth. You will learn the factors due to which it varies. You will also study Kepler’s laws of planetary motion and orbits of artificial satellites of various kinds in this lesson. Finally, we shall recount some of the important programmes and achievements of India in the field of space research.

Objectives
After studying this lesson, you should be able to: state the law of gravitation; calculate the value of acceleration due to gravity of a heavenly body; analyse the variation in the value of the acceleration due to gravity with height, depth and latitude; identify the force responsible for planetary motion and state Kepler’s laws of planetary motion; calculate the orbital velocity and the escape velocity; explain how an artificial satellite is launched; distinguish between polar and equatorial satellites; state conditions for a satellite to be a geostationary satellite; calculate the height of a geostationary satellite and list their applications; and state the achievements of India in the field of satellite technology.

92

Gravitation

MODULE - 1
Motion, Force and Energy

5.1 Law of Gravitation
It is said that Newton was sitting under a tree when an apple fell on the ground. This set him thinking: since all apples and other objects fall to the ground, there must be some force from the earth acting on them. He asked himself: Could it be the same force which keeps the moon in orbit around the earth?
Newton argued that at every point in its orbit,
Earth
the moon would have flown along a tangent, but is held back to the orbit by some force
Fig. 5.1 : At each point on its orbit, the moon (Fig. 5.1). Could this continuous ‘fall’ be due would have flown off along a tangent to the same force which forces apples to fall but the attraction of the earth keeps to the ground? He had deduced from it in its orbit.
Kepler’s laws that the force between the Sun and planets varies as 1/r2. Using this result he was able to show that it is the same force that keeps the moon in its orbit around the earth. Then he generalised the idea to formulate the universal law of gravitation as.
Moon

Notes

Every particle attracts every other particle in the universe with a force which varies as the product of their masses and inversely as the square of the distance between them. Thus, if m1 and m2 are the masses of the two particles, and r is the distance between them, the magnitude of the force F is given by.
F∝

or

m1m2 r2 F =G

m1m2 r2 (5.1)

The constant of proportionality, G , is called the universal constant of gravitation. Its value remains the same between any two objects everywhere in the universe.
This means that if the force between two particles is F on the earth, the force between these particles kept at the same distance anywhere in the universe would be the same.
One of the extremely important characteristics of the gravitational force is that it is always attractive. It is also one of the fundamental forces of nature.
Remember that the attraction is mutual, that is, particle of mass m1 attracts the particle of mass m2 and m2 attracts m1. Also, the force is along the line joining the two particles.
Knowing that the force is a vector quantity, does
Eqn. (5.1) need modification? The answer to this question is that the equation should reflect both magnitude and the direction of the force. As stated, the gravitational force acts along the line

F12

F21

m1

m2 r12 Fig. 5.2 : The masses m1 and m2 are placed at a distance r12 from eact other. The mass m 1 attracts m2 with a force F12.

3.93
93

MODULE - 1
Motion, Force and Energy

Physics joining the two particles. That is, m2 attracts m1 with a force which is along the line joining the two particles (Fig. 5.2). If the force of attraction exerted by m1 on m2 is denoted by F12 and the distance between them is denoted by r12, then the vector form of the law of gravitation is

m1m2
ˆ
F 12 = G r r12
12

Notes

(5.2)

ˆ
Here r12 is a unit vector from m1 to m2
In a similar way, we may write the force exerted by m2 on m1 as

F 21 = – G

m1m2
ˆ
r
2
r21 21

(5.3)

ˆ
ˆ
As r12 = – r21 , from Eqns. (5.2) and (5.3) we find that

F12 = – F21

(5.4)

The forces F12 and F21 are equal and opposite and form a pair of forces of action and
ˆ
ˆ reaction in accordance with Newton’s third law of motion. Remember that r12 and r21 have unit magnitude. However, the directions of these vectors are opposite to each other.
Unless specified, in this lesson we would use only the magnitude of the gravitational force.
The value of the constant G is so small that it could not be determined by Newton or his contemporary experimentalists. It was determined by Cavendish for the first time about
100 years later. Its accepted value today is 6.67 × 10–11 Nm2 kg–2. It is because of the smallness of G that the gravitational force due to ordinary objects is not felt by us.
Example 5.1 : Kepler’s third law states (we shall discuss this in greater details later) that if r is the mean distance of a planet from the Sun, and T is its orbital period, then r 3 / T 2 = const. Show that the force acting on a planet is inversely proportional to the square of the distance.
Solution : Assume for simplicity that the orbit of a planet is circular. (In reality, the orbits are nearly circular.) Then the centripetal force acting on the planet is
F =

mv 2 r where v is the orbital velocity. Since v = rω =

2πr
, where T is the period, we can rewrite
T

above expression as
⎛ 2πr ⎞
F =m ⎜
⎝ T ⎟


or

94

F =

4π2 mr
T2

2

r

Gravitation
But T2∝ r3 or

MODULE - 1
Motion, Force and Energy

T2 = Kr3 (Kelpler’s 3rd law)

where K is a constant of proportionality. Hence


F =

m
1
4π2mr
4π 2
4π2m
=
× 2 =
. 2
3
r r K
K
Kr

4π2 m is constant for a planet) r K
Before proceedins further, it is better that you check your progress.

or

F ∝

1

2

Notes

(Q

Intext Questions 5.1
1.

The period of revolution of the moon around the earth is 27.3 days. Remember that this is the period with respect to the fixed stars (the period of revolution with respect to the moving earth is about 29.5 days; it is this period that is used to fix the duration of a month in some calendars). The radius of moon’s orbit is 3.84 × 108 m (60 times the earth’s radius). Calculate the centripetal acceleration of the moon and show that it is very close to the value given by 9.8 ms–2 divided by 3600, to take account of the variation of the gravity as 1/r2.
..................................................................................................................................

2.

From Eqn. (5.1), deduce dimensions of G.
..................................................................................................................................

3.

Using Eqn. (5.1), show that G may be defined as the magnitude of force between two masses of 1 kg each separated by a distance of 1 m.
..................................................................................................................................

4.

The magnitude of force between two masses placed at a certain distance is F. What happens to F if (i) the distance is doubled without any change in masses, (ii) the distance remains the same but each mass is doubled, (iii) the distance is doubled and each mass is also doubled?
..................................................................................................................................

5.

Two bodies having masses 50 kg and 60 kg are seperated by a distance of 1m.
Calculate the gravitational force between them.
..................................................................................................................................

5.2 Acceleration Due to Gravity
From Newton’s second law of motion you know that a force F exerted on an object produces an acceleration a in the object according to the relation
F = ma

(5.5)

The force of gravity, i.e., the force exerted by the earth on a body lying on or near its surface, also produces an acceleration in the body. The acceleration produced by the
3.95
95

MODULE - 1
Motion, Force and Energy

Physics force of gravity is called the acceleration due to gravity. It is denoted by the symbol
g. According to Eq. (5.1), the magnitude of the force of gravity on a particle of mass m on the earth’s surface is given by

F =G

Notes

mM
R2

(5.6)

where M is the mass of the earth and R is its radius. From Eqns. (5.5) and (5.6), we get

mg = G

or

g =G

mM
R2
M
R2

(5.7)

rB l fo tica Ver

Remember that the force due to gravity on an object is directed towards the center of the earth. It is this direction that we call vertical. Fig. 5.3 shows vertical directions at different places on the earth. The
B
direction perpendicular to the vertical is called the horizontal direction.
Once we know the mass and the radius of the earth, or of any other celestial body such as a planet, the value of g at its surface can be calculated using
Eqn. (5.7). On the surface of the earth, the value of g is taken as 9.8 ms–2.
Given the mass and the radius of a satellite or a planet, we can use Eqn. (5.7) to find the acceleration due to the gravitational attraction of that satellite or planet. Vertical for A

C

A

C or lf a tic er V

Earth
Fig. 5.3 : The vertical direction at any place is the direction towards the centre of earth at that point

Before proceeding further, let us look at Eqn. (5.7) again. The acceleration due to gravity produced in a body is independent of its mass. This means that a heavy ball and a light ball will fall with the same velocity. If we drop these balls from a certain height at the same time, both would reach the ground simultaneously. Activity 5.1
Take a piece of paper and a small pebble. Drop them simultaneously from a certain height. Observe the path followed by the two bodies and note the times at which they touch the ground. Then take two pebbles, one heavier than the other. Release them simultaneously from a height and observe the time at which they touch the ground.
96

Gravitation

MODULE - 1
Motion, Force and Energy

Fall Under Gravity
The fact that a heavy pebble falls at the same rate as a light pebble, might appear a bit strange. Till sixteenth century it was a common belief that a heavy body falls faster than a light body. However, the great scientist of the time, Galileo, showed that the two bodies do indeed fall at the same rate. It is said that he went up to the top of the Tower of Pisa and released simultaneously two iron balls of considerably different masses. The balls touched the ground at the same time. But when feather and a stone were made to fall simultaneously, they reached the ground at different times. Galileo argued that the feather fell slower because it experienced greater force of buoyancy due to air. He said that if there were no air, the two bodies would fall together. In recent times, astronauts have performed the feather and stone experiment on the moon and verified that the two fall together. Remember that the moon has no atmosphere and so no air.

Notes

Under the influence of gravity, a body falls vertically downwards towards the earth. For small heights above the surface of the earth, the acceleration due to gravity does not change much. Therefore, the equations of motion for initial and final velocities and the distance covered in time t are given by v = u + gt

1 2
)gt
2 v 2 = u2 + 2gs. s = ut + (

and

(5.8)

It is important to remember that g is always directed vertically downwards, no matter what the direction of motion of the body is. A body falling with an acceleration equal to g is said to be in free-fall.
From Eqn. (5.8) it is clear that if a body begins to fall from rest, it would fall a distance h = (1/2)gt2 in time t. So, a simple experiment like dropping a heavy coin from a height and measuring its time of fall with the help of an accurate stop watch could give us the value of g. If you measure the time taken by a five-rupee coin to fall through a distance of 1 m, you will find that the average time of fall for several trials is 0.45 s. From this data, the value of g can be calculated. However, in the laboratory you would determine g by an indirect method, using a simple pendulum.
You must be wondering as to why we take radius of the earth as the distance between the earth and a particle on its surface while calculating the force of gravity on that particle.
When we consider two discreet particles or mass points, the separation between them is just the distance between them. But when we calculate gravitational force between extended bodies, what distance do we take into account? To resolve this problem, the concept of centre of gravity of a body is introduced. This is a point such that, as far as the gravitational effect is concerned, we may replace the whole body by just this point and the effect would be the same. For geometrically regular bodies of uniform density, such as spheres, cylinders, rectangles, the geometrical center is also the centre of gravity. That is why we choose the center of the earth to measure distances to other bodies. For irregular bodies, there is no easy way to locate their centres of gravity.
3.97
97

MODULE - 1
Motion, Force and Energy

Notes

Physics
Where is the center of gravity of metallic ring located? It should lie at the center the ring.
But this point is outside the mass of the body. It means that the centre of gravity of a body may lie outside it. Where is your own centre of gravity located? Assuming that we have a regular shape, it would be at the centre of our body, somewhere beneath the navel.
Later on in this course, you would also learn about the centre of mass of a body. This is a point at which the whole mass of the body can be assumed to be concentrated. In a uniform gravitational field, the kind we have near the earth, the centre of gravity coincides with the centre of mass.
The use of centre of gravity, or the center of mass, makes our calculations extremely simple. Just imagine the amount of calculations we would have to do if we have to calculate the forces between individual particles a body is made of and then finding the resultant of all these forces.
You should remember that G and g represent different physical quantities. G is the universal constant of gravitation which remains the same everywhere, while g is acceleration due to gravity, which may change from place to place, as we shall see in the next section.
You may like to answer a few questions to check your progress.

Intext Questions 5.2
1.

The mass of the earth is 5.97 × 1024 kg and its mean radius is 6.371 × 106 m. Calculate the value of g at the surface of the earth.
..................................................................................................................................

2.

Careful measurements show that the radius of the earth at the equator is 6378 km while at the poles it is 6357 km. Compare values of g at the poles and at the equator.
..................................................................................................................................

3.

A particle is thrown up. What is the direction of g when (i) the particle is going up, (ii) when it is at the top of its journey, (iii) when it is coming down, and (iv) when it has come back to the ground?
..................................................................................................................................

4.

The mass of the moon is 7.3 × 1022 kg and its radius is 1.74 × 106 m. Calculate the gravitational acceleration at its surface.
..................................................................................................................................

5.3 Variation in the Value of g
5.3.1 Variation with Height
The quantity R2 in the denominator on the right hand side of Eqn. (5.7) suggests that the magnitude of g decreases as square of the distance from the centre of the earth increases. So, at a distance R from the surface, that is, at a distance 2R from the centre of the earth, the value of g becomes (1/4) th of the value of g at the surface. However, if

98

Gravitation the distance h above the surface of the earth, called altitude, is small compared with the radius of the earth, the value of g, denoted by gh, is given by gh =

MODULE - 1
Motion, Force and Energy

GM
( R + h) 2

Notes

GM
= R 2 ⎛1 + h ⎞


⎝ R⎠

2

g

= ⎛1 + h ⎞



R⎠

2

(5.9)

where g = GM/R2 is the value of acceleration due to gravity at the surface of the earth.
Therefore,
2
2
g h⎞ 2h

⎛ h⎞
1+ ⎟ = 1 +
+ ⎜ ⎟ gh = ⎜ R ⎠

⎝ R⎠
R

Since (h/R) is a small quantity, (h/R)2 will be a still smaller quantity. So it can be neglected in comparison to (h/R). Thus gh =

g
⎛ 2h ⎞
⎜1 + ⎟

R⎠

(5.10)

Let us take an example to understand how we apply this concept.
Example 5.2 : Modern aircrafts fly at heights upward of 10 km. Let us calculate the value of g at an altitude of 10 km. Take the radius of the earth as 6400 km and the value of g on the surface of the earth as 9.8 ms–2.
Solution : From Eqn. (5.8), we have gh =

g
9.8 ms –2
=
= 9.77 ms–2.
⎛ 2.(10) km ⎞
1.003
⎜1 + 6400 km ⎟



5.3.2. Variation of g with Depth
Consider a point P at a depth d inside the earth (Fig. 5.4). Let us assume that the earth is a sphere of uniform density ρ. The distance of the point P from the center of the earth is r = (R – d). Draw a sphere of radius (r – d). A mass placed at P will experience gravitational force from particles in (i) the shell of thickness d, and (ii) the sphere of radius

3.99
99

MODULE - 1
Motion, Force and Energy

Notes

Physics
r. It can be shown that the forces due to all the particles in the shell cancel each other. That is, the net force on the particle at P due to the matter in the shell is zero.
Therefore, in calculating the acceleration due to gravity at P, we have to consider only the mass of the sphere of radius (r – d). The mass M′ of the sphere of radius
(r – d) is

4π ρ (R – d)3
3

M′ =

r=



d d
P

R

(5.10)

The acceleration due to gravity experienced by a particle placed at P is, therefore, gd = G



R

M′
4πG
ρ (R – d)
2 =
(R - d )
3

Fig. 5.4 : A point at depth d is at a distance r = R – d from the centre of the earth (5.11)

Note that as d increases, (R – d) decreases. This means that the value of g decreases as we go below the earth. At d = R, that is, at the centre of the earth, the acceleration due to gravity will vanish. Also note that (R – d) = r is the distance from the centre of the earth. Therefore, acceleration due to gravity is linearly proportional to r. The variation of g from the centre of the earth to distances far from the earth’s surface is shown in Fig. 5.5.
–2

g→

9.8 ms

2.45 ms–2
O

R

2R

r→

Fig. 5.5 : Variation of g with distance from the centre of the earth

We can express gd in terms of the value at the surface by realizing that at d = 0, we get the surface value: g =

4πG ρR. It is now easy to see that
3

gd = g

d⎞

(R − d )
= g ⎜1 − ⎟ , 0 ≤ d ≤ R

R⎠
R

(5.12)

On the basis of Eqns. (5.9) and (5.12), we can conclude that g decreases with both height as well as depth.

100

Gravitation

MODULE - 1
Motion, Force and Energy

Internal Structure of the Earth

45
63
km

3490
Core km

Notes

1.93 × 1024kg

Mantle
24
4.01 × 10 kg

25km
CRUST
3.94 × 1022kg

Fig.5.6 : Structure of the earth (not to scale). Three prominent layers of the earth are shown along with their estimated masses.

Refer to Fig. 5.6 You will note that most of the mass of the earth is concentrated in its core. The top surface layer is very light. For very small depths, there is hardly any decrease in the mass to be taken into account for calculating g, while there is a decrease in the radius. So, the value of g increases up to a certain depth and then starts decreasing. It means that assumption about earth being a uniform sphere is not correct.

5.3.3 Variation of g with Latitude
You know that the earth rotates about its axis. Due to this, every particle on the earth’s surface excecutes circular motion. In the absence of gravity, all these particles would be flying off the earth along the tangents to their circular orbits. Gravity plays an important role in keeping us tied to the earth’s surface. You also know that to keep a particle in circular motion, it must be supplied centripetal force. A small part of the gravity force is used in supplying this centripetal force. As a result, the force of attraction of the earth on objects on its surface is slightly reduced. The maximum effect of the rotation of the earth is felt at the equator. At poles, the effect vanishes completely. We now quote the formula for variation in g with latitude without derivation. If gλ denotes the value of g at latitude λ and g is the value at the poles, then gλ = g – Rω2 cosλ,

(5.13)

where ω is the angular velocity of the earth and R is its radius. You can easily see that at the poles, λ = 90 degrees, and hence gλ = g.
Example 5.3 : Let us calculate the value of g at the poles.
Solution : The radius of the earth at the poles = 6357 km = 6.357 × 106 m
The mass of the earth = 5.97 × 1024 kg
Using Eqn. (5.7), we get g at the poles = [6.67 × 10–11 × 5.97 × 1024 / (6.357 × 106)2] ms–2
= 9.853 ms–2

3.101
101

MODULE - 1
Motion, Force and Energy

Physics
Example 5.4 : Now let us calculate the value of g at λ = 60º, where radius of earth is
6371 km.
Solution :

The period of rotation of the earth, T = 24 hours = (24 × 60 × 60) s
∴ frequency of the earth’s rotation = 1/T angular frequency of the earth ω = 2π/T = 2π/(24 × 60 × 60)

Notes

= 7.27 × 10–5
∴Rω2 cos λ = 6.371 × 106 × (7.27 × 10-5)2 × 0.5 = 0.017 ms–2
Since g0 = g – Rω2 cos λ, we can write gλ (at latitude 60 degrees) = 9.853 – 0.017 = 9.836 ms–2

Intext Questions 5.3
1.

At what height must we go so that the value of g becomes half of what it is at the surface of the earth?
..................................................................................................................................

2.

At what depth would the value of g be 80% of what it is on the surface of the earth?
..................................................................................................................................

3.

The latitude of Delhi is approximately 30 degrees north. Calculate the difference between the values of g at Delhi and at the poles.
..................................................................................................................................

4.

A satellite orbits the earth at an altitude of 1000 km. Calcultate the acceleration due to gravity acting on the satellite (i) using Eqn. (5.9) and (ii) using the relation g is proportional to 1/r2, where r is the distance from the centre of the earth. Which method do you consider better for this case and why?
..................................................................................................................................

5.4 Weight and Mass
The force with which a body is pulled towards the earth is called its weight. If m is the mass of the body, then its weight W is given by
W = mg

(5.14)

Since weight is a force, its unit is newton. If your mass is 50 kg, your weight would be 50 kg × 9.8 ms–2 = 490 N.
Since g varies from place to place, weight of a body also changes from place to place.
The weight is maximum at the poles and minimum at the equator. This is because the radius of the earth is minimum at the poles and maximum at the equator. The weight decreases when we go to higher altitudes or inside the earth.
The mass of a body, however, does not change. Mass is an intrinsic property of a body.
102

Gravitation
Therefore, it stays constant wherever the body may be situated.

MODULE - 1
Motion, Force and Energy

Note: In everyday life we often use mass and weight interchangeably. Spring balances, though they measure weight, are marked in kg (and not in N).

Activity 5.2
Notes
Calculate the weight of an object of mass 50 kg at distances of 2R, 3R, 4R, 5R and 6R from the centre of the earth. Plot a graph showing the weight against distance. Show on the same graph how the mass of the object varies with distance.
Try the following questions to consolidate your ideas on mass and weight.

Intext Questions 5.4
1.

Suppose you land on the moon. In what way would your weight and mass be affected?
..................................................................................................................................

2.

Compare your weight at Mars with that on the earth? What happens to your mass?
Take the mass of Mars = 6 × 1023 kg and its radius as 4.3 × 106 m.
..................................................................................................................................

3.

You must have seen two types of balances for weighing objects. In one case there are two pans. In one pan, we place the object to be weighed and in the other we place weights. The other type is a spring balance. Here the object to be weighed is suspended from the hook at the end of a spring and reading is taken on a scale.
Suppose you weigh a bag of potatoes with both the balances and they give the same value. Now you take them to the moon. Would there be any change in the measurements made by the two balances?
..................................................................................................................................

5.5 Kepler’s Laws of Planetary Motion
In ancient times it was believed that all heavenly bodies move around the earth. Greek astronomers lent great support to this notion. So strong was the faith in the earth-centred universe that all evidences showing that planets revolved around the Sun were ignored.
However, Polish Astronomer Copernicus in the 15th century proposed that all the planets revolved around the Sun. In the 16th century, Galileo, based on his astronomical observations, supported Copernicus. Another European astronomer, Tycho Brahe, collected a lot of observations on the motion of planets. Based on these observations, his assistant Kepler formulated laws of planetary motion.
3.103
103

MODULE - 1

Physics

Motion, Force and Energy

Johannes Kepler

Notes

German by birth, Johannes Kepler, started his career in astronomy as an assistant to Tycho Brahe. Tycho religiously collected the data of the positions of various planets on the daily basis for more than 20 years. On his death, the data was passed on to Kepler who spent 16 years to analyse the data. On the basis of his analysis,
Kepler arrived at the three laws of planetary motion.
He is considered as the founder of geometrical optics as he was the first person to describe the working of a telescope through its ray diagram.
For his assertion that the earth revolved around the Sun, Galileo came into conflict with the church because the Christian authorities believed that the earth was at the centre of the universe. Although he was silenced, Galileo kept recording his observations quietly, which were made public after his death. Interestingly, Galileo was freed from that blame recently by the present Pope.
Kepler formulated three laws which govern the motion of planets. These are:
1. The orbit of a planet is an ellipse with the Sun at one of the foci (Fig. 5.7). (An ellipse has two foci.)
Planet
C

B
O
A
Sun

D
Ellipse
Fig. 5.7 : The path of a planet is an ellipse with the Sun at one of its foci. If the time taken by the planet to move from point A to B is the same as from point C to D, then according to the second law of Kepler, the areas AOB and COD are equal.

2. The area swept by the line joining the planet to the sun in unit time is constant through out the orbit (Fig 5.7)
3. The square of the period of revolution of a planet around the sun is proportional to the cube of its average distance from the Sun. If we denote the period by T and the average distance from the Sun as r, T2 α r3.
Let us look at the third law a little more carefully. You may recall that Newton used this law to deduce that the force acting between the Sun and the planets varied as 1/r2 (Example
5.1). Moreover, if T1 and T2 are the orbital periods of two planets and r1 and r2 are their mean distances from the Sun, then the third law implies that

104

Gravitation

MODULE - 1
Motion, Force and Energy

2
1
2
2

T
T

=

3
1
3
2

r r (5.15)

The constant of proportionality cancels out when we divide the relation for one planet by the relation for the second planet. This is a very important relation. For example, it can be used to get T2, if we know T1, r1 and r2.

Notes

Example 5.5 : Calculate the orbital period of planet mercury, if its distance from the
Sun is 57.9 × 109 m. You are given that the distance of the earth from the Sun is
1.5 × 1011 m.
Solution : We know that the orbital period of the earth is 365.25 days. So, T1 = 365.25 days and r1 = 1.5 × 1011 m. We are told that r2 = 57.9×109 m for mercury. Therefore, the orbital period of mercury is given by T2
3

2 r2 T2
= 3
2
r1
T1

On substituting the values of various quantities, we get
2

T2 =

3

T1 r2
(365.25) 2 × (57.9 × 10 9 ) 3 m 3
=
days
3
(1.5 × 1011 ) 3 m 3 r1 = 87.6 days.
In the same manner you can find the orbital periods of other planets. The data is given below. You can also check your results with numbers in Table 5.1.
Table 5.1: Some data about the planets of solar system
Name of the planet
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

Mean distance from the Sun (in terms of the distance of earth)
0.387
0.72
1.0
1.52
5.2
9.54
19.2
30.1
39.4

Radius
(x103 km)

Mass
(Earth Masses)

2.44
6.05
6.38
3.39
71.40
60.00
25.4
24.3
1.50

0.53
0.815
1.00
0.107
317.8
95.16
14.50
17.20
0.002

Kepler’s laws apply to any system where the force binding the system is gravitational in nature. For example, they apply to Jupiter and its satellites. They also apply to the earth and its satellites like the moon and artificial satellites.
Example 5.6 : A satellite has an orbital period equal to one day. (Such satellites are called geosynchronous satellites.) Calculate its height from the earth’s surface, given that
3.105
105

above

MODULE - 1
Motion, Force and Energy

Notes

Physics the distance of the moon from the earth is 60 RE (RE is the radius of the earth), and its orbital period is 27.3 days. [This orbital period of the moon is with respect to the fixed stars. With respect to the earth, which itself is in orbit round the Sun, the orbital period of the moon is about 29.5 day.]
Solution : A geostationary satellite has a period T2 equal to 1 day. For moon T1 = 27.3 days and r1 = 60 RE, T2 = 1 day. Using Eqn. (5.15), we have
1/ 3

⎡ r13T2 2 ⎤ r2 = ⎢ 2 ⎥
⎣ T1 ⎦

1/3

3
⎡ (603 RE ) (12 day2 ) ⎤
= ⎢

2
2
⎣ 27.3 day


= 6.6 RE.

Remember that the distance of the satellite is taken from the centre of the earth. To find its height from the surface of the earth, we must subtract RE from 6.6 RE. The required distance from the earth’s surface is 5.6 RE. If you want to get this distance in km, multiply 5.6 by the radius of the earth in km.

5.5.1 Orbital Velocity of Planets
We have so for talked of orbital periods of planets. If the orbital period of a planet is T and its distance from the Sun is r, then it covers a distance 2πr in time T. Its orbital velocity is, therefore, v orb =

2π r
T

(5.16)

There is another way also to calculate the orbital velocity. The centripetal force experi2 enced by the planet is mυorb / r , where m is its mass. This force must be supplied by the force of gravitation between the Sun and the planet. If M is the mass of the Sun, then the

G m Ms
. Equating the two forces, we get r2 gravitational force on the planet is mυorb r

2

=

G M r2 s

,

so that,

G Ms
(5.17)
r2
Notice that the mass of the planet does not enter the above equation. The orbital velocity depends only on the distance from the Sun. Note also that if you substitute v from
Eqn. (5.16) in Eqn. (5.17), you get the third law of Kepler. v orb =

Intext Questions 5.5
1.

Many planetary systems have been discovered in our Galaxy. Would Kepler’s laws be applicable to them?
..................................................................................................................................

106

Gravitation
2.

Two artificial satellites are orbiting the earth at distances of 1000 km and 2000 km from the surface of the earth. Which one of them has the longer period? If the time period of the former is 90 min, find the time period of the latter.

MODULE - 1
Motion, Force and Energy

..................................................................................................................................
3.

A new small planet, named Sedna, has been discovered recently in the solar system.
It is orbiting the Sun at a distance of 86 AU. (An AU is the distance between the Sun and the earth. It is equal to 1.5 × 1011 m.) Calculate its orbital period in years.

Notes

..................................................................................................................................
4.

Obtain an expression for the orbital velocity of a satellite orbiting the earth.
..................................................................................................................................

5. Using Eqns. (5.16) and (5.17), obtain Kepler’s third law.
..................................................................................................................................

5.6 Escape Velocity
You now know that a ball thrown upwards always comes back due to the force of gravity.
If you throw it with greater force, it goes a little higher but again comes back. If you have a friend with great physical power, ask him to throw the ball upwards. The ball may go higher than what you had managed, but it still comes back. You may then ask: Is it possible for an object to escape the pull of the earth? The answer is ‘yes’. The object must acquire what is called the escape velocity. It is defined as the minimum velocity required by an object to escape the gravitational pull of the earth.
It is obvious that the escape velocity will depend on the mass of the body it is trying to escape from, because the gravitational pull is proportional to mass. It will also depend on the radius of the body, because smaller the radius, stronger is the gravitational force.
The escape velocity from the earth is given by

v esc =

2G M
R

(5.18)

where M is the mass of the earth and R is its radius. For calculating escape velocity from any other planet or heavenly body, mass and radius of that heavenly body will have to be substituted in the above expression.
It is not that the force of gravity ceases to act when an object is launched with escape velocity. The force does act. Both the velocity of the object as well as the force of gravity acting on it decrease as the object goes up. It so happens that the force becomes zero before the velocity becomes zero. Hence the object escapes the pull of gravity.
Try the following questions to grasp the concept.
3.107
107

MODULE - 1

Physics

Motion, Force and Energy

Intext Questions 5.6
1.

The mass of the earth is 5.97 × 1024 kg and its radius is 6371 km. Calculate the escape velocity from the earth.
..................................................................................................................................

Notes

2.

Suppose the earth shrunk suddenly to one-fourth its radius without any change in its mass. What would be the escape velocity then?
..................................................................................................................................

3.

An imaginary planet X has mass eight times that of the earth and radius twice that of the earth. What would be the escape velocity from this planet in terms of the escape velocity from the earth?
..................................................................................................................................

5.7 Artificial Satellites
A cricket match is played in Sydney in Australia but we can watch it live in India. A game of Tennis played in America is enjoyed in India. Have you ever wondered what makes it possible? All this is made possible by artificial satellites orbiting the earth. You may now ask : How is an artificial satellite put in an orbit?
You have already studied the motion of a projectile. If you project a body at an angle to the horizontal, it follows a parabolic path. Now imagine launching bodies with increasing force. What happens is shown in Fig. 5.8. Projectiles travel larger and larger distances before falling back to the earth. Eventually, the projectile goes into an orbit around the earth. It becomes an artificial satellite. Remember that such satellites are man-made and launched with a particular purpose in mind. Satellites like the moon are natural satellites.

Earth

Fig. 5.8 : A projectile to orbit the earth

In order to put a satellite in orbit, it is first lifted to a height of about 200 km to minimize loss of energy due to friction in the atmosphere of the earth. Then it is given a horizontal push with a velocity of about 8 kms–1.
The orbit of an artificial satellite also obeys Kepler’s laws because the controlling force is

108

Gravitation gravitational force between the satellite and the earth. The orbit is elliptic in nature and its plane always passes through the center of the earth.
Remember that the orbital velocity of an artificial satellite has to be less than the escape velocity; otherwise it will break free of the gravitational field of the earth and will not orbit around the earth. From the expressions for the orbital velocity of a satellite close to the earth and the escape velocity from the earth, we can write

MODULE - 1
Motion, Force and Energy

Notes

vsec v orb =
(5.19)
2
Artificial satellites have generally two types of orbits (Fig. 5.9) depending on the purpose for which the satellite is launched. Satellites used for tasks such as remote sensing have polar orbits. The altitude of these orbits is about 800 km. If the orbit is at a height of less than about 300 km, the satellite loses energy because of friction caused by the particles of the atmosphere. As a result, it moves to a lower height where the density is high. There it gets burnt. The time period of polar satellites is around 100 minutes. It is possible to make a polar satellite sun-synchronous, so that it arrives at the same latitude at the same time every day. During repeated crossing, the satellite can scan the whole earth as it spins about its axis (Fig. 5.10). Such satellites are used for collecting data for weather prediction, monitoring floods, crops, bushfires, etc.
Polar plane

GN

equator

equatorial plane

GS

Fig.5.9: Equitorial and polar orbits

Satellites used for communications are put in equatorial orbits at high altitudes. Most of these satellites are geo-synchronous, the ones which have the same orbital period as the period of rotation of the earth, equal to 24 hours. Their height, as you saw in
Example 5.6 is fixed at around 36000 km. Since their orbital period matches that of the earth, they appear to be hovering above the same spot on the earth. A combination of such satellites covers the entire globe, and signals can be sent from any place on the globe to any other place. Since a geo-synchronous satellite observes the same spot on the earth all the time, it can also be used for monitoring any peculiar happening that takes a long time to develop, such as severe storms and hurricanes.
3.109
109

MODULE - 1

Physics

Motion, Force and Energy
Descending orbit
West looking

Notes
Ascending orbit
East looking
Fig. 5.10: A sun synchromous satellite scanning the earth

Applications of Satellites
Artificial satellites have been very useful to mankind. Following are some of their applications: 1.

Weather Forecasting : The satellites collect all kinds of data which is useful in forecasting long term and short term weather. The weather chart that you see every day on the television or in newspapers is made from the data sent by these satellites. For a country like India, where so much depends on timely rains, the satellite data is used to watch the onset and progress of monsoon.
Apart from weather, satellites can watch unhealthy trends in crops over large areas, can warn us of possible floods, onset and spread of forest fire, etc.

2.

Navigation : A few satellites together can pinpoint the position of a place on the earth with great accuracy. This is of great help in locating our own position if we have forgotten our way and are lost. Satellites have been used to prepare detailed maps of large chunks of land, which would otherwise take a lot of time and energy.

3.

Telecommunication : We have already mentioned about the transmission of television programmes from anywhere on the globe to everywhere became possible with satillites. Apart from television signals, telephone and radio signals are also transmitted. The communication revolution brought about by artificial satellites has made the world a small place, which is sometimes called a global village. 4.

Scientific Research : Satellites can be used to send scientific instruments in space to observe the earth, the moon, comets, planets, the Sun, stars and galaxies.
You must have heard of Hubble Space Telescope and Chandra X-Ray Telescope.
The advantage of having a telescope in space is that light from distant objects does not have to go through the atmosphere. So there is hardly any reduction in its intensity. For this reason, the pictures taken by Hubble Space Telescope are of much superior quality than those taken by terrestrial telescopes.
Recently, a group of Europeon scientists have observed an earth like planet outside our solar system at a distance of 20 light years.

5.

110

Monitoring Military Activities : Artificial satellites are used to keep an eye on the enemy troop movement. Almost all countries that can afford cost of these satellites have them.

Gravitation

MODULE - 1
Motion, Force and Energy

Vikram Ambalal Sarabhai
Born in a family of industrialists at Ahmedabad, Gujarat, India. Vikram
Sarabhai grew to inspire a whole generation of scientists in India. His initial work on time variation of cosmic rays brought him laurels in scientific fraternity. A founder of Physical Research Laboratory,
Ahmedabad and a pioneer of space research in India, he was the first to realise the dividends that space research can bring in the fields of communication, education, metrology, remote sensing and geodesy, etc.

Notes

5.7.1 Indian Space Research Organization
India is a very large and populous country. Much of the population lives in rural areas and depends heavily on rains, particularly the monsoons. So, weather forecast is an important task that the government has to perform. It has also to meet the communication needs of a vast population. Then much of our area remains unexplored for minerals, oil and gas.
Satellite technology offers a cost-effective solution for all these problems. With this in view, the Government of India set up in 1969 the Indian Space Research Organization
(ISRO) under the dynamic leadership of Dr. Vikram Sarabhai. Dr. Sarabhai had a vision for using satellitis for educating the nation. ISRO has pursued a very vigorous programme to develop space systems for communication, television broadcasting, meteorological services, remote sensing and scientific research. It has also developed successfully launch vehicles for polar satellites (PSLV) (Fig. 5.11) and geo-synchronous satellites (GSLV)
(Fig. 5.12). In fact, it has launched satellites for other countries like Germany, Belgium and Korea. and has joined the exclusive club of five countries. Its scientific programme includes studies of
(i) climate, environment and global change,
(ii) upper atmosphere,
(iii) astronomy and astrophysics, and
(iv) Indian Ocean.
Recently, ISRO launched an exclusive educational satillite EduSat, first of its kind in the world. It is being used to educate both young and adult students living in remote places.
It is now making preparation for a mission to the moon.

Fig. 5.11: PSLV

Fig. 5.12: GSLV

3.111
111

MODULE - 1

Physics

Motion, Force and Energy

Intext Questions 5.7
1.

Notes

Some science writers believe that some day human beings will establish colonies on the Mars. Suppose people living this desire to put in orbit a Mars synchronous satellite.
The rotation period of Mars is 24.6 hours. The mass and radius of Mars are
6.4 × 1023 kg and 3400 km, respectively. What would be the height of the satellite from the surface of Mars?
..................................................................................................................................

2.

List the advantages of having a telescope in space.
..................................................................................................................................

What You Have Learnt
The force of gravitation exists between any two particles in the universe. It varies as the product of their masses and inversely as the square of distance between them.
The constant of gravitation, G , is a universal constant.
The force of gravitation of the earth attracts all bodies towards it.
The acceleration due to gravity near the surface of the earth is 9.8 ms–2. It varies on the surface of the earth because the shape of the earth is not perfectly spherical.
The acceleration due to gravity varies with height, depth and latitude.
The weight of a body is the force of gravity acting on it.
Kepler’s first law states that the orbit of a planet is elliptic with sun at one of its foci.
Kepler’s second law states that the line joining the planet with the Sun sweeps equal areas in equal intervals of time.
Kepler’s third law states that the square of the orbital period of a planet is proportional to the cube of its mean distance from the Sun.
A body can escape the gravitational field of the earth if it can acquire a velocity equal to or greater than the escape velocity.
The orbital velocity of a satellite depends on its distance from the earth.

Terminal Exercise
1. You have learnt that the gravitational attraction is mutual. If that is so, does an apple also attract the earth? If yes, then why does the earth not move in response?
2. We set up an experiment on earth to measure the force of gravitation between two particles placed at a certain distance apart. Suppose the force is of magnitude F. We take the same set up to the moon and perform the experiment again. What would be the magnitude of the force between the two particles there?

112

Gravitation
3. Suppose the earth expands to twice its size without any change in its mass. What would be your weight if your present weight were 500 N?

MODULE - 1
Motion, Force and Energy

4. Suppose the earth loses its gravity suddenly. What would happen to life on this plant?
5. Refer to Fig. 5.6 which shows the structure of the earth. Calculate the values of g at the bottom of the crust (depth 25 km) and at the bottom of the mantle (depth
2855 km).

Notes

6. Derive an expression for the mass of the earth, given the orbital period of the moon and the radius of its orbit.
7. Suppose your weight is 500 N on the earth. Calculate your weight on the moon.
What would be your mass on the moon?
8. A polar satellite is placed at a height of 800 km from earth’s surface. Calculate its orbital period and orbital velocity.

Answers to Intext Questions
5.1
1. Moon’s time period T = 27.3d
= 27.3 × 24 × 3600 s
Radius of moon’s orbit R= 3.84 × 108 m
Moon’s orbital speed v =

2πR
T

Centripetal accleration = v2/R
=

4π2 R 2 1
4π2 R
.
=
R
T2
T2

4π 2 × 3.84 × 108 m
=
(27.3 × 24 × 3600) 2 s 2
4π2 × 3.84
=
× 10–2 ms–2
(27.3 × 2.4 × 3.6) 2

= .00272 ms–2
If we calculate centripetal acceleration on dividing g by 3600, we get the same value :

=

9.8 ms–2 3600
3.113
113

MODULE - 1

Physics

Motion, Force and Energy

= 0.00272 ms–2
2. F =

Notes

G m1 m2 r2 F is force ∴ G =

3. F = G

Force × r 2
Nm 2
=
2
(mass)
kg 2

m1 m2 r2 If m1 = 1kg, m2 = 1kg, r = 1m, then F = G or G is equal to the force between two masses of 1kg each placed at a distance of 1m from each other
4. (i) F α 1/r2, if r is doubled, force becomes one-fourth.
(ii) F α m1m2, if m1 and m2 are both doubled then F becomes 4 times.
(iii) F α

m1 m2
,
r2

if each mass is doubled, and distance is also doubled, then
F remains unchanged.

50 kg × 60 kg
Nm 2
–11
5. F = G
; G = 6.68 × 10
1 m2 kg 2

= 6.67 × 10

–11

Nm 2 3000 kg 2
.
kg 2
1 m2

= 6.67 × 10–11 × 3 × 103 N
= 2 × 10–7 N

5.2
1. g =

GM
R2

= 6.67 × 10–11

Nm 2
5.97 ×1024 kg
2 . kg (6.371×106 ) 2 m 2

6.97 × 59.7 N
= 6.371 × 6.371 kg = 9.81 m s–2

114

Gravitation

MODULE - 1
Motion, Force and Energy

2. g at poles
GM

gpole = R 2 pole = 6.67 × 10

–11

5.97 ×10 24 kg
Nm2
.
6 2
2
kg 2 (6.371×10 ) m

6.97 × 59.7

Notes

N

= 6.371 × 6.371 kg = 9.81 ms–2
Similarly,
6.97 × 59.7

N

geguator = 6.378 × 6.378 kg = 9.79 ms–2
3. The value of g is always vertically downwards.
4. g moon= 6.67 × 10

–11

7.3 ×10 22 kg
Nm2
× (1.74 ×106 ) 2 m 2 kg 2

6.67 × 7.3

N

= 1.74 × 1.74 × 10–1 kg = 1.61 m s–2

5.3
1. Let g at distance r from the centre of the earth be called g1.
Outside the earth, g r2

then g = 2
R
1
If g1 = g/2 ⇒ r2 = 2R2 ⇒ r =

2 R = 1.412 R

∴ Height from earth’s surface= 1.4142 R – R
= 0.4142 R
2. Inside the earth g varies as distance from the centre of the earth. Suppose at depth d, g is called gd.
Then
If

gd g =

R–d
R

g d = 80%, then

3.115
115

MODULE - 1

Physics

Motion, Force and Energy

0.8
R–d
=
1
R



d = 0.2 R

3. In example 5.3, we calculated ω = 7.27 × 10–5 rad s–1

Notes

∴ Rω2 cos 30º = 6.37 × 106 × (7.27 × 10–5)2 s–2 . 3 2 = 0.029 ms–2
= 9.853 m s2

g at poles

(Calculated in example 5.2)
∴ g at Delhi = 9.853 ms–2 – 0.029 ms–2
= 9.824 ms–2
4. Using formula (5.9), g h=

=

g
9.81 m s –2
=
2h
2000 km
1+
1+
R
6371 km

9.81 m s –2
= 7.47 m s–2
28371 km
6371 km

Using variation with r g =

GM
( R + h) 2

= 6.67 × 10–11

Nm 2
5.97 × 1024 kg
.
kg 2 (7.371 × 106 )2 m2

= 7.33 ms–2
This gives more accurate results because formula (5.9) is for the case h << R. In this case h is not << R.

5.4
1. On the moon the value of g is only 1/6th that on the earth. So, your weight on moon will become 1/6th of your weight on the earth. The mass, however, remains constant.
2. Mass of Mars = 6 × 1023 kg
Radius of Mars = 4.3 × 106 m

116

Gravitation

MODULE - 1
Motion, Force and Energy

Nm 2



g Mars = G

M
= 6.67 × 10–11
.
R2 kg 2

6 ×1023 kg

= 2.16
(4.3×106 )2 m 2

Weight on Mars m . 2.16
Weight on Earth = m . 9.81 = 0.22

Notes

So, your weight will become roughly 1/4th that on the earth. Mass remains constant.
3. Balances with two pans actually compare masses because g acts on both the pans and gets cancelled. The other type of balance, spring balance, measures weight. The balance with two pans gives the same reading on the moon as on the earth. Spring balance with give weight as 1/6th that on the earth for a bag of potatoes.

5.5
1. Yes. Wherever the force between bodies is gravitational, Kepler’s laws will hold.
2. According to Kepler’s third law r13 T12
= r3
T22
2

or

T2 α r3 ⇒ T α r3/2

So, the satellite which is farther off has higher period.
Let T1 = 90 min,

r 1 = 1000 km + 6371 km r 2 = 2000 km + 6371 km
[ From the centre of the earth]



T12 . r23
⎛ 8371 km ⎞
= (90 min)2 ⎜

T =
3
r1
⎝ 7371 km ⎠

3

2
2

T 2 = 108.9 min
3. According to Kepler’s third law
3
2 rearth Tearth
= r3
2
Tsedna sedna [Distance from the Sun]

Tearth= 1 yr., rearth = 1 AU
2
sedna

T

(1yr) 2 (86 AU)3
(86)3 yr 2
=
(1AU)3

∴ Tsedna=797.5 yr
4. If v is the orbital velocity of the satellite of mass m at a distance r from the centre of the earth, then equating centripltal force with the gravitational force, we have
3.117
117

MODULE - 1

Physics

Motion, Force and Energy mv 2 GmM
=
⇒v= r r2

GM r where M is the mass of the earth.
5. From Eqs. (5.16) and (5.17),

Notes
GM
4π 2 r 2
4π2 .r 3
=
⇒ T2 =
2
r
T
GM .

or T2 α r3.

5.6
1. v esc =

=

=

2GM
R

2 × 6.67 × 10 –11

Nm 2 5.97 × 1024 kg
.
kg 2 6.371 × 106 m

2 × 6.67 × 5.97 × 10
103 ms–1
6.371

= 11.2 × 103 ms–1 = 11.3 kms–1
2. v esc α

1
R

If R becomes 1/4th, vesc becomes double.
3. v esc α

M
R

If M becomes eight times, and R twice, then v esc α

4 or vesc becomes double.

5.7
4π2
GM
1. (R + h) 2 =
T
( R + h) 2

⇒ (R + h)3 =
118

GM 2
T
4π2

Gravitation

=

6.67 × 10

−11

MODULE - 1
Motion, Force and Energy

× 6.4 × 10 × (14.6 × 3600)
4 × (3.14) 2
23

2

= 8370 × 1018 m
R + h = 20300 km h = 26900 km

Notes

2. (a) Images are clearer
(b) x-ray telescopy etc. also work.

Answers to Terminal Problems
3. 125 N
5.

g, 5.5 ms–2

7. Weight =

8. T

500
N , mass 50 kg on moon as well as on earth
6

1
1 h , v = 7.47 km s–1
2

3.119
119

MODULE - 1

Physics

Motion, Force and Energy

6
Notes

WORK ENERGY AND POWER

You know that motion of objects arises due to application of force and is described by
Newton’s laws of motion. You also know how the velocity (speed and direction) of an object changes when a force acts on it. In this lesson, you will learn the concepts of work and energy. Modern society needs large amounts of energy to do many kinds of work.
Primitive man used muscular energy to do work. Later, animal energy was harnessed to help people do various kinds of tasks. With the invention of various kinds of machines, the ability to do work increased greatly. Progress of our civilization now critrcally depends the on the availability of usable energy. Energy and work are, therefore, closely linked.
From the above discussion you will appreciate that the rate of doing work improved with newer modes, i.e. as we shifted from humans → animals → machines to provide necessary force. The rate of doing work is known as power.

Objectives
After studying this lesson, you should be able to: define work done by a force and give unit of work; calculate the work done by an applied force; state work-energy theorem; define power of a system; calculate the work done by gravity when a mass moves from one point to another; explain the meaning of energy; obtain expressions for gravitational potential energy and elastic potential energy; apply the principle of conservation of energy for physical system; and apply the laws of conservation of momentum and energy in elastic collisions.

120

Work Energy and Power

MODULE - 1
Motion, Force and Energy

6.1 Work
The word ‘work’ has different meaning for different people. When you study, you do mental work. When a worker carries bricks and cement to higher floors of a building, he is doing physical work against the force of gravity. But in science, work has a definite meaning. The technical meaning of work is not always the same as the common meaning.
The work is defined in the following way :

Notes

Let us suppose that a constant force F acting on an object results in displacement d i.e. moves it by a distance d along a straight line on a horizontal surface, as shown in Fig. 6.1.
The work done by a force is the product of the magnitude of force component in the direction of displacement and the displacement of this object.
F

F

θ

d

Fig 6.1 : A force F on a block moves it by a horizontal distance d. The direction of force makes an angle θ with the horizontal direction.

If force F is acting at angle θ with respect to the displacement d of the object, its component along d will be F cos θ. Then work done by force F is given by
W = F cosθ.d

(6.1)

In vector form, the work done is given by:
W = F. d

(6.2)

Note that if d = 0, W = 0. That is, no work is done by a force, whatever its magnitude, if there is no displacement of the object. Also note that though both force and displacement are vectors, work is a scalar.

Activity 6.1
You and your friends may try to push the wall of a room. Irrespective of the applied force, the wall will not move. Thus we say that no work is done.
The unit of work is defined using Eqn.(6.2). If the applied force is in newton and displacement is in metre, then the unit of work is joule.
(Unit of Force)×(Unit of displacement) = newton . metre = Nm

(6.3)

This unit is given a special name, joule, and is denoted by J.
One joule is defined, as the work done by a force of one newton when it produces a displacement of one metre. Joule is the SI unit of work.

3.121
121

MODULE - 1
Motion, Force and Energy

Physics
Example 6.1 : Find the dimensional formula of work.
Solution :

W = Force × Distance
= Mass × Acceleration × distance

Dimension of work = [M] × [LT–²] × [L]

Notes

= [ML²T–2]
In electrical measurements, kilowatt-hour (kWh) is used as unit of work. It is related to joule as
1kWh = 3.6 × 106 J
You will study the details of this unit later in this lesson.
Example 6.2 : A force of 6N is applied on an object at an angle of 60º with the horizontal.
Calculate the work done in moving the object by 2m in the horizontal direction.
Solution : From Eqn. (6.2) we know that
W = Fd cosθ
= 6×2 × cos 60º
= 6×2 × (½)
=6J
Example 6.3 : A person lifts 5 kg potatoes from the ground floor to a height of 4m to bring it to first floor. Calculate the work done.
Solution : Since the potatoes are lifted, work is being done against gravity. Therefore, we can write
Force = mg
= 5 kg× 9.8 ms–²
= 49 N
Work done = 49 × 4 (Nm)
= 196 J

6.1.1 Positive and Negative Work
As you have seen, work done is defined by Eqn.(6.2), where the angle θ between the force and the displacement is also important. In fact, it leads us to the situation in which work becomes a positive or a negative quantity. Consider the examples given below:
Fig. 6.2 (a) shows a car moving in + x direction and a force F is applied in the same direction. The speed of the car keeps increasing. The force and the displacement both are in the same direction, i.e. θ = 0º. Therefore, the work done is given by
122

Work Energy and Power

MODULE - 1
Motion, Force and Energy

W = Fd cos 0º
= Fd

(6.4)

The work is this case is positive.

F

v

v

F

Notes

(a)
(b)
Fig. 6.2 : A car is moving on a horizontal road. a) A force F is applied in the direction of the moving car. It gets accelerated. b) A force F is applied in opposite direction so that the car comes to rest after some distance.

Figure 6.2 (b) shows the same car moving in the +x direction, but the force F is applied in the opposite direction to stop the car. Here, angle θ = 180º. Therefore,
W = Fd cos 180º.
= –Fd

(6.5)

Hence, the work done by the force is negative. In fact, the work done by a force shall be negative for θ lying between 90º and 270º.
From the above examples, we can conclude that
a) When we press the accelerator of the car, the force is in the direction of motion of the car. As a result, we increase the speed of the car. The work done is positive.
b) When we apply brakes of a car, the force is applied in a direction opposite to its motion. The car loses speed and may finally come to rest. Negative work is said to have been done.
c) In case the applied force and displacement are as right angles, i.e. θ = 90º, no work is said to be done.

6.1.2 Work Done by the Force of Gravity
Fig.6.3(a) shows a mass m being lifted to a height h and Fig. 6.3(b) shows the same mass being lowered by a distance h. The weight of the object is mg in both cases. You may recall from the previous lesson that weight is a force.
In Fig. 6.3 (a), the work is done against the force mg (downwards) and the displacement is upward (θ = 180º). Therefore,
W = Fd cos 180º
= – mgh
3.123
123

MODULE - 1

Physics

Motion, Force and Energy

mg

Notes

h

h

F

mg

(b)

(a)
Fig 6.3 :

a) The object is lifted up against the force of gravity,
b) The object is lowered towards the earth.

In the Fig. 6.3(b), the mass is being lowered. The force mg and the displacement d are in the same direction (θ = 0º). Therefore, the work done
W = Fd cos 0º
= + mgh

(6.6)

You must be very careful in interpreting the results obtained above. When the object is lifted up, the work done by the gravitational force is negative but the work done by the person lifting the object is positive. When the object is being lowered, the work done by the gravitational force is positive but the workdone by the person lowering the object is negative. In both of these cases, it is assumed that the object is being moved without acceleration. Intext Questions 6.1
1.

When a particle rotates in a circle, a force acts on the particle. Calculate the work done by this force on the particle.
..................................................................................................................................

2.

Give one example of each of the following. Work done by a force is
a) zero
b) negative
c) positive
..................................................................................................................................

3.

124

A bag of grains of mass 2 kg. is lifted through a height of 5m.

Work Energy and Power

MODULE - 1
Motion, Force and Energy

a) How much work is done by the lift force?
b) How much work is done by the force of gravity?
..................................................................................................................................
4.

j j A force F = (2 ˆ + 3 ˆ ) N produces a displacements d = (– ˆ + 2 ˆ ) m. Calculate the i i work done.

Notes

..................................................................................................................................
5.

j j A force F = (5 ˆ +3 ˆ ) acts on a particle to give a displacement d = (3 ˆ + 4 ˆ ) m i i

a) Calculate the magnitude of displacement
b) Calculate the magnitude of force.
c) How much work is done by the force?
..................................................................................................................................

6.2 Work Done by A Variable Force
You have so far studied the cases where the force acting on the object is constant. This may not always be true. In some cases, the force responsible for doing work may keep varying with time. Let us now consider a case in which the magnitude of force F(x) changes with the position x of the object. Let us now calculate the work done by a variable force. Let us assume that the displacement is from xi to xf , where xi and xf are the initial and final positions. In such a situation, work is calculated over a large number of small intervals of displacements ∆x. In fact, ∆x is taken so small that the force F(x) can be assumed to be constant over each such interval. The work done during a small displacements ∆x is given by
∆W = F(x) ∆x

F

(6.7)

F

∆x

x→

xi

xf x→ Fig 6.4 : A varying force F moves the object from the initial position xi to final position xf. The variation of force with distance is shown by the solid curve (arbitrary) and work done is numerically equal to the shaded area.

F(x) ∆x is numerically equal to the small area shown shaded in the Fig. 6.4(a). The total work done by the force between xi and xf is the sum of all such areas (area of all strips added together):
3.125
125

MODULE - 1
Motion, Force and Energy

Physics
W = Σ ∆W
= Σ F (x) ∆x
(6.8)

Notes

The width of the strips can be made as small as possible so that the areas of all strips added together are equal to the total area enclosed between xi and xf.. It will give the total work done by the force between xi and xf :
W=

∑ F ( x) ∆x

(6.9)

lim ∆x → 0

6.2.1 Work done by a Spring
A very simple example of a variable force is the force exerted by a spring. Let us derive the expression for work done in this case.
Fig. 6.5(a) shows the equilibrium position of a light spring whose one end is attached to a rigid wall and the other end is attached to a block of mass m. The system is placed on a smooth horizontal table. We take x-axis along the horizontal direction. Let mass m be at position x = 0. The spring is now compressed (or elongated) by an external force F. An internal force Fs is called into play in the spring due to its elastic property. This force Fs keeps increasing with increasing x and becomes equal to F when the compression (or elongation) is maximum at x = xm.
According to Hooke’s law (true for small x only), |Fs| = kx, where k is known as spring constant. Since the direction of Fs is always opposite to compression (or extension), it is written as :
F = Fs= – kx

(6.10)

x=0
(a)

F
(b)

x

xm

F
(c)

x=0
Fig. 6.5 : A spring-mass system whose one end is rigidly fixed and mass m, rests on a smooth horizontal surface. a) The relaxed position of the spring’s, free end at x = 0; b) The spring is compressed by applying external force F and c) Pulled or elongated by an external force F. The maximum compression/ elongation is xm.

126

Work Energy and Power
Let us now calculate the work done and also examine, if it is positive or negative. In the event of compression of the spring, the external force F is directed towards left and the displacement x is also towards left. Hence, the work done by the external force is positive. However, for the same direction of displacement, the restoring force generated in the spring is towards right, i.e. F and x are oppositely directed. The work done by the spring force is negative. You can yourself examine the case of extension of the spring and arrive at the same result: “the work done by the external force is positive but the

MODULE - 1
Motion, Force and Energy

Notes

2 m work done by the spring force is negative and its magnitude is (½) kx ”
A simple calculation can be done to derive an expression for the work done. At x = 0, the force Fs = 0. As x increases, the force Fs increases and becomes equal to F when x = xm.
Since the variation of the force is linear with displacement, the average force during

Fs
⎛ 0 + Fs ⎞
. The work done by compression (or extension) can be approximated to ⎜
⎟ =
2
⎝ 2 ⎠ the force is given by
W = force . displacement
=

Fs
. x,
2

But |Fs| = k | xm|. Hence
W=

=

1 k x × xm
2 m
1
k x 2m
2

(6.11)

The work done can also be obtained graphically. It is shown in Fig. 6.6.
Fs
Fs = kxm

x x = xm

Fig. 6.6: The work done is numerically equal to the area of the shaded triangle.

3.127
127

MODULE - 1
Motion, Force and Energy

Physics
The area of the shaded triangle is:
=
W=

Notes
=

1 base × height
2
1 x × kxm
2 m
1
kx ²
2 m

(6.12)

This is the same as that obtained analytically in Eqn. (6.11)

Activity 6.2
Measuring spring constant
Suspend the spring vertically, as shown in
Fig. 6.7 (a). Now attach a block of mass m to the lower end of the spring. On doing so, the spring extends by some distance.
Measure the extension. Suppose it is s, as shown in Fig 6.7 (b). Now think why does the spring not extend further. This is because the spring force (restoring force) acting upwards balances the weight mg of the block in equilibrium state. You can calculate the spring constant by putting the values in
Fig. 6.7 : Extension in a spring under a load. F s = k.s or Thus,

mg = k.s k =

mg s (6.13)

Example 6.4: A mass of 2 kg is attached to a light spring of force constant k =100 Nm–1. Calculate the work done by an external force in stretching the spring by
10 cm.
Solution:
m = 2 kg

W=
=

1 kx² 2
1
× 100 × (0.1)²
2

F
Fig. 6.8: A mass m = 2 kg is attached to a spring on a horizontal surface.

= 50 × 0 .01 = 0.5 J
As explained earlier, the work doen by the restioning force in the spring = – 0.5 J.
128

Work Energy and Power

MODULE - 1
Motion, Force and Energy

Intext Questions 6.2
1.

Define spring constant. Give its SI unit.
................................................................................................................................

2.

A force of 10 N extends a spring by 1cm.How much force is needed to extend this spring by 5 cm? How much work will be done by this force?

Notes

................................................................................................................................

6.3 Power
You have already learnt to calculate the work done by a force. In such calculations, we did not consider whether the work is done in one second or in one hour. In our daily life, however, the time taken to perform a particular work is important. For example, a man may take several hours to load a truck with cement bags, whereas a machine may do this work in much less time. Therefore, it is important to know the rate at which work is done.
The rate at which work is done is called power.
If ∆W work is done in time ∆t, the average power is defined as

Work done
Average Power = time taken
Mathematically, we can write
P=

∆W
∆t

(6.14)

If the rate of doing work is not constant, this rate may vary. In such cases, we may define instantaneous power P limit ⎛ ∆W ⎞ = dW
∆t → 0 ⎜ ∆t ⎟ dt


The definition of power helps us to determine the SI unit of power:

P=

P=

(6.15)

∆W
∆t

= joule/ second = watt
Thus, the SI unit of power is watt. It is abbreviated asW.
The power of an agent doing work is 1W, if one joule of work is done by it in one second.
The more common units of power are kilowatt (kW) and megawatt (MW).
1 kW = 103 W,

and

1 MW= 106W
3.129
129

MODULE - 1

Physics

Motion, Force and Energy

James Watt
(1736–1819)
Scottish inventor and mechanical engineer, James Watt is renowned for improving the efficiency of a steam engine. This paved the way for industrial revolution.

Notes

He, introduced horse power as the unit of power. SI unit of power watt is named in his honour. Some of the important inventions by
James Watt are : a steam locomotive and an attachment that adapted telescope to measure distances.
Example 6.5 : Determine the dimensions of power.
Solution : Since

P=

work time = Force ×

Distance
Time

∴ Dimension of P = [Mass] × [Acceleration] ×
⎡ L⎤

[Distance]
[Time]

⎡L⎤

= [M] × ⎢ 2 ⎥ × ⎢ ⎥
⎣T⎦
⎣T ⎦
–3
= [ML²T ]
You may have heard electricians discussing the power of a machine in terms of the horse power, abbreviated as hp. This unit of power was under British system. It is a larger unit:
1hp = 746 W
(6.16)
The unit of power is used to define a new unit of work (energy). One such unit of work is kilowatt hour. This unit is commonly used in electrical measurement. kilowatt. hour (kWh) = kW. hour
= 10³ W. hour
103 J
× 3600 s
1s
= 36,00,000 J = 3.6× 106 J

=

Or

1 kWh = 3.6 MJ (mega joules)

(6.17)

The electrical energy that is consumed in homes is measured in kilowatt-hour. In common man’s language : 1kWh = 1 Unit of electrical consumption.

Intext Questions 6.3
1.

A body of mass 100 kg is lifted through a distance of 8 m in 10s. Calculate the power of the lifter.
................................................................................................................................

130

Work Energy and Power
2.

MODULE - 1
Motion, Force and Energy

Convert 10 horse power into kilo watt.
................................................................................................................................

6.5 Work and Kinetic Energy
As you know, the capacity to do work is called energy. If a system (object) has energy, it has ability to do work. An automobile moving on a road uses chemical energy of fuel
(CNG, petrol, diesel). It can push an object which comes on its way to some distance.
Thus it can do work. All moving objects possess energy because they can do work before they come to rest. We call this kind of energy as kinetic energy. Kinetic energy is the energy of an object because of its motion.

Notes

Let us consider an object of mass m moving along a straight line when a constant force of magnitude F acts on it along the direction of motion. This force produces a uniform acceleration a such that F = ma. Let v1 be the speed of the object at time t1. This speed becomes v2 at another instant of time t2. During this interval of time t = (t2 – t1 ), the object covers a distance, s. Using Equations of Motion, we can write
2
v 2 = v12 + 2as

or

a =

2 v 2 – v12
2s

(6.18)

Combining this result with Newton’s second law of motion, we can write

2 v 2 – v12
F =m ×
2s

We know that work done by the force is given by
W = Fs
Hence,

W =m ×

=

2 v 2 – v12 s 2s

1 2 1 2 mv 2 – mv1
2
2

= K2 – K1 where K2=

(6.19)

1 2
1
mv 2 and K1 = mv12 respectively denote the final and initial kinetic energies.
2
2

(K2 – K1) denotes the change in kinetic energy, which is equal to the work done by the force. Kinetic Energy is a scalar quantity. It depends on the product of mass and the square of
3.131
131

MODULE - 1
Motion, Force and Energy

Physics the speed. It does not matter which one of the two (m and v) is small and which one is large. It is the total value

1 m v 2 that determines the kinetic energy.
2

Example 6.6 : A body of mass 10 kg is initially moving with a speed of 4.0 ms–1. A force of 30 N is now applied on the body for 2 seconds.

Notes

i) What is the final speed of the body after 2 seconds? ii) How much work has been done during this period? iii) What is the initial kinetic energy? iv) What is the final kinetic energy?
v) What is the distance covered during this period? vi) Show that the work done is equal to the change in kinetic energy?
Solution :
i)
or

Force (F) = ma a = F/m
= 30/10
= 3 ms–²

The final speed

v 2 = v1+ at
= 4 + (3 × 2) = 10 ms–1

ii) The distance covered in 2 seconds: s = ut +

1 at² 2

= (4×2) +

1
(3×4)
2

= 8 +6 = 14 m
Work done

W =F×S
= 30 × 14 = 420 J

iii) The initial Kinetic Energy
K1 =

=

132

1 2 mv1 2

1
(10 ×16) = 80 J
2

Work Energy and Power

MODULE - 1
Motion, Force and Energy

iv) The final kinetic energy
K2 =
=

1 2 mv2 2
1
(10 ×100) = 500 J
2

v) The distance covered as calculated above = 14m

Notes

vi) The change in kinetic energy is:
K2– K1 = (500 – 80) = 420 J
As may be seen, this is same as wok done.

Work-Energy Theorem
The work-energy theorem states that the work done by the resultant of all forces acting on a body is equal to the change in kinetic energy of the body.

Intext Question 6.4
1.

Is it possible for a particle to have a negative value of kinetic energy? Why?
..................................................................................................................................

2-

What happens to the kinetic energy of a particle if
a) The speed v of the particle is made 2v.
b) The mass m of the particle is made m/2 ?
..................................................................................................................................

3-

A particle moving with a kinetic energy 3.6 J collides with a spring of force constant
180 Nm–1. Calculate the maximum compression of the spring.
..................................................................................................................................

4-

A car of mass 1000 kg is moving at a speed of 90 kmh–1. Brakes are applied and the car stops at a distance of 15 m from the braking point. What is the average force applied by brakes? If the car stops in 25s after braking , calculate the average power of the brakes?
..................................................................................................................................

5.

If an external force does 375 J of work in compressing a spring, how much work is done by the spring itself?
..................................................................................................................................

6.6 Potential Energy
In the previous section we have discussed that a moving object has kinetic energy associated
3.133
133

MODULE - 1
Motion, Force and Energy

Physics with it. Objects possess another kind of energy due to their position in space. This energy is known as Potential Energy. Familiar example is the Gravitational Potential Energy possessed by a body in Gravitational Field. Let us understand it now.

6.6.1 Potential Energy in Gravitational Field
Suppose that a person lifts a mass m from a given height h1 to a height h2 above the earth’s surface. Let us also assume that the value of acceleration due to gravity remains constant. The mass has been displaced by a distance h = (h2 – h1 ) against the force of gravity. The magnifude of this force is mg and it acts downwards.
Therefore, the work done by the person is

Notes

W = force × distance
= mgh

Fig. 6.9: Object of mass m originally at height h1 above the earth’s surface is moved to a height h2.

(6.20)

The work is positive and is stored in mass m as energy.
This energy by virtue of the position in space is called gravitational potential energy. It has capacity to do work. If this mass is left free, it will fall down and during the fall it can be made to do work. For example, it can lift another mass if properly connected by a string, which is passing over a pulley.

The selection of the initial height h1 is arbitrary. The important concept is the change in height, i.e. (h2 – h1).
We, therefore, say that the point of zero potential energy is arbitrary. Any point in space can be chosen as a point of zero potential energy. Normally, a point on the surface of the earth is assumed to be the reference point with zero potential energy.
Example 6.7 : A truck is loaded with sugar bags. The total mass of the load and the truck together is 100,000 kg. The truck moves on a winding path up a mountain to a height of 700 m in 1 hour. What average power must the engine produce to lift the material?
Solution :

W = mgh
= (100,000 kg) × (9.8 m s–2 × 700 m)
= 9.8× 7× 107 J
= 68.6 × 107J

Time taken = 1 hour = 60 × 60s
= 3600 s
Average Power, P = W / t

68.6 × 107 J
=
3600 s

134

Work Energy and Power
= 1.91 × 105 W

MODULE - 1
Motion, Force and Energy

We know that 746 W = 1 hp


P=

1.91× 105
= 2.56 × 10² = 256 hp.
746

Example 6.8 : Hydroelectric power generation uses falling water as a source of energy to turn turbine blades and generate electrical power. In a power station,
1000 × 10³ kg water falls through a height of 51 m in one second.

Notes

i) Calculate the work done by the falling water? ii) How much power can be generated under ideal conditions?
Solution :
i) The potential energy of the water at the top = mgh
P.E. = (1000 × 10³ kg) × (9.8 ms–2) × (51 m).
= 9.8 × 51 × 106 J
= 500 × 106 J
Water loses all its potential energy. The same is converted into work in moving the turbine blades. Therefore
W = Force × distance
= mg × h
= 1000 × 103 × (9.8) × 51 J
`

= 500 × 106 J
= 500 M J

ii) The work done per second is given by
P = W/t
=

500 M J
1s

= 500 MW
Ideal conditions mean that there is no loss of energy due to frictional forces. In practice, there is the always some loss in machines. Such losses can be minimized but can never be eliminated. 6.6.2 Potential energy of springs
You now know that an external force is required to compress or stretch a given spring.
These situations are shown in Fig. 6.5. Let there be a spring of force constant k. This spring is compressed by a distance x. From Eqn.(6.11) we recall that work done by the external force to compress the spring is given by
W=

1 kx² 2
3.135
135

MODULE - 1
Motion, Force and Energy

Physics
This work is stored in the spring as elastic potential energy. When the spring is left free, it bounces back and the elastic potential energy of the spring is converted into kinetic energy of the mass m.

6.6.3 Conservation of Energy
Notes

We see around us various forms of energy but we are familiar with some forms more than others. Examples are Electrical Energy, Thermal Energy, Gravitational Energy, Chemical
Energy and Nuclear Energy etc. These forms of energy are very closely related in the sense that one can be changed to another. There is a very fundamental law about energy.
It is known as Law of Conservation of Energy. It states, “ The total energy of an isolated system always remains constant.” The energy may change its form. It can be converted from one form to other. But the total energy of the system remains unchanged.
In an isolated system, if there is any loss of energy of one form, there is a gain of an equal amount of another form of energy. Thus energy is neither created nor destroyed. The universe is also an isolated system as there is nothing beyond this. It is therefore said that the total energy of the universe always remains constant in spite of the fact that variety of changes are taking place in the universe every moment. It is a law of great importance. It has led to many new discoveries in science and it has not been found to fail.

h1

In a Thermal Power Station, the chemical energy of coal is changed into electrical energy. The electrical energy runs machines. In these machines, the electrical energy changes into mechanical energy, light energy or thermal energy.

h

The law of conservation of energy is more general than we can think of. It applies to systems ranging from big planets and stars to the smallest nuclear particles. P

(a) Conservation of mechanical energy during the free fall of a body

h2

Fig. 6.10 : Mass m is lifted to a height h from earth’s surface. It is then lowered to a height h2 at point P. The total energy at P is same as that at the highest point.

We now wish to test the validity of the law of conservation of energy in case of mechanical energy, which is of immediate interest.

Let us suppose that an object of mass m lying on the ground is lifted to a height h. The work done is mgh, which is stored in the object as potential energy. This object is now allowed to fall freely. Let us calculate the energy of this object when it has fallen through a distance h1. The height of the object now above the earth surface is h2 = h – h1 (Fig 6. 10). At this point P, the potential energy = mgh2.
When the object falls freely, it gets accelerated and gains in speed. We can calculate the speed of the object when it has fallen through a height h1 from the top positions using the equation v² = u² + 2gs

136

(6.21)

Work Energy and Power

MODULE - 1
Motion, Force and Energy

where u is the initial speed at the height h1, i.e. u = 0 and s = h1. Then, we have v² = 2gh1
The kinetic energy at point P is given by
K.E =

1 mv² 2

Notes

m
× 2gh1
2
= mgh1

=

(6.22)

The total energy at the point P is
Kinetic Energy + Potential Energy = mgh1+ mgh2
= mgh

(6.23)

This is same as the potential energy at the highest point. Thus, the total Energy is conserved. (b) Conservation of Mechanical Energy for a Mass Oscillating on a Spring
Fig. 6.11 shows a spring whose one end is fixed to a rigid wall and the other end is connected to a wooden block lying on a smooth horizontal table. This free end is at x0 in the relaxed position of the spring. A block of mass m moving with speed v along the line of the spring collides with the spring at the free end, and compresses it by xm. This is the

1 mv². It is
2
the kinetic energy of the mass. The potential energy of the spring is zero. At the point of maximum compression. At x0, the total energy of the spring-mass system is

extreme compression, the potential energy of the spring is the mass is zero. The total energy now is

1 2 k xm and the kinetic energy of
2

1 2 k xm . Obviously, this means that
2

1 2
1
k xm = mv 2
2
2

m

(6.24)

v x 0

x0

0 xm Fig. 6.11 : A block of mass m moving with velocity v on a horizontal surface collides with the spring. The maximum compression is xm.

K.E + P.E (Before collision) = K.E. + P.E. (After collision)
3.137
137

MODULE - 1

Physics

Motion, Force and Energy

1 2
1 2 mv + 0 = 0 + kx m
2
2

(6.25)

i.e., the total energy is conserved.

Conservation of mass-energy in nuclear reactions

Notes

Nuclear energy is different from other forms of energy in the sense that it is not obtained by the transformation of some other form of energy. On the contrary, it is obtained by transformation of mass into energy.
Hence, in nuclear reacions, the law of conservation of mass and the law of conservation of energy merge into a single law of conservation of mass-energy.
Example 6.9 : A block of mass 0.5 kg slides down a smooth curved surface and falls through a vertical height of 2.5m to reach a horizontal surface at B (Fig 6.12). On the basis of energy conservtion, calculate, i) the energy of the block at point A, and ii) the speed of the block at point B.
Solution :
i) Potential energy at A = mgh

= (0.5) × (9.8) × 2.5 J
= 4.9 × 2.5 J
= 12.25 J

A

The kinetic energy at A = 0 and
Total Energy = 12.25 J ii) The total energy of the block at A must be the same as the total energy at B.

2.5m
B

The total energy (P.E. + K.E.) at A = 12.25 J

1 mv² 2

Fig. 6.12 : A block slides on a curved surface. The total energy at
A (Potential only) gets
Since P.E. at B is zero, the total energy is only K.E. converted into total energy at
B (kinetic only).
1

The total energy (P.E. + K.E.) at B =



2

mv² = 12.25 v² =

12.25 × 2
0.5

= 12.25 × 4 v² = 49.00
Hence

v = 7.0 ms–1

Note: This can also be obtained from the equations of motion:

138

Work Energy and Power

MODULE - 1
Motion, Force and Energy

2 v² = v 0 + 2gx

= 0 + 2 × 9.8 × 2.5 v² = 49 v = 7 ms–1

Notes

6.5.4 Conservative and dissipative (Non conservative) Forces
(a) Conservative forces
We have seen that the work done by the gravitational force acting on an object depends on the product of the weight of the object and its vertical
B
1 displacement. If an object is moved from a point A to a point B under gravity, (Fig 6.13), the work done by gravity depends on the vertical separation between the two points. It does not depend on the path followed to reach B starting from A. When a force obeys this
A
2 rule, it is called a conservative force. Some of the
(a)
examples of conservative forces are gravitational force, elastic force and electrostatic force.
A conservative force has a property that the work done by a conservative force is independent of path. In Fig 6.13 (a)

B

1

WAB (along 1) = WAB (along 2)
Fig. 6.13 (b) shows the same two positions of the object. The object moves from A to B along the path 1 and returns back to A along the path 2. By definition, the work done by a conservative force along path 1 is equal and opposite to the work done along the path 2.
WAB (along 1) = –WBA (along 2) or WAB + WBA = 0

(6.27)

A

2

(b)
Fig. 6.13 : a) The object is moved from A to B along two different paths. b) It is taken from A to B along path 1 and brought back to A along path 2.

This result brings out an important property of the conservative force in that the work done by a conservative force on an object is zero when the object moves around a closed path and returns back to its starting point.
(b) Non-conservative Forces
The force of friction is a good example of a non-conservative force. Fig. 6.14 shows a rough horizontal surface. A block of mass m is moving on this surface with a speed v at the point A.
After moving a certain distance along a straight line, the block stops at the point B. The block had a kinetic energy E =

1 mv² at the point A. It has neither kinetic energy nor
2

3.139
139

MODULE - 1
Motion, Force and Energy

Notes

Physics potential energy at the point B. It has lost all its energy. Do you know where did the energy go? It has changed its form. Work has been done against the frictional force or we can say that force of friction has done negative work on the block. The kinetic energy has changed to thermal energy of the system. The block with the same kinetic energy E is now taken from A to B through a longer path 2. It may not even reach the point B. It may stop much before reaching B. This obviously means that more work has to be done along this path.
Thus, it canbe said that the work done depends on the path.
Path 2

v=0

v
A

Path 1

B

Fig. 6.14: A block which is given an initial speed v on a rough horizontal surface, moves along a straight line path 1 and comes to rest at B. It starts with the same speed υ at A but now moves along a different path 2.

Intext Questions 6.5
1.

ABC is a triangle where AB is horizontal and BC is vertical. The length of the sides AB = 3m, BC = 4m and AC=5m. A block of mass 2 kg is at A. What is the change in potential energy of the block when
a) it is taken from A to B
b) from B to C

Fig. 6.15

c) from C to A
d) How much work is done by gravitational force in moving the mass form B to C
(positive or Negative work)?
..................................................................................................................................
2.

A ball of mass 0.5 kg is at A at a height of 10m above the ground. Solve the following questions by applying work-energy principle. In free fall
a) What is the speed of the ball at B?

A
4m
B

10m

b) What is the speed of the ball at the point C?
c) How much work is done by gravitational force in bringing the ball from A to C (give proper sign)?
...........................................................................................................

140

C
Fig. 6.16

Work Energy and Power
3.

4.

A block at the top of an inclined plane slides down.
The length of the plane BC = 2m and it makes an angle of 30° with horizontal. The mass of the block is 2 kg. The kinetic energy of the block at the point B is 15.6 J. How much of the potential energy is lost due to non-conservative forces (friction). How much is the magnitude of the frictional force?

MODULE - 1
Motion, Force and Energy

2m

B

The Figure shows two curves A and B between energy E and displacement x of the bob of a simple pendulum. Which one represents the P.E. of the bob and why? 30º

C

A

Notes

Fig. 6.18

.........................................................................

5.

When non- conservative forces work on a system, does the total mechanical energy remain constant?
..................................................................................

6.6 Elastic and inelastic collisions
Let us consider a system of two bodies. The system is a closed system which implies that no external force acts on it. The system may consist of two balls or two springs or one ball and one spring and so on. When two bodies interact, it is termed as collision. There are no external forces acting on the system.
Let us start with a collision of two balls and to make the analysis simpler, let there be a
“head-on” or “central collision”. In such collisions, colliding bodies move along the line joining their centres. The collisions are of two kinds :
(i) Perfectly Elastic Collision: If the forces of interaction between the two bodies are conservative, the total kinetic energy is conserved i.e. the total kinetic energy before collision is same as that after the collision. Such collisions are termed as completely elastic collisions.
(ii) Perfectly Inelastic collision: When two colliding bodies stick together after the collision and move as one single unit, it is termed as perfectly inelastic collision. It is like motion of a bullet embedded in a target.
You should remember that the momentum is conserved in all types of collisions.
Why? But kinetic energy is conserved in elastic collisions only.

6.6.1 Elastic Collision (Head-on)
Let two balls A and B having masses mA and mB respectively collide “head-on”, as shown in Fig. (6.19). Let vAi and vBi be the velocities of the two balls before collision and vAf and vBf be their velocities after the collision .
3.141
141

MODULE - 1

Physics

Motion, Force and Energy vAi vA f

vBi

Before Collision

vBf

After Collision

(a)

Notes vAi vBi

v
(b)

Before Collision

After Collision

Fig.6.19 : Schematic representation of Head-on collision (a) Elastic collision; (b) In elastic collision

Now applying the laws of conservation of momentum and kinetic energy, we get
For conservation of momentum mAvAi + mAvBi = mAvAf + mBvBf

(6.28)

For conservation of kinetic energy

1
1
1
1
2
2
2 mA v Ai + mBi = mA v Af + mB v Bf
2
2
2
2

(6.29)

There are only two unknown quantities (velocities of the balls after collision) and there are two independent equations [Eqns. (6.28) and (6.29)]. The solution is not difficult, but a lengthy one. Therefore, we quote the results only
(vBf – vAf ) = – (vBi – vAi) v Af =

(6.30)

v Ai (mA – mB )
2mBv Bi
+
mA + mB mA + mB

(6.31)

(mB – mA ) v Bi
2mAv Ai
+
(mA + mB ) mA + mB

(6.32)

v Bf = –

We now discuss some special cases.
CASE I : Suppose that the two balls colliding with each other are identical i.e. mA= mB=
m. Then the second term in Eqns. (6.31 and (6.32) will drop out resulting in v Af = vBi and (6.33)

v Bf = vAi

(6.34)

That is, if two identical balls collide “head-on”, their velocities after collision get interchanged.
After collision: i) the velocity of A is same as that of B before collision. ii) the velocity of B is same as that of A before collision.

142

Work Energy and Power
Now, think what would happen if one of the balls is at rest before collision?

MODULE - 1
Motion, Force and Energy

Let B be at rest so that vBi = 0. Then vAf = 0 and vBf = vAi
After collision, A comes to rest and B moves with the velocity of A before collision.
Similar conclusion can be drawn about the kinetic energy of the balls after collision. Complete loss of kinetic energy or partial loss of kinetic energy (mA # mB) by A is same as the gain in the kinetic energy of B. These facts have very important applications in nuclear reactors in slowing down neutrons.

Notes

CASE II : The second interesting case is that of collision of two particles of unequal masses. i) Let us assume that mB is very large compared to mA and particle B is initially at rest : mB>> mA and vBi = 0
Then, the mass mA can be neglected in comparison to mB. From Eqns. (6.31) and (6.32), we get vAf ≈ –vAi and vBf ≈ 0

After collision, the heavy particle continues to be at rest. The light particle returns back on its path with a velocity equal to its the initial velocity.
This is what happens when a child hits a wall with a ball.
These results find applications in Physics of atoms, as for example in the case where an α – particle hits a heavy nucleus such as uranium.

Intext Questions 6.6
1

Two hard balls collide when one of them is at rest.
a) Is it possible that both of them remain at rest after collision?
b) Is it possible that one of them remains at rest after collision?
..................................................................................................................................

2.

There is a system of three identical balls A B C on a straight line as shown here. B and C are in contact and at rest. A moving with a velocity v collides “head-on” with
B. After collision, what will be the velocities of A, B and
C separately? Explain.

v
B C
A
Fig. 6.20

..................................................................................................................................
3.

Ball A of mass 2 kg collides head-on with ball
B of mass 4 kg. A is moving in + x direction with speed 50ms–1 and B is moving in –x direction with speed 40ms–1. What are the velocities of A and B after collision? The collision is elastic.

–1

uA = 50 ms
–x

A

–1

uB = 40 ms
B

+x →

Fig. 6.21

.......................................................................................................................
3.143
143

MODULE - 1
Motion, Force and Energy

Physics
4.

A bullet of mass 1 kg is fired and gets embedded into a block of wood of mass 1 kg initially at rest. The velocity if the bullet before collision is 90m/s.
a) What is the velocity of the system after collision.
b) Calculate the kinetic energies before and after the collision?
c) Is it an elastic collision or inelastic collision?

Notes

d) How much energy is lost in collision?
..................................................................................................................................
5.

In an elastic collision between two balls, does the kinetic energy of each ball change after collision?
..................................................................................................................................

What You Have Learnt
Work done by a constant force F is
W = F.d = Fd cosθ
Where θ is the angle between F and d. The unit of work is joule. Work is a scalar quantity. Work is numerically equal to the area under the F versus x graph.
Work done by elastic force obeying Hooke’s law is W =

1 kx² where k is force
2

constant of the elastic material (spring or wire). The sign of W is positive for the external force acting on the spring and negative for the restoring force offered by spring. x is compression or elongation of the spring.
The unit of k is newton per metre (N m–1.)
Power is the time rate of doing work. P = W/t its unit is J/s i.e., watt (W)
Mechanical energy of a system exists in two forms (i) kinetic energy and (ii) Potential energy. Kinetic energy of mass m moving with speed v is E =

1 mv². It is a scalar quantity.
2

The Work-Energy Theorem states that the work done by all forces is equal to the change in the kinetic energy of the object.
W = Kf – Ki = ∆K
Work done by a conservative force on a particle is equal to the change in mechanical energy of the particle, that is change in the kinetic energy + the change in potential energy. In other words the mechanical energy is conserved under conservative forces.
∆ E = (Ef – Ei) + (Ef – Ei)
= (∆E)P + (∆E)k
144

Work Energy and Power
Work done by a conservative force on an object is zero for a round trip of the object
(object returning back to its starting point).

MODULE - 1
Motion, Force and Energy

Work done by a conservative force does not depend on the path of the moving object.
It depends only on its initial and final positions.
Work done is path dependent for a non-conservative force. The total mechanical energy is not conserved.

Notes

The potential energy of a particle is the energy because of its position in space in a conservative field.
Energy stored in a compressed or stretches spring is known as elastic potential energy.
It has a value

1 kx², where k is spring constant and x is diplacement.
2

The energy stored in a mass m near the earth’s surface is mgh. It is called the gravitational potential energy. Here h is change in vertical co-ordinate of the mass.
The reference level of zero potential energy is arbitrary.
Energy may be transformed from one kind to another in an isolated system, but it can neither be created nor destroyed. The total energy always remains constant.
Laws of conservation of momentum always hold good in any type of collision.
The kinetic energy is also conserved in elastic collision while it is not conserved in inelastic collision.

Terminal Exercise
1.

If two particles have the same kinetic energy, are their momenta also same? Explain.

2.

A particle in motion collides with another one at rest. Is it possible that both of them are at rest after collision?

3.

Does the total mechanical energy of a system remain constant when dissipative forces work on the system?

4.

A child throws a ball vertically upwards with a velocity 20 m s–1.
(a) At what point is the kinetic energy maximum?
(b) At what point is the potenital energy maximum?

5.

A block of mass 3kg moving with a velocity 20ms–1 collides with a spring of force constant 1200 Nm–1. Calculate the maximum compression of the spring.

6.

What will be the compression of the spring in question 5 at the moment when kinetic energy of the block is equal to twice the elastic potential energy of the spring?

7.

The power of an electric bulb is 60W. Calculate the electrical energy consumed in 30 days if the bulb is lighted for 12 hours per day.

8.

1000kg of water falls every second from a height of 120m. The energy of this falling water is used to generate electricity. Calculate the power of the generator assuming no losses.
3.145
145

MODULE - 1
Motion, Force and Energy

Physics
9.

The speed of a 1200 kg car is 90 km h–1 on a highway. The driver applies brakes to stop the car. The car comes to rest in 3 seconds. Calculate the average power of the brakes. 10. A 400g ball moving with speed 5 m s–1 has elastic head-on collision with another ball of mass 600g initially at rest. Calculate the speed of the balls after collision.

Notes

11. A bullet of mass 10g is fired with an initial velocity 500 m s–1. It hits a 20kg wooden block at rest and gets embedded into the block.
(a) Calculate the velocity of the block after the impact
(b) How much energy is lost in the collision?
12. An object of mass 6kg. is resting on a horizontal surface. A horizontal force of 15N is constantly applied on the object. The object moves a distance of 100m in 10 seconds.
(a) How much work does the applied force do?
(b) What is the kinetic energy of the block after 10 seconds?
(c) What is the magnitude and direction of the frictional force (if there is any)?
(d) How much energy is lost during motion?
13. A, B, C and D are four point on a hemispherical cup placed inverted on the ground.
Diameter BC = 50cm. A 250g particle at rest at A, slide down along the smooth
A
surface of the cup. Calculate it’s
(a) Potential energy at A relative to B.

(c) Kinetic and potential energy at D.

D

R E
2

(b) Speed at the point B (Lowest point).
B

O

Do you find that the mechanical energy of the block is conserved? Why?

R
R

C

14. The force constant of a spring is 400N/m. How much work must be done on the spring to stretch it (a) by 6.0cm (b) from x = 4.0cm to x = 6.0 cm, where x = 0 is the relaxed position of the spring.
15. The mass of a car is 1000kg. It starts from rest and attains a speed of 15 m s–1 in
3.0seconds. Calculate
(a) The average power of the engine.
(b) The work done on the car by the engine.

Answers to Intext Questions
6.1
1. The force always works at right angle to the motion of the particle. Hence no work is done by the force.
2. (a) Work done is zero (i) when there is no displacement of the object. (ii) When the angle between force and the displacement is 90º.
When a mass moves on a horizontal plane the work done by gravitation force is zero. 146

Work Energy and Power
(b) When a particle is thrown verically upwards, the work done by gravitational force is negative.

MODULE - 1
Motion, Force and Energy

(c) When a particle moves in the direction of force, the work done by force is positive.
3. (a) W = mgh = 2 × 9.8 × 5 = + 98 J
(b) The work done by gravity is –98 J j 4. F = (2 ˆ + 3 ˆ ) i Notes

j d = (– ˆ + 2 ˆ ) i j j = (2 ˆ + 3 ˆ ) . (– ˆ + 2 ˆ ) i i

W = F.d
–2 + 6 = 4 j 5. F = (5 ˆ + 3 ˆ ) i j d = (3 ˆ + 4 ˆ ) i (a) | d | =

9 + 16 =

25 = 5 m

(b) | F | =

25 + 9 =

34 = 5.83

(c) W = F.d

j j = (5 ˆ + 3 ˆ ) . (3 ˆ + 4 ˆ ) i i

= 15 + 12 = 27 J

6.2
1.

Spring constant is defined as the restoring force per unit displacement. Thus, it is measured in Nm–1.

2. k =

10N
10N
=
= 100 N m
1cm
1/100m

N⎞

As F = kx for x = 50 cm. F = ⎜100 ⎟ (0.5 m)

m⎠
= 50 N.
W =

1 100N ⎛ 5
5 ⎞ 2
1 2
×
×⎜
×
m kx =
⎝ 100 100 ⎟

2 m 2

= 1.25 N m = 1.25 J.

6.3
1. P =

mgh (100 × 9.8 × 8)
=
J = 784W. t 10 s

2. 10 H.P = (10 × 746) W =

10 × 746
W
1000

= 7.46 kW

6.4
1. k.E. =

1 mv2. It is never negative because
2

3.147
147

MODULE - 1

Physics

Motion, Force and Energy

(i) m is never negative
(ii) v2 is always positive.
2. (a) K.E =

1 mv2 = E
2

When v is made 2v , K.E becomes 4 times and E becomes 4E

Notes

(b) When m becomes

E m , E becomes
2
2

P.E. of spring =

1 2 kx = 3.6 J
2



2 × 3.6 2 × 3.6
=
= 0.04m
180
k

3.

x2 =

and

x = 0.2m = 20cm.

4. v2 = u2 – 2as Final velocity is zero and initial velocity is



25 × 25 u2 = a = 2 × 15 = 20.83 ms–2
2s

F = ma = 1000 × 20.83= 20830N.
Power =

W
20830 × 15
=
= 12498W
25
t

5. Work done by external force = 375 J
Work done by spring = – 375 J

6.5
1. (a) O, no change in P.E.
(b) Change in P.E. = mgh = 2 × 9.8 × 4 = 78.4 J
(c) Change in P.E. = 78.4 J.
(d) – 78.4 J.
2. (a) Change in P.E. from = mgh = 0.5 × 9.8 × 4 = 19.6 J
K.E. at B = v2 =

1 mv2 = 19.6 J
2

19.6 × 2
0.5

v2 = 78.4 ⇒ v = 8.85 m s–1

148

90km
= 25ms–1 h Work Energy and Power

MODULE - 1
Motion, Force and Energy

b) v = 14 m s–1
(c) mgh = 0.5 × 9.8 × 10 = 49.0 J (+ positive)
W = +49 J
3. BC = 2m
AC
= sin30º
BC

Notes

AC = BC sin30º
=2×

1
=1
2

Change in P.E. from C to B = mgh = 2 × 9.8 × 1

= 19.6 J

But the K.E. at B is = 15.6 J
Energy lost = 19.6 – 15.6 = 4J
This loss is due to frictional force
4J = F × d = F × 2
F = 2N
4. When the bob of a simple pendulum oscillates, its K.E. is max at x = 0 and min at x = xm. The P.E. is min at x = 0 and max at x = xm. Hence A represents the P.E. curve.
5. No.

6.6
1. (a) No, because, it will go against the low of conservation of linear momentum.
(b) yes.
2.

v

A

B

C

vA = 0, vB = 0, vC = v
Q This condition only satisfies the laws of conservation of (i) linear momentum and
(ii) total kinetic energy.
3. v Af =

=

v Ai (mA – mB )
2mBv Bi
+
mA + mB mA + mB
2 × 4 × ( −40 ) 50 ( −2 )

6
6

= −

320 100
+
6
6

= −

220
6

3.149
149

MODULE - 1

Physics
= – 35ms–1.

Motion, Force and Energy

v Bf = –

(mB – mA ) v Bi
2mAv Ai
+
(mA + mB ) mA + mB

=

2 × 2 × 50 ( −40)( 4 − 2 )
+
6
6

=

200 80

6
6

=

Notes

120
6

= 20 ms–1.

Thus ball A returns back with a velocity of 35 ms–1 and ball B moves on with a velocity of 20 ms–1.
4. (a) 1.76 ms–1.
(b) 81 J and 1.58 J
(c) Inelastic collision
(d) 79.42 J
5. yes, but the total energy of both the balls together after collision is the same as it was before collision.

Answers to Terminal Problem
5. 1 m.
6. 0.707 m
7. 21.6 kW
8. 1.2 mega watt
9. 125 kW
10.

1
19
m s–1, ms–1 4
6

11. (a) 0.25 m s–1
(b) 1249.4 J
12. (a) 1500 J

(b) 1200 J

(c) 3 N opposite to the direction of motion

(d) 300 J

5 m s–1

13. (a) 0.625 J
14. (a) 0.72 J

(b) 0.4 J

15. (a) 37.5 kW
150

(b)

(b) 1.125 × 105 J

(c) 0.313 J

Motion of Rigid Body

MODULE - 1
Motion, Force and Energy

7
MOTION OF RIGID BODY

Notes

S o far you have learnt about the motion of a single object, usually taken as a point mass.
This simplification is quite useful for learning the laws of mechanics. But in real life, objects consist of very large number of particles. A tiny pebble contains millions of particles.
Do we then write millions of equations, one for each particle? Or is there a simpler way?
While discovering answer to this question you will learn about centre of mass and moment of inertia, which plays the same role in rotational motion as does mass in translational motion. You will also study an important concept of physics, the angular momentum. If no external force acts on a rotating system, its angular momentum in conserved. This has very important implications in physics. It enables us to understand how a swimmer is able to somersault while diving from a diving board into the water below.

Objectives
After studying this lesson, you should be able to : define the centre of mass of a rigid body; explain why motion of a rigid body is a combination of translational and rotational motions; define moment of inertia and state theorems of parallel and perpendicular axes; define torque and find the direction of rotation produced by it; write the equation of motion of a rigid body; state the principle of conservation of angular momentum; and calculate the velocity acquired by a rigid body at the end of its motion on an inclined plane.
3.151
151

MODULE - 1
Motion, Force and Energy

Notes

Physics

7.1 Rigid Body
As mentioned earlier, point masses are ideal constructs, brought in for simplicity in discussion. In practice, when extended bodies interact with each other and the distances between them are very large compared to their sizes, their sizes can be ignored and they may be treated as point masses. Can you give two examples of such cases where the sizes of the bodies are not important? Sizes of stars are small as compared to the size of the galaxy. So, stars can be considered as point masses. Similarly, in the earth-moon system, moon’s size can be ignored. But when we have to consider the rotation of a body about an axis, the size of the body becomes important. When we consider the rotation of a system, we generally assume that during rotation, the distances between its constituent particles remain fixed. Such a system of particles is called a rigid body.
A rigid body is one in which the separation between the constituent particles does not change with its motion.
This definition implies that the shape of a rigid body is preserved during its motion. However, like a point mass, a rigid body is also an idealisation because, if we apply large forces, the distances between particles do change, may be infinitesimally. Therefore, in nature there is nothing like a perfectly rigid body. For most purposes, a solid body is good enough approximation to a rigid body. A cricket ball, a wooden block, a steel disc, even the earth and the moon could be considered as rigid bodies in this lesson.
Can water in a bucket be considered a rigid body? Obviously, water in a bucket cannot be a rigid body because it changes shape as bucket is pushed around.
You may now like to check what you have understood about a rigid body.

Intext Questions 7.1
1.

A frame is made of six wooden rods. The rods are firmly attached to each other. Can this system be considered a rigid body?
..................................................................................................................................

2.

Can a heap of sand be considered a rigid body? Explain your answer.
..................................................................................................................................

7.2 Centre of Mass (C.M.) of a Rigid Body
Before we deal with rigid bodies consisting of several particles, let us consider a simpler case. Suppose we have a system of two particles having same mass joined by weightless and inextensible rod. Can we consider this system as a rigid body?
In this system, the distance between the two particles is fixed. So it is a rigid body.
Suppose that the two particles are at heights z1 and z2 from a horizontal surface (Fig. 7.1).
Suppose further that the gravitational force is uniform in the small region in which the two particles move about. The force on each particle will be mg. The total force acting on the system is therefore 2mg. We have now to find a point C somewhere in the system so that

152

Motion of Rigid Body if a force 2mg acts at that point located at a height z from the horizontal surface, the motion of the system would be the same as with two forces. The potiential energies of particles 1 and
2 are mgz1 and mgz2, respectively. The potential energy of the particle at C is 2mgz. Since this must be equal to the combined potential energy of the two particles, can write

2

z =

Motion, Force and Energy

C
1
z

z1

z2

Notes
Fig. 7.1 : Two particle system

2 mgz = mgz1 + mgz2 or MODULE - 1

(7.1)

z1 + z2
2

(7.2)

Note that the point C lies midway between the two particles. If the two masses were unequal, this point would not have been in the middle. If the mass of particle 1 is m1 and that of particle 2 is m2, Eqn. (7.1) modifies to
(m1 + m2) gz = m1gz1 + m2 gz2

(7.3)

so that

m1 z1+ m2 z2 z = (m + m )
1
2
(7.4)
The point C is called the centre of mass (CM) of the system. As such, it is a mathematical tool and there is no physical point as CM.
To grasp this concept, study the following example carefully.
Example 7.1 : If in the above case, the mass of one particle is twice that of the other, let us locate the CM.
Solution : m1= m and m2= 2 m, Then Eqn. (7.4) gives z =

m z1 + 2 m z2 z1 + 2 z2
( m + 2 m) =
3

When a body consists of several particles, we generalise Eqn (7.4) to define its CM : If the particle with mass m1 has coordinates (x1, y1, z1) with respect to some coordinate system, mass m2 has coordinates (x2, y2, z2) and so on (Fig.7.2), the coordinates of
CM are given by
N

m1 x1 + m2 x2 + ... x = m1 + m2 + ... =

∑m

xi

i

i

N

∑m

(7.5)

i

i =1

3.153
153

MODULE - 1

Physics

Motion, Force and Energy
N

y′ m1 m3

=

∑m

M

x1, y1, z1 m2 Cº x2, y2, z2

Notes

O

m4

xi

i

i =1

N

Similarly

m5

y=

∑m

i

yi

i =1

(7.6)

M x N

z

Fig. 7.2 : C.M. of a body consisting of several particles and

z=

∑m

i

i =1

zi

(7.7)

M
N

where

∑m i =1

i

denotes the sum over all the particles

N

and, therefore,

∑m

i

is the total mass of the body, M.

i=1

Why should we define CM so precisely?
Recall that the rate of change of displacement is velocity, and the rate of change of velocity is acceleration. If a1x denotes the component of acceleration of particle 1 along the x-axis and so on, from Eqn. (7.5), we can write
M ax = m1 a1x + m2 a2x +...

(7.8)

where ax is the acceleration of the centre of mass along x-axis. Similar equations can be written for accelerations along y- and z-axes. These equations can, however, be combined into a single equation using vector notation :
M a = m1 a1 + m2 a2 +...

(7.9)

But the product of mass and acceleration is force. m1 a1 is therefore the sum of all forces acting on particle 1. Similarly, m2 a2 gives the net force acting on particle 2. The right hand side is, thus, the total force acting on the body.
The forces acting on a body can be of two kinds. Some forces can be due to sources outside the body. These forces are called the external forces. A familiar example is the force of gravity. Some other forces arise due to the interaction among the particles of the body. These are called internal forces. A familiar example is cohesive force.
In the case of a rigid body, the sum of the internal forces is zero because they cancel each other in pairs. Therefore, the acceleration of individual particles of the body are due to the sum or resultant of the external forces. In the light of this, we may write Eqn. (7.9) as
(7.10)
M a = Fext
This shows that the CM of a body moves as though the entire mass of the body were located at that point and it was acted upon by the sum of all the external forces acting on the body. Note the simplification introduced in the derivation by defining the centre of mass. We donot have to deal with millions of individual particles now, only the centre of mass needs to be located to determine the motion of the given body. The fact
154

Motion of Rigid Body

MODULE - 1

that the motion of the CM is determined by the external forces and that the internal forces have no role in this at all leads to very interesting consequences.

Motion, Force and Energy

You are familiar with the motion of a projectile. Can you recall what path is traced by a projectile? Y
The motion is along a parabolic path. Suppose the projectile is a bomb which explodes in mid
Explosion
air and breaks up into several fragments. The explosion is caused by the internal forces.
There is no change in the external force, which is the force of gravity. The centre of mass of
Path of the projectile, therefore, continues to be the
CM
same parabola on which the bomb would have moved if it had not exploded (Fig. 7.3). The
X
O fragments may fly in all directions on different parabolic paths but the centre of mass of the Fig.7.3 : Centre of mass of a projectile various fragments will lie on the original parabola.

Notes

You might have now understood the importance of the concept of centre of mass of a rigid body. You will encounter more examples of importance in subsequent sections. Let us therefore see how the centre of mass of a system is obtained by taking a simple example. y
Example 7.2 : Suppose four masses, 1.0 kg,
2.0 kg, 3.0 kg and 4.0 kg are located at the corners of a square of side 1.0 m. Locate its centre of mass?
Solution : We can always make the square lie in a plane. Let this plane be the (x,y) plane.
Further, let us assume that one of the corners coincides with the origin of the coordinate system and the sides are along the x and y axes. The coordinates of the four masses are : m1 (0,0), m2 (1.0,0), m3 (1.0,1.0) and m4 (0, 1.0), where all distances are expressed in metres
(Fig.7.4).
From Eqns. (7.5) and (7.6), we get x =

m4 (0, 1.0)

(0, 0.7)

m1 (0, 0)
O

m3

)
, 0.7
(0.5
C

(0.5, 0)

(1.0, 1.0)

(1.0,0) m2 x

Fig. 7.4 : Locating CM of four masses placed at the corners of a square

10 × 0 + 2.0 × 10 + 3.0 × 10 + 4.0 × 0
.
.
.
m
10 + 2.0 + 3.0 + 4.0
.

= 0.5 m and y =

10 × 0 + 2.0 × 0 + 3.0 × 10 + 4.0 × 10
.
.
.
m
10 + 2.0 + 3.0 + 4.0
.

= 0.7 m
The CM has coordinates (0.5 m, 0.7 m) and is marked C in Fig.7.4. Note that the CM is not at the centre of the square although the square is a symmetrical figure.
What could be the reason for the CM not being at the centre? To discover answer to this question, calculate the coordinates of CM if all masses are equal.

3.155
155

MODULE - 1
Motion, Force and Energy

Notes

Physics

7.2.1 CM of Some Bodies
The position of centre of mass of extended bodies can not be easily calculated because a very large number of particles constituting the body have to be considered. The fact that all the particles of a rigid body have same mass and are uniformly distributed makes things somewhat simpler. If the body is regular in shape and possesses some symmetry, say it is cylindrical or spherical, the calculation is a little bit simplified. But even such calculations are beyond the scope of this course. However, keeping in mind the importance of CM, we give in
Table 7.1 the position of CM of some regular, symmetrical bodies.
Two things must be remembered about the centre of mass : (i) It may be outside the body as in case of a ring. (ii) When two bodies revolve around each other, they actually revolve around their common centre of mass. For example, stars in a binary system revolve around
Table 7.1 Centres of Mass of some regular symmetrical bodies

Figure

Position of Centre of Mass
Triangular plate
Point of intersection of the three medians

Regular polygon and circular plate
At the geometrical centre of the figure

Cylinder and sphere
At the geometrical centre of the figure

Pyramid and cone
On line joining vertex with centre of base and at h/4 of the height measured from the base.

Figure with axial symmetry
Some point on the axis of symmetry

Figure with centre of symmetry
At the centre of symmetry

156

Motion of Rigid Body their common centre of mass. The Earth-Sun system also revolves around its common centre of mass. But since mass of the Sun is very large as compared to the mass of earth, the centre of mass of the system is very close to the centre of the Sun.

MODULE - 1
Motion, Force and Energy

Now it is time to check your progress.

Intext Questions 7.2
1.

The grid shown here has particles A, B, C,
D and E respectively have masses 1.0 kg,
2.0kg, 3.0 kg, 4.0 kg and 5.0 kg. Calculate the coordinates of the position of the centre of mass of the system (Fig. 7.5).
.........................................................

2.

If three particles of masses m1 =1 kg, m2 =
2 kg, and m3 = 3 kg are situated at the corners of an equilateral triangle of side
1.0 m, obtain the position coordinates of the centre of mass of the system.
............................................................

3.

Notes

Show that the ratio of the distances of the
Fig. 7.5 two particles from their common centre of mass is inversely proportional to the ratio of their masses.
..........................................................................................................................

7.3 Translational and Rotational Motion of a Rigid Body :
A Comparison
When a rigid body moves in such a way that all its particles move along parallel paths
(Fig.7.6), its motion is called translational motion. Since all the particles execute identical motion, its centre of mass must also be tracing out an identical path. Therefore, the translational motion of a body may be characterised by the motion of its centre of mass.
We have seen that this motion is given by Eqn.(7.10) :
M a = Fext
Do you now see the advantage of defining the centre of mass of a body? With its help, the translational motion of body can be described by an equation for a single particle having mass equal to the mass of the whole body. It is located at the centre of mass and is acted upon by the sum of all the external forces which are acting on the rigid body. To understand the concept clearly, perform the following activities.

3.157
157

MODULE - 1

Physics

Motion, Force and Energy

Activity 7.1

Notes

Take a wooden block. Make two or three marks on any of its surfaces. Now keep the marked surface in front of you and push the block along a horizontal floor. Note the paths traced by the marks. All these marks have paths parallel to the floor and, therefore, parallel to one another
(Fig. 7.6). You can easily see that the lengths of the paths are also equal.

Fig. 7.6 : A wooden block moving along the floor performs translational motion.

Activity 7.2

A
B

B

A

B

Let us now perform another simple experiment.
Take a cylindrical piece of wood. On its plane face make a mark or two. Now roll the cylinder slowly on the floor, keeping the plane face towards you.
You would notice that the mark such as A in
Fig. 7.7, has not only moved parallel to the floor, but has also performed circular motion. So, the body has performed both translational and rotational motion. A

Fig. 7.7 : Rolling motion of a cylinder:
The point A has not only moved parallel to the floor but also performed circular motion While the general motion of a rigid body consists of both translation and rotation, it cannot have translational motion if one point in the body is fixed; it can then only rotate. The most convenient point to fix for this purpose is the CM of the body.
You might have seen a grinding stone (the chakki). The handle of the stone moves in a circular path. All the points on the stone also move in circular paths around an axis passing through the centre of the stone (Fig.7.8).
The motion of a rigid body in which all its constituent particles describe concentric circular paths is known as rotational motion.

Fig. 7.8 : Pure rotation of a grinding stone
A
A

B

B

A
B

A

B
B

Fig. 7.9 : Rotation of the earth
A

158

We have noted above that translational motion of a rigid body can be described by an equation similar to that of a single particle. You are familiar with such equations. Therefore, in this lesson we concentrate only on the rotational motion of a rigid body. The rotational motion can be obtained by keeping a point of the body fixed so that it cannot have any translational motion. For the sake of

Motion of Rigid Body

MODULE - 1
Motion, Force and Energy

mathematical convenience, this point is taken to be the CM. The rotation is then about an axis passing through the CM. A good example of rotational motion is the earth’s rotation about its own axis (Fig. 7.9). You have studied in earlier lessons that the mass of the body plays a very important role. It determines the acceleration acquired by the body for a given force. Can we define a similar quantity for rotational motion also? Let us find out.

m1 r1 m3

7.3.1 Moment of Inertia

r3

r2

m2

Notes

Fig. 7.10 :Rotation of a plane lamina about an axis passing through its centre of mass

Let C be the centre of mass of a rigid body.
Suppose it rotates about an axis through this point
(Fig.7.10).

Suppose particles of masses m1, m2, m3...are located at distances r1, r2, r3...from the axis of rotation and are moving with speeds v1, v2, v3 respectively. Then particle 1 has kinetic
2
2 energy (½) m1 v1 . Similarly, the kinetic energy of particle of mass m2 is (½) m2 v 2 . By

adding the kinetic energies of all the particles, we get the total energy of the body. If T denotes the total kinetic energy of the body, we can write
2
2
T = (½) m1 v1 + (½) m2 v 2 +... i =1

=

⎛1⎞

∑⎜ 2 ⎟ m v
⎝ ⎠ i 2 i (7.11)

i =1

i =n

where

∑ i =1

indicates the sum over all the particles of the body.

You have studied in lesson 4 that angular speed (ω) is related to linear speed (v) through the equation v = r ω. Using this result in Eqn. (7.11), we get i=n T =

∑ ⎛⎜⎝ 2 ⎞⎟⎠ m (r ω)
1

i

2

i

(7.12)

i =1

Note that we have not put the subscript i with w because all the particles of a rigid body have the same angular speed. Eqn. (7.12) can now be rewritten as
T =

=

1 ⎛ i=n
2⎞
2
⎜ ∑ mi ri ⎟ ω
2 ⎝ i=1

1
I ω2
2

(7.13)

The quantity
3.159
159

MODULE - 1

Physics

Motion, Force and Energy
I =

Σ mi ri

2

(7.14)

i

is called the moment of inertia of the body.

Notes

Example 7.3 : Four particles of mass m each are located at the corners of a square of side L. Calculate their moment of inertia about an-axis passing through the centre of the square and perpendicular to its plane.
Solution : Simple geometry tells us that the distance of each particle from the axis of rotation is r =L 2 . Therefore, we can write
2
2
2
2
I = mr +mr +mr +mr

= 4m r2
C
r
L
Fig. 7.11

⎛ L ⎞
= 4 m⎜

⎝ 2⎠

2

(Since r =

L
).
2

= 2 m L2

It is important to remember that moment of inertia is defined with reference to an axis of rotation. Therefore, whenever you mention moment of inertia, the axis of rotation must also be specified. In the present case, I is the moment of inertia about an axis passing through the centre of the square and normal to the plane containing four perfect masses.
(Fig. 7.10) The moment of inertia is expressed in kg m2.
The moment of inertia of a rigid body is often written as
I = M K2

(7.15)

where M is the total mass of the body and K is called the radius of gyration of the body.
The radius of gyration is that distance from the axis of rotation where the whole mass of the body can be assumed to be placed to get the same moment of inertia which the body actually has. It is important to remember that the moment of inertia of a body about an axis depends on the distribution of mass around that axis. If the distribution of mass changes, the moment of inertia will also change. This can be easily seen from
Example 7.3. Suppose we place additional masses at one pair of opposite corners of amount m each. Then the moment of inertia of the system about the axis through C and perpendicular to the plane of square would be
2
2
2
2
I = m r + 2m r + m r + 2m r
= 6m r2

Note that moment of inertia has changed from 2mL2 to 3 mL2.

160

Motion of Rigid Body
Table 7.2 Moments of inertia of a few regular and uniform bodies.

Ax

Annular cylinder (or ring) about cylinder axis Hoop about central axis
I=

2

I = MR

Ax

l
M R2
I=
2

is

M
2
( R12 + R2 )
2

Notes

Axis

Solid cylinder (or disk) about a central diameter

Solid cylinder about cylindrical axis L
I=

R

Axis

M 2 l2
M R2
+
4
12

Axis

L

I=

Motion, Force and Energy

is

R

R

MODULE - 1

M L2
12

Thin rod about an axis passing through its centre and normal to its length Thin rod about an axis passing through one end and perpendicular to length

L

I=

M L2
3

Axis

Axis

2R

I=

Thin spherical shell
2R about any diameter

Solid sphere about any diameter 2 M R2
5

2 M R2
3

I=

Axis

Axis

Hoop about any diameter

M R2
I=
2

R
1

I=

Hoop about any tangent line

3 M R2
2

Refer to Eqn.(7.13) again and compare it with the equation for kinetic energy of a body in linear motion. Can you draw any analogy? You will note that in rotational motion, the role of mass has been taken over by the moment of inertia and the angular speed has replaced the linear speed.
A. Physical significance of moment of inertia
The physical significance of moment of inertia is that it performs the same role in rotational motion that the mass does in linear motion.

3.161
161

MODULE - 1
Motion, Force and Energy

Notes

Physics
Just as the mass of a body resists change in its state of linear motion, the moment of inertia resists a change in its rotational motion. This property of the moment of inertia has been put to a great practical use. Most machines, which produce rotational motion have as one of their components a disc which has a very large moment of inertia. Examples of such machines are the steam engine and the automobile engine. The disc with a large moment of inertia is called a flywheel. To understand how a flywheel works, imagine that the driver of the engine wants to suddenly increase the speed. Because of its large moment of inertia, the flywheel resists this attempt. It allows only a gradual increase in speed. Similarly, it works against the attempts to suddenly reduce the speed, and allows only a gradual decrease in the speed. Thus , the flywheel, with its large moment of inertia, prevents jerky motion and ensures a smooth ride for the passengers.
We have seen that in rotational motion, angular velocity is analogous to linear velocity in linear motion. Since angular acceleration (denoted usually by α) is the rate of change of angular velocity, it must correspond to acceleration in linear motion.
B. Equations of motion for a uniformly rotating rigid body
Consider a lamina rotating about an axis passing through O and normal to its plane. If it is rotating with a constant angular velocity ω, as shown, then it will turn through an angle θ in t seconds such that

O

θ =ωt

θ

7.16(a)

However, if the lamina is subjected to constant torque (which is the turning effect of force), it will undergo a constant angular
P
acceleration. The following equations describe its rotational motion:
Fig. 7.12 :Rotation of
7.16(b)
ωf = ωi + α t a lamina where ωi is initial angular velocity and ωf is final angular velocity. about a
Similarly, we can write

P′

fixed nail

1 α t2
2
ω f 2 = ωi 2 + 2 α θ θ = ωi t +

7.16(c)
7.16(d)

where θ is angular dispalcement in t seconds.
On a little careful scrutiny, you can recognise the similarity of these equations with the corresponding equations of kinematics for translatory motion.
Example 7.4 : A wheel of a bicycle is free to rotate about a horizontal axis (Fig. 7.11).
It is initially at rest. Imagine a line OP drawn on it. By what angle would the line OP move in 2 s if it had a uniform angular acceleration of 2.5 rad s–2.
P
O

Fig.7.13 : Rotation of bicycle wheel

162

Motion of Rigid Body

MODULE - 1
Motion, Force and Energy

Solution : Angular displacement of line OP is given by θ = ω0 t + (½) α t2
= 0 + (½) × (2.5 rad s–2). × 4 s2
= 5 rad
We have mentioned above that for rotational motion of a rigid body, its CM is kept fixed.
However, it is just a matter of convenience that we keep CM fixed. But many a time, we consider points other than the CM. That is, a point in the body which can also be kept fixed and the body rotated about it. But then the axis of rotation will pass through this fixed point. The moment of inertia about this axis would be different from the moment of inertia about an axis passing through the CM. The relation between the two moments of inertia can be obtained using the theorems of moment of inertia.

Notes

7.3.2 Theorems of moment of inertia
There are two theorems which connect moments of inertia about two axes; one of which is passing through the CM of the body. These are :

P
C

d

(i) the theorem of parallel axes, and
(ii) the theorem of perpendicular axes.
Let us now learn about these theorems and their applications. (i) Theorem of parallel axes

Fig.7.14 : Parallel axes through CM and another point P

Suppose the given rigid body rotates about an axis passing through any point P other than the centre of mass. The moment of inertia about this axis can be found from a knowledge of the moment of inertia about a parallel axis through the centre of mass. Theorem of parallel axis states that the moment of inertia about an axis parallel to the axis passing through its centre of mass is equal to the moment of inertia about its centre of mass plus the product of mass and square of the perpendicular distance between the parallel axes. If I denotes the required moment of inertia and IC denotes the moment of inertia about a parallel axis passing through the CM, then
I = IC + M d

2

(7.17)

where M is the mass of the body and d is the distance between the two axes (Fig. 7.12).
This is known as the theorem of parallel axes.
(ii) Theorem of perpendicular axes
Let us choose three mutually perpendicular axes, two of which, say x and y are in the plane of the body, and the third, the z–axis, is perpendicular to the plane (Fig.7.13). The perpendicular axes theorem states that the sum of the moments of inertia about x and y axes is equal to the moment of inertia about the z–axis.
3.163
163

MODULE - 1

Physics

Motion, Force and Energy

I = MR2

z

Id
90º

Id

O y Notes

x
Fig.7.15 : Theorem of perpendicular axes

Fig.7.16 : Moment of inertia of a hoop

That is,
I z = Ix + Iy
We now illustrate the use of these theorems by the following example.

(7.18)

Let us take a hoop shown in Fig. 7.16. From Table 7.2 you would recall that moment of inertia of a hoop about an axis passing through its centre and perpendicular to the base is
M R2, where M is its mass and R is its radius. The theorem of perpendicular axes tells us that this must be equal to the sum of the moments of inertia about two diameters which are perpendicular to each other as well as to the central axis. The symmetry of the hoop tells us that the moment of inertia about any diameter is the same as about any other diameter.
This means that all the diameters are equivalent and any two perpendicular diameters may be chosen. Since the moment of inertia about each is the same, say
Id, Eqn.(7.18) gives
M R2 = 2 Id and therefore
I d = (½) MR2
So, the moment of inertia of a hoop about any of its diameter is (½) M R2.
Let us now take a point P on the rim. Consider a tangent to the hoop at this point which is parallel to the axis of the hoop. The distance between the two axes is obviously equal to R.
The moment of inertia about the tangent can be calculated using the theorem of parallel axes. It is given by
I tan = M R2 + M R2 = 2 M R2.
It must be mentioned that many of the entries in Table 7.2 have been computed using the theorems of parallel and perpendicular axes.

7.3.3 Torque and Couple
Activity 7.3
Have you ever noticed that it is easy to open the door by applying force at a point far away from the hinges? What
O
happens if you try to open a door by applying force near the hinges? Carry out this activity a few times. You would realise r that much more effort is needed to open the door if you apply
S
force near the hinges than at a point away from the hinges.
F
θ
Why is it so? Similarly, for turning a screw we use a spanner
B
A with a long handle. What is the purpose of keeping a long
Fig.7.17 : Rotation of a body handle? Let us seek answers to these questions now.
164

Motion of Rigid Body
Suppose O is a fixed point in the body and it can rotate about an axis passing through this point (Fig.7.17). Let a force of magnitude F be applied at the point A along the line AB. If
AB passes through the point O, the force F will not be able to rotate the body. The farther is the line AB from O, the greater is the ability of the force to turn the body about the axis through O. The turning effect of a force is called torque. Its magnitude is given by τ = F s = F r sin θ

(7.19)

MODULE - 1
Motion, Force and Energy

Notes

where s is the distance between the axis of rotation and the line along which the force is applied. The units of torque are newton-metre, or Nm. The torque is actually a vector quantity. The vector from of Eqn.(7.19) is τ =r×F

O

τ

r

(7.20)

S

which gives both magnitude and direction of the torque. θ What is the direction in which the body would turn? To F discover this, we recall the rules of vector product (refer to lesson 1) : τ is perpendicular to the plane containing vectors r and F, which is the plane of paper here
Fig. 7.18 : Right hand thumb rule
(Fig.7.18). If we extend the thumb of the right hand at right angles to the fingers and curl the fingers so as to point from r to F through the smaller angle, the direction in which thumb points is the direction of τ.
Apply the above rule and show that the turning effect of the force in Fig. 7.18 is normal to the plane of paper downwards. This corresponds to clockwise rotation of the body.
Example 7.5 : Fig.7.19 shows a bicycle pedal. Suppose your foot is at the top and you are pressing the pedal downwards. (i) What torque do you produce? (ii) Where should your foot be for generating maximum torque?
F
B

F

(b)
(a
)

Fig.7.19 : A bicycle pedal (a) at the top when τ = 0; (b) when τ is maximum

Solution : (i) When your foot is at the top, the line of action of the force passes through the centre of the pedal. So, θ = 0, and τ = Fr sinθ = 0.
(ii) To get maximum torque, sinθ must have its maximum value, that is θ must be 90º. This happens when your foot is at position B and you are pressing the pedal downwards.

3.165
165

MODULE - 1

Physics

Motion, Force and Energy

F
A
b

Notes
F
B

a o Fig.7.20 : Two opposite forces acting on body

If there are several torques acting on a body, the net torque is the vector sum of all the torques. Do you see any correspondence between the role of torque in the rotational motion and the role of force in the linear motion? Consider two forces of equal magnitude acting on a body in opposite directions (Fig.7.20).
Assume that the body is free to rotate about an axis passing through O. The two torques on the body have magnitudes

τ 1 = (a + b) F τ 2 = a F.

and
A

O

P r You can verify that the turning effect of these torques are in the opposite directions. Therefore, the magnitude of the net turning effect on the body is in the direction of the larger torque, which in this case is τ1 :

τ = τ1 – τ2 = bF

(7.21)

We may therefore conclude that two equal and opposite forces having different lines of action
Fig. 7.21 : A rigid body rotating are said to form a couple whose torque is equal about on axis to the product of one of the forces and the perpendicular distance between them.
There is another useful expression for torque which clarifies its correspondence with force in linear motion. Consider a rigid body rotating about an axis passing through a point
O (Fig. 7.21). Obviously, a particle like P is rotating about the axis in a circle of radius r. If the circular motion is non–uniform, the particle experiences forces in the radial direction as well as in the tangential direction. The radial force is the centripetal force m ω2 r, which keeps the particle in the circular path. The tangential force is required to change the magnitude of v, which at every instant is along the tangent to the circular path. Its magnitude is m a, where a is the tangential acceleration. The radial force does not produce any torque. Do you know why? The tangential force produces a torque of magnitude m a r. Since a = r α, where α is the angular acceleration, the magnitude of the torque is m r2
α. If we consider all the particles of the body, we can write i=n ⎛
2⎞
τ = ∑ mi ri2 α = ⎜ ∑ mi r1 ⎟ α i=0 ⎝ i

= I α.

166

(7.22)

Motion of Rigid Body

MODULE - 1
Motion, Force and Energy

because α is same for all the particles at a given instant.
The similarity between this equation and F = m a shows that τ performs the same role in rotational motion as F does in linear motion. A list of corresponding quantities in rotational motion and linear motion is given in Table 7.3. With the help of this table, you can write any equation for rotational motion if you know its corresponding equation in linear motion.
Table 7.3 : Corresponding quantities in rotational and translational motions
Translational Motion

Notes

Rotation about a Fixed Axis
Angular displacement

θ

Angular velocity

ω=

dθ dt Angular acceleration

α=

dω dt M
F=ma

Moment of inertia
Torque

I τ=Iα Work

W=

Work

W=

Kinetic energy

½M v2

Kinetic energy

(½) I ω2

Power

P = Fv

Power

P=τω

Linear momentum

Mv

Angular momentum



Displacement

x

Velocity

v =

Acceleration

a=

Mass
Force

dx dt dv dt z

F dx

z

τ dθ

With the help of Eqn.(7.22) we can calculate the angular acceleration produced in a body by a given torque.
Example 7.6 : A uniform disc of mass 1.0 kg and radius
0.1m can rotate about an axis passing through its centre and normal to its plane without friction. A massless string goes round the rim of the disc and a mass of 0.1 kg hangs at its end
(Fig.7.22). Calculate (i) the angular acceleration of the disc,
(ii) the angle through which the disc rotates in one second, and (iii) the angular velocity of the disc after one second. Take g = 10 ms–2
Solution : (i) If R and M denote the radius and mass of the disc, from Table 7.2, we recall that its moment of inertia is given by I = (½) M R2. If F denotes the magnitude of force (= m g) due to the mass at the end of the string then τ = F R.
Eqn. (7.22) now gives

1m

0.1kg
Fig. 7.22

α = τ /I = FR/I = 2F/MR
2

2 × (0.1kg) × (10ms – )
=
= 20 rad s–2.
(1.0 kg) × (0.1 m)
3.167
167

MODULE - 1
Motion, Force and Energy

Physics
(ii) For angle θ through which the disc rotates, we use Eqn.(7.16). Since the initial angular velocity is zero, we have θ = (½) × 20 × 1.0 = 10 rad
(iii) For the velocity after one second, we have ω = α t = 20 × 1.0 = 20 rad s–1

Notes

Now, you may like to check your progress.Try the following questions.

Intext Questions 7.3 m r

P
Axis ⊥ to the plane r
Q
m

2.

1. Four particles, each of mass m, are fixed at the corners of a square whose each side is of length r.
Calculate the moment of inertia about an axis
Axis
along passing through one of the corners and the perpendicular to the plane of the square. Calculate side also the moment of inertia about an axis which is r along one of the sides. Verify your result by using the theorem of perpendicular axes.
R
.................................................................................................... m Calculate the radius of gyration of a solid sphere if the axis is a tangent to the sphere.
(You may use Table 7.2)
.........................................................................................................................

7.4 Angular Momentum
From Table 7.3 you may recall that rotational analogue of linear momentum is angular momentum. To understand its physical significance, we would like you to do an activity.

Activity 7.4
If you can get hold of a stool which can rotate without much friction, you can perform an interesting experiment. Ask a friend to sit on the stool with her arms folded. Make the stool rotate fast. Measure the speed of rotation. Ask your friend to stretch her arms and measure the speed again. Do you note any change in the speed of rotation of the stool?
Ask her to fold her arms once again and observe the change in the speed of the stool.
Let us try to understand why we expect a change in the speed of rotation of the stool in two cases : sitting with folded and stretched hands. For this, let us again consider a rigid body rotating about an axis, say z–axis through a fixed point O in the body. All the points of the body describe circular paths about the axis of rotation with the centres of the paths on the axis and have angular velocity ω. Consider a particle like P at distance ri from the axis

168

Motion of Rigid Body
(Fig. 7.20). Its linear velocity is vi = riω and its momentum is therefore mi ri ω. The product of linear momentum and the distance from the axis is called angular momentum, denoted by L. If we sum this product for all the particles of the body, we get
L = ∑ mi ω ri ri = i F mrI
GH Σ JK ω

vi
P

Notes

ri
O

i

i

=Iω

Motion, Force and Energy

z

2

i

MODULE - 1

(7.23)

Fig.7.23 : A rigid body rotating
Remember that the angular velocity is the same for all about an axis through ‘O’ the particles and the term within brackets is the moment of inertia. Like the linear momentum, the angular momentum is also a vector quantity. Eqn. (7.23) gives only the component of the vector L along the axis of rotation. It is important to remember that I must refer to the same axis. The unit of angular momentum is kg m2 s–1

Recall now that the rate of change of ω is α and I α = τ. Therefore, the rate of change of angular momentum is equal to torque. In vector notation, we write the equation of motion of a rotating body as dL dt

=τ =I

dω dt =Iα

(7.24)

7.4.1 Conservation of angular momentum
Eqn. (7.24) shows that if there is no net torque acting on the body,

dL

= 0. This dt means that there is no change in angular momentum, i.e. the angular momentum is constant. This is the principle of conservation of angular momentum. Along with the conservation of energy and linear momentum, this is one of the most important principles of physics.
The principle of conservation of angular momentum allows us to answer questions such as : How the direction of toy umbrella floating in air remains fixed? The trick is to make it rotate and thereby impart it some angular momentum. Once it goes in air, there is no torque acting on it. Its angular momentum is then constant. Since angular momentum is a vector quantity, its constancy implies fixed direction and magnitude. Thus, the direction of the toy umbrella remains fixed while it is in air.
In the case of your friend on the rotating stool; when no net torque acts on the stool, the angular momentum of the stool and the person on it must be conserved. When the arms are stretched, she causes the moment of inertia of the system to increase.
Eqn. (7.23) then implies that the angular velocity must decrease. Similarly, when she folds her arms, the moment of inertia of the system decreases. This causes the angular velocity to increase. Note that the change is basically caused by the change in the moment of inertia due to change in distance of particles from the axis of rotation.
3.169
169

MODULE - 1
Motion, Force and Energy

Physics
Let us look at a few more examples of conservation of angular momentum. Suppose we have a spherical ball of mass M and radius R. The ball is set rotating by applying a torque on it. The torque is then removed. When there is no external torque, whatever angular momentum the ball has acquired must be conserved. Since moment of inertia of the ball is
(2/5) M R2 (Table 7.2), its angular momentum is given by

Notes

L =

2
M R2 ω
5

(7.25)

where ω is its angular velocity. Imagine now that the radius of the ball somehow decreases.
To conserve its angular momentum, ω must increase and the ball must rotate faster. This is what really happens to some stars, such as those which become pulsars (see Box on page 176).
What would happen if the radius of the ball were to increase suddenly?
You can again use Eqn.(7.25) to show that if R increases, ω must decrease to conserve angular momentum. If instead of radius, the moment of inertia of the system changes some how, ω will change again. For an interesting effect of this kind see Box below
The length of the day is not constant

Fig.7.24 : Diver, Sommer saulting after jumping off the diving boards.

Scientists have observed very small and irregular variations in the period of rotation of the earth about its axis, i.e. the length of the day. One of the causes that they have identified is weather. Due to changes in weather, large scale movement in the air of the earth’s atmosphere takes place. This causes a change in the mass distribution around the axis of the earth, resulting in a change in the moment of inertia of the earth. Since the angular momentum of the earth L = I ω must be conserved, a change in I means a change in rotational speed of the earth, or in the length of the day.

Acrobats, skaters, divers and other sports persons make excellent use of the principle of conservation of angular momentum to show off their feats. You must have seen divers jumping off the diving boards during swimming events in national or international events such as Asian Games, Olympics or National meets. At the time of jumping, the diver gives herself a slight rotation, by which she acquires some angular momentum. When she is in air, there is no torque acting on her and therefore her angular momentum must be conserved.
If she folds her body to decrease her moment of inertia (Fig. 7.24) her rotation must become faster. If she unfolds her body, her moment of inertia increases and she must rotate slowly. In this way, by controlling the shape of her body, the diver is able to demonstrate her feat before entering into pool of water.
Example 7.7 : Shiela stands at the centre of a rotating platform that has frictionless bearings. She holds a 2.0 kg object in each hand at 1.0 m from the axis of rotation of the
170

Motion of Rigid Body system. The system is initially rotating at 10 rotations per minute. Calculate a) the initial angular velocity in rad s–1, b) the angular velocity after the objects are brought to a distance of 0.2 m from the axis of rotation, and (c) change in the kinetic energy of the system. (d)
If the kinetic energy has increased, what is the cause of this increase? (Assume that the moment of inertia of Shiela and platform ISP stays constant at 1.0 kg m2.)

Motion, Force and Energy

Notes

Solution : (a) 1 rotation = 2π radian
∴ initial angular velocity ω =

MODULE - 1

10 × 2π radian
= 1.05 rad s–1
60 s

(b) The key idea here is to use the law of conservation of angular momentum. The initial moment of inertia

I i = I SP+ m ri 2 + m ri 2
= 1.0 kg m2 + (2.0 kg) × (1 m2) + (2.0 kg) × (1 m2)
= 5.0 kg m2.

After the objects are brought to a distance of 0.2 m, final moment of inertia.
2
2
I t = ISP + mrf + mr f

= 1.0 kg m2 + 2.0 kg × (0.2)2 m2 + 2.0 kg × (0.2)2 m2
= 1.16 kg m2.
Conservation of angular momentum requires that
I i ωi = I f ωf or I i ωi ωf = I f (5.0 kg m 2 ) ×1.05 rad s –1
=
1.16 kg m 2

= 4.5 rad s–1
Suppose the change in kinetic energy of rotation is ∆E. Then
∆E =
=

1
1
2
If ω 2f – Ii ωi
2
2

1
1
× 1.16 kg m2 × (4.5)2 (rad s–1)2 –
× 5.0 kg m2
2
2

× (1.05)2 (rad s–1)2
= 9.05J
Since final kinetic energy is higher than the initial kinetic energy, there is an increase in the kinetic energy of the system.
(d) When Shiela pulls the objects towards the axis, she does work on the system. This work goes into the system and increases its kinetic energy.
3.171
171

MODULE - 1

Physics

Motion, Force and Energy

Intext Questions 7.4
1.

A hydrogen molecule consists of two identical atoms, each of mass m and separated by a fixed distance d. The molecule rotates about an axis which is halfway between the two atoms, with angular speed ω. Calculate the angular momentum of the molecule.

Notes
..................................................................................................................................
2.

A uniform circular disc of mass 2.0 kg and radius 20 cm is rotated about one of its diameters at an angular speed of 10 rad s–1. Calculate its angular momentum about the axis of rotation.
..................................................................................................................................

3.

A wheel is rotating at an angular speed ω about its axis which is kept vertical. Another wheel of the same radius but half the mass, initially at rest, is slipped on the same axle gently. These two wheels then rotate with a common speed. Calculate the common angular speed.
..................................................................................................................................

4.

It is said that the earth was formed from a contracting gas cloud. Suppose some time in the past, the radius of the earth was 25 times its present radius. What was then its period of rotation on its own axis?
..................................................................................................................................

7.5 Simultaneous Rotational and Translational Motions
We have already noted that if a point in a rigid body is not fixed, it can possess rotational motion as well as translational motion. The general motion of a rigid body consists of both these motions. Imagine
P
the motion of an automobile wheel on a plane horizontal surface. Suppose you are observing the circular face
(Fig.7.25). Fix your attention at a point P and at the centre
C
C of the circular face. Remember that the centre of mass of the wheel lies at the centre of its axis and C is the end point of the axis. As it rolls, you would notice that point P rotates round the point C. The point C itself gets translated in the direction of motion. So the wheel has both the rotational and translational motions. If point C or the centre
Fig.7.25
of mass gets translated with velocity vcm , the kinetic energy of translation is
(KE) tr =

172

1
2
M v cm
2

(7.26)

Motion of Rigid Body where M is the mass. And if ω is the angular speed of rotation, the kinetic energy of rotation is
(KE) rot =

1
I ω2
2

MODULE - 1
Motion, Force and Energy

(7.27)

where I is the moment of inertia. The total energy of the body due to translation and rotation is the sum of these two kinetic energies. An interesting case, where both translational and rotational motion are involved, is the motion of a body on an inclined plane.

Notes

Example 7.8 : Suppose a rigid body has mass M, radius R and moment of inertia I. It is rolling down an inclined plane of height h (Fig.7.26). At the end of its journey, it has acquired a linear speed v and an angular speed ω. Assume that the loss of energy due to friction is small and can be neglected. Obtain the value of v in terms of h.
R
M h Fig.7.26 : Motion of a rigid body on an inclined plane

Solution : The principle of conservation of energy implies that the sum of the kinetic energies due to translation and rotation at the foot of the inclined plane must be equal to the potential energy that the body had at the top of the inclined plane. Therefore,
(½) Mv

2

+ ½ I ω2 = M g h

(7.28)

If the motion is pure rolling and there is no slipping, we can write v = R ω. Inserting this expression is Eqn. (7.28), we get v2 1
1
M v2 +
I 2 =Mgh
2
2
R

(7.29)

To take a simple example, let the body be a hoop. Table 7.2 shows that its moment of inertia about its own axis is MR2. Eqn.(7.29) then gives
1
1 M R2 v 2
M v2 +
=Mgh
2
2
R2

or

v = gh

(7.30)

Do you notice any thing interesting in this equation? The linear velocity is independent of mass and radius of the hoop. Its means that a hoop of any material and any radius rolls down with the same speed on the inclined plane.

3.173
173

MODULE - 1

Physics

Motion, Force and Energy

Intext Questions 7.5
1.

A solid sphere rolls down a slope without slipping. What will be its velocity in terms of the height of the slope?
..................................................................................................................................

Notes

2.

A solid cylinder rolls down an inclined plane without slipping. What fraction of its kinetic energy is translational? What is the magnitude of its velocity after falling through a height h?
..................................................................................................................................

3.

A uniform sphere of mass 2 kg and radius 10cm is released from rest on an inclined plane which makes an angle of 300 with the horizontal. Deduce its (a) angular acceleration, (b) linear acceleration along the plane, and (c) kinetic energy as it travels
2m along the plane.
..................................................................................................................................

SECRET OF PULSARS
An interesting example of the conservation of angular momentum is provided by pulsating stars. These are called pulsars. These stars send pulses of radiation of great intensity towards us. The pulses are periodic and the periodicity is extremely precise. The time periods range between a few milliseconds to a few seconds. Such short time periods show that the stars are rotating very fast. Most of the matter of these stars is in the form of neutrons. (The neutrons and protons are the building blocks of the atomic nuclei.) These stars are also called neutron stars. These stars represent the last stage in their life. The secret of their fast rotation is their tiny size.
The radius of a typical neutron star is only 10 km. Compare this with the radius of the Sun, which is about 7 × 105 km. The Sun rotates on its axis with a period of about
25 days. Imagine that the Sun suddenly shrinks to the size of a neutron star without any change in its mass. In order to conserve its angular momentum, the Sun will have to rotate with a period as short as the fraction of a millisecond.

What You Have Learnt
A rigid body can have rotational as well as translational motion.
The equation of translational motion far a rigid body may be written in the same form as for a single particle in terms of the motion of its centre of mass.
If a point in the rigid body is fixed, then it can possess only rotational motion.
The moment of inertia about an axis of rotation is defined as

Σm i i

ri2 .

The moment of inertia plays the same role in rotational motion as does the mass in linear motion.
174

Motion of Rigid Body
The turning effect of a force F on a rigid body is given by the torque τ = r × F.

MODULE - 1
Motion, Force and Energy

Two equal and opposite forces constitute a couple. The magnitude of turning effect of torque is equal to the product of one of the forces and the perpendicular distance between the line of action of forces.
The application of an external torque changes the angular momentum of the body.
When no net torque acts on a body, the angular momentum of the body remains constant. Notes

When a cylindrical or a spherical body rolls down an inclined plane without slipping, its speed is independent of its mass and radius.

Terminal Exercise
1.

The weight Mg of a body is shown generally as acting at the centre of mass of the body. Does this mean that the earth does not attract other particles?

2.

Is it possible for the centre of mass of a body to lie outside the body? Give two examples to justify your answer?

3.

In a molecule of carbon monoxide (CO), the nuclei of the two atoms are
1.13 × 10–10m apart. Locate of the centre of mass of the molecule.

4.

A grinding wheel of mass 5.0 kg and diameter 0.20 m is rotating with an angular speed of 100 rad s–1. Calculate its kinetic energy. Through what distance would it have to be dropped in free fall to acquire this kinetic energy? (Take g = 10.0 m s–2).

5.

A wheel of diameter 1.0 m is rotating about a fixed axis with an initial angular speed of 2rev s–1. The angular acceleration is 3 rev s–2.
(a) Compute the angular velocity after 2 seconds.
(b) Through what angle would the wheel turned during this time?
(c) What is the tangential velocity of a point on the rim of the wheel at t = 2 s?
(d) What is the centripetal acceleration of a point on the rim of the wheel at t = 2 s?

6.

A wheel rotating at an angular speed of 20 rads–1 is brought to rest by a constant torque in 4.0 seconds. If the moment of inertia of the wheel about the axis of rotation is 0.20 kg m2, calculate the work done by the torque in the first two seconds.

7.

Two wheels are mounted on the same axle. The moment of inertia of wheel A is
5 × 10–2 kg m2, and that of wheel B is 0.2 kg m2. Wheel A is set spinning at
600 rev min–1. while wheel B is stationary. A clutch now acts to join A and B so that they must spin together.
(a) At what speed will they rotate?
(b) How does the rotational kinetic energy before joining compare with the kinetic energy after joining?
(c) What torque does the clutch deliver if A makes 10 revolutions during the operation of the clutch?
3.175
175

MODULE - 1
Motion, Force and Energy

Physics
8.

You are given two identically looking spheres and told that one of them is hollow.
Suggest a method to detect the hollow one.

9.

The moment of inertia of a wheel is 1000 kg m2. Its rotation is uniformly accelerated.
At some instant of time, its angular speed is 10 rad s–1. After the wheel has rotated through an angle of 100 radians, the angular velocity of the wheel becomes
100 rad s–1. Calculate the torque applied to the wheel and the change in its kinetic energy. Notes

10. A disc of radius 10 cm and mass 1kg is rotating about its own axis. It is accelerated uniformly from rest. During the first second it rotates through 2.5 radians. Find the angle rotated during the next second. What is the magnitude of the torque acting on the disc?

Answers to Intext Questions
7.1
1.

Yes, because the distances between points on the frame cannot change.

2.

No. Any disturbance can change the distance between sand particles. So, a heap of sand cannot be considered a rigid body.

7.2
1.

The coordinates of given five masses are A (–1, –1), B (–5, –1), C (6, 3), D (2, 6) and E (–3, 0) and their masses are 1 kg, 2kg, 3kg, 4kg and 5kg respectively.
Hence, coordinates of centre of mass of the system are x = y =

2.

-1× 1 – 5 × 2 + 6 × 3 + 2 × 4 – 3 × 5
=0
1+ 2 + 3+ 4 + 5
–1× 1 − 1 × 2 + 3 × 3 + 4 × 6 + 0 × 5
30
=
= 2.0
1+ 2 + 3 + 4 + 5
15

Let the three particle system be as shown in the figure here.
Consider axes to be as shown with 2 kg mass at the origin.
Y

2 × 0 + 1 × 0.5 + 3 × 1 3.5
=
m = 0.5 m x =
1+ 2 + 3
6
3
+ 3× 0
3
2 m =
1+ 2 + 3
12

1 kg

2 × 0 + 1× y =

2 kg

⎛ 3.5 3 ⎞
Hence, the co-ordinates of the centre of mass are ⎜ 6 , 12 ⎟





3.
176

X
3 kg

Let the two particles be along the x-axis and let their x-coordinates be o and x. The

Motion of Rigid Body

Motion, Force and Energy

coordinate of CM is
X=

MODULE - 1

m1 × 0 + m2 × x m2 x
= m +m ,Y= 0 m1 + m2
1
2

X is also the distance of m1 from the CM. The distance of m2 from CM is m2 x m1 x x – X = x – m +m = m +m
1
2
1
2



Notes

m2
X
= m x+X 1

Thus, the distances from the CM are inversely proportional to their masses.

7.3
1.

Moment of inertia of the system about an axis perpendicular to the plane passing through one of the corners and perpendicular to the plane of the square,
= m r2 + m (2 r2) + m r2 = 4 m r2
M.I. about the axis along the side = m r2 + m r2 = 2 m r2
Verification : Moment of inertia about the axis QP = m r2 + m r2 + 2 m r2. Now, according to the theorem of perpendicular axes, MI about SP (2mr2) + MI about QP
2 m r2 should be equal to MI about the axis through P and perpendicular to the plane of the square (4 m r2). Since it is true, the results are verified.

2.

M.I. of solid sphere about an axis tangential to the sphere
=

2
7
M R2 +M R2 = M R2 according to the theorem of parallel axes.
5
5

If radius fo gyration is K, then M K2 =
Radius of gyration K = R

7
M R2. So,
5

7
5

7.4
1.

Angular momentum

⎛ d2 d2 ⎞ m +m ⎟ ω
L =⎜ 4
4⎠

L=
2.

m d 2ω
2

Angular momentum about an axis of rotation (diameter).
L=Iω=m

r2
×ω
4

3.177
177

MODULE - 1

Physics

Motion, Force and Energy m r2 as M.I about a diameter =
4

Notes

3.

(0.2) 2 m 2
∴ L = 20 kg ×
× 10 rad s–1 = 0.2 kg m2 s–1.
4
According to conservation of angular momentum
I1ω = (I1 + I2) ω1 where I1 is M.I. of the original wheel and I2 that of the other wheel, ω is the initial angular speed and ω1 is the common final angular speed.


2 m 2⎞ m r2 ω = ⎜ m r + r ⎟ ω1

2 ⎠ ω= 4.

2
3
ω1 ⇒ ω1 = ω
3
2

Let the present period of revolution of earth be T and earlier be T0. According to the conservation of angular momentum.
⎛ 2π ⎞ 2
⎛ 2π ⎞
2
M (25 R)2 × ⎜ T ⎟ = M R2 × ⎜ ⎟
5
5
⎝T ⎠
⎝ 0 ⎠

=

⎛ 2π ⎞
2
M R2 × ⎜ ⎟
⎝T ⎠
5

It gives, T0 = 6.25 T
Thus, period of revolution of earth in the past T0 = 6.25 times the present time period.

7.5
1.

Using (I =

2
M R2), Eqn. (7.29) for a solid sphere
5

1
1
mv2 + I ω2 = m g h
2
2

or,

v2
1
1
2
mv2 +
× m r2 . 2 = m g h
2
2
5
r
Q ω = v /r.

It gives v =

2.

For a solid cylinder, I =
∴ Total K.E
Q ω = v /r

178

10
.g h
7
m R2
2

v2
1
1
1
1 m R2
3
m v2 + I ω2 = m v2 +
. 2 = m v2
2
2
2
2
4
R
2

Motion of Rigid Body

MODULE - 1
Motion, Force and Energy

1 m v2
2
2
Hence, fraction of translational K.E. =
=
3
3
m v2
4
Proceeding as in Q.1 above : v =

4 gh 3

Notes

Answers to Terminal Problems
3.

At a distance 0.64 Å from carbon atom.

4.

125 J, 2.5 m

5.

(a) 16 π rad s–1

6.

30 J

7.

(a) 4 π rad s–1

9.

T = 5 × 104 N m, KE = 5 × 106 J

(b) 20 π rad
(b) Ei = 5 Ef

(c) 25 m s–1

(d) 1280 m s–2

(c) 49 π N m

10. 7.5 rad, τ = 5 × 10–2 J

3.179
179

SENIOR SECONDARY COURSE
PHYSICS
STUDENT’S ASSIGNMENT – 1
Time : 1

Maximum Marks: 50

1
Hours
2

INSTRUCTIONS
Answer All the questions on a seperate sheet of paper
Give the following information on your answer sheet:
Name
Enrolment Number
Subject
Assignment Number
Address
Get your assignment checked by the subject teacher at your study centre so that you get positive feedback about your performance.

Do not send your assignment to NIOS
1.

Give an example to show that the average velocity of a moving particle may be zero, but its average speed can not be zero.
(1)

2.

Why does the direction of the projectile motion become horizontal at the highest point?

3.

Can the law of conservation of linear momentum be applied for a body falling under gravity ? Explain.
(1)

4.

Why is the handle on a door provided at the largest possible distances form the hinges ?

(1)

5.

Why does moon have no atmosphere ?

(1)

6.

Draw velocity time graph of a body moving in a straight line under a constant force.

(1)

7.

What is the radius of gyration of a disc of radius 20 cm, rotating about an axis passing through its center and normal to its plane?
(2)

8.

A light and a heavy mass have the same kinetic energy, Which one has more momentum?

9.

A vector A of magnitude 10 units and another vector B of magnitude 6 units make an angle of 600 with each other.
Find the scalar product and the magnitude of the vector products of these two vectors.

(1)

(1)

(2)

10. A footballer can kick a 0.5 kg ball with a maximum speed of 10m s-1. What is the maximum horizontal distance to which he can kick the ball?
(2)
11. The displacement of a particle is given by y = at +bt2, where a and b are constants and t is time. Find the dimensional formula of b/a.
12. The length of the second’s hand of a clock is 10 cm. Calculate the speed of its tip.
180

(2)

13. If by some freak of nature the earth collapses to 1/8th of its present volume, what would be the duration of a day ?. Explain.
(4)
14. Calculate the mean distance of a hypothetical planet from the sun which has a period of revolution of 100 years. You may take the distance between the sun and the earth as 1.5
15. A block of mass 2 kg is placed on plane surface. Its inclination from the horizontal may be changed. The block is just at the verge of sliding when the inclination of the plans is 300, calculate the acceleration with
(4)
which the bock will slide down when the inclination of the plane is 450.
16. A constant force of 20 N acts for 2s on a body of mass 2 kg initially at rest. How much distance will this body move in 3s from start?
(4)
17. Draw a load-extension graph for a spring. How will you use this graph to calculate (i) force constant of the spring?
(ii) work done in compressing the spring by a distance x ?
18. Two masses of 3 kg and 5 kg one attached to a massless string and the string is passed over a frictionless pulley as shown in fig. Calculate the tension in the string and acceleration of the 3 kg block.
(4)
19. Three rods each of mass per unit length 1 kg m-1 and length 20 cm form an equilateral triangle. Determine (i) The center of mass of the system. (ii) Moment of inertia of the system about an axis passing through, the centre of mass and normal to its plane.
(5)

3kg
5kg

20. A body of mass m at rest is hit head-on elastically by a body of mass m kg moving with a speed of u. Find the magnitude and direction of motion of each body after collision.
(5)

3.181
181

MODULE - II
MECHANICS OF SOLIDS
AND FLUIDS
8.

Elastic Properties of Solids

9.

Properties of Fluids

MODULE - 2

Physics

Mechanics of Solids and Fluids

8
Notes

ELASTIC PROPERTIES OF
SOLIDS

I n the previous lessons you have studied the effect of force on a body to produce displacement. The force applied on an object may also change its shape or size. For example, when a suitable force is applied on a spring, you will find that its shape as well as size changes. But when you remove the force, it will regain original position. Now apply a force on some objects like wet modelling clay or molten wax. Do they regain their original position after the force has been removed? They do not regain their original shape and size. Thus some objects regain their original shape and size whereas others do not. Such a behaviour of objects depends on a property of matter called elasticity.
The elastic property of materials is of vital importance in our daily life. It is used to help us determine the strength of cables to support the weight of bodies such as in cable cars, cranes, lifts etc. We use this property to find the strength of beams for construction of buildings and bridges. In this unit you will learn about nature of changes and the manner in which these can be described.

Objectives
After studying this lesson, you should be able to : distinguish between three states of matter on the basis of molecular theory; distinguish between elastic and plastic bodies; distinguish between stress and pressure; study stress-strain curve for an elastic solid ; and define Young’s modulus, bulk modulus, modulus of rigidity and Poisson’s ratio.

8.1 Molecular Theory of Matter : Inter-Molecular Forces
We know that matter is made up of atoms and molecules. The forces which act between them are responsible for the structure of matter. The interaction forces between molecules are known as inter-molecular forces.

182

Elastic Properties of Solids

Force F

Repulsion

The variation of inter molecular forces with inter molecular separation is shown in Fig. 8.1.

When the separation is large, the force between distance R two molecules is attractive
O
and weak. As the separation decreases, the
Attraction
R0 net force of attraction increases up to a particular
Fig. 8.1 : Graph between inter-molecular force and Inter molecular separation. value and beyond this, the force becomes repulsive.
At a distance R = R 0 the net force between the molecules is zero. This separation is called equilibrium separation. Thus, if inter-molecular separation R > R0 there will be an attractive force between molecules. When R < R0 , a repulsive force will act between them. MODULE - 2
Mechanics of Solids and Fluids

Notes

In solids, molecules are very close to each other at their equilibrium separation
( 10–10 m). Due to high intermolecular forces, they are almost fixed at their positions.
You may now appreciate why a solid has a definite shape.
In liquids, the average separation between the molecules is somewhat larger
( 10–8 m). The attractive force is weak and the molecules are comparatively free to move inside the whole mass of the liquid. You can understand now why a liquid does not have fixed shape. It takes the shape of the vessel in which it is filled.
In gases, the intermolecular separation is significantly larger and the molecular force is very weak (almost negligible). Molecules of a gas are almost free to move inside a container.
That is why gases do not have fixed shape and size.

Ancient Indian view about Atom
Kanada was the first expounder of the atomic concept in the world. He lived around
6th century B.C. He resided at Prabhasa (near Allahabad).
According to him, everything in the universe is made up of Parmanu or Atom. They are eternal and indestructible. Atoms combine to form different molecules. If two atoms combine to form a molecule, it is called duyanuka and a triatomic molecule is called triyanuka. He was the author of “Vaisesika Sutra”.
The size of atom was also estimated. In the biography of Buddha (Lalitavistara), the estimate of atomic size is recorded to be of the order 10–10 m, which is very close to the modern estimate of atomic size.

8.2 Elasticity
You would have noticed that when an external force is applied on an object, its shape or size (or both) change, i.e. deformation takes place. The extent of deformation depends on
3.183
183

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics the material and shape of the body and the external force. When the deforming forces are withdrawn, the body tries to regain its original shape and size.

Bow

string

You may compare this with a spring loaded with a mass or a force applied on the string of a bow or pressing of a rubber ball.
Fig 8.2 : Force applied on the string of a bow changes
If you apply a force on the string it shape of the bow to pull it ( Fig 8.2), you will observe that its shape changes. But on releasing the string, the bow regains its original shape and size.
The property of matter to regain its original shape and size after removal of the deforming forces is called elasticity.

8.2.1 Elastic and Plastic Bodies
A body which regains its original state completely on removal of the deforming force is called perfectly elastic. On the other hand, if it completely retains its modified form even on removing the deforming force, i.e. shows no tendency to recover the deformation, it is said to be perfectly plastic. However, in practice the behaviour of all bodies is in between these two limits. There exists no perfectly elastic or perfectly plastic body in nature. The nearest approach to a perfectly elastic body is quartz fiber and to the perfectly plastic is ordinary putty. Here it can be added that the object which opposes the deformation more is more elastic. No doubt elastic deformations are very important in science and technology, but plastic deformations are also important in mechanical processes. You might have seen the processes such as stamping, bending and hammering of metal pieces. These are possible only due to plastic deformations.
The phenomenon of elasticity can be explained in terms of inter-molecular forces.

8.2.2 Molecular Theory of Elasticity
You are aware that a solid is composed of a large number of atoms arranged in a definite order. Each atom is acted upon by forces due to neighbouring atoms. Due to inter-atomic forces, solid takes such a shape that each atom remains in a stable equilibrium. When the body is deformed, the atoms are displaced from their original positions and the interatomic distances change. If in deformation, the separation increases beyond their equilibrium separation (i.e., R >R0), strong attractive forces are developed. However, if inter–atomic separation decreases (i.e. R < R0), strong repulsive forces develop. These forces, called restoring forces, drive atoms to their original positions. The behaviour of atoms in a solid can be compared to a system in which balls are connected with springs.
Now, let us learn how forces are applied to deform a body.

184

Elastic Properties of Solids

MODULE - 2
Mechanics of Solids and Fluids

8.2.3 Stress
When an external force or system of forces is applied on a body, it undergoes a change in the shape or size according to nature of the forces. We have explained that in the process of deformation, internal restoring force is developed due to molecular displacements from their positions of equilibrium. The internal restoring force opposes the deforming force.
The internal restoring force acting per unit area of cross-section of a deformed body is called stress.

Notes

In equilibrium, the restoring force is equal in magnitude and opposite in direction to the external deforming force. Hence, stress is measured by the external force per unit area of cross-section when equilibrium is attained. If the magnitude of deforming force is F and it acts on area A, we can write
Stress =
Stress =

or

deforming force ( F ) restoring force
=
area ( A) area F
A

(8.1)

The unit of stress is Nm–2 . The stress may be longitudinal, normal or shearing. Let us study them one by one.
(i)

Longitudinal Stress : If the deforming forces are along the length of the body, we call the stress produced as longitudinal stress, as shown in its two forms in Fig 8.3
(a) and Fig 8.3 (b).

F

F
(a)

F

F
(b)
Fig 8.3 (a) : Tensile stress; (b) Compressive stress

(ii) Normal Stress : If the deforming forces are applied uniformly and normally all over the surface of the body so that the change in its volume occurs without change in shape (Fig. 8.4), we call the stress produced as normal stress. You may produce normal stress by applying force uniformly over the entire surface of the body. Deforming force per unit area normal to the surface is called pressure while restoring force developed inside the body per unit area normal to the surface is known as stress.

F

F

F
F
F

F

F

F

F

F

F

F

F

F
(a)

(b)
Fig. 8.4 : Normal stress

3.185
185

MODULE - 2
Mechanics of Solids and Fluids

Physics
(iii) Shearing Stress : If the deforming forces act tangentially or parallel to the surface
(Fig 8.5a) so that shape of the body changes without change in volume, the stress is called shearing stress. An example of shearing stress is shown in Fig 8.5 (b) in which a book is pushed side ways. Its opposite face is held fixed by the force of friction.

Notes

A
F
F

F
F
Fig. 8.5: (a) Shearing stress; (b) Pushing a book side ways

8.2.4 Strain
Deforming forces produce changes in the dimensions of the body. In general, the strain is defined as the change in dimension (e.g. length, shape or volume) per unit dimension of the body. As the strain is ratio of two similar quantities, it is a dimensionless quantity. Depending on the kind of stress applied, strains are of three types : (i) linear strain,(ii) volume (bulk) strain, and (iii) shearing strain.
(i)

Linear Strain : If on application of a longitudinal deforming force, the length l of a body changes by ∆l (Fig. 8.6), then
A

change in length
∆l
linear strain = original length = l F

l

∆l

Fig. 8.6: Linear strain

(ii) Volume Strain : If on application of a uniform pressure ∆p, the volume V of the body changes by ∆V ( Fig 8.7) without change of shape of the body, then
∆p

Volume strain =

change in volume
∆V
= original volume
V



∆p
∆V

V

∆p

Fig. 8.7: Volume strain

186

Elastic Properties of Solids
(i)

MODULE - 2

Shearing strain: When the deforming forces are tangential (Fig 8.8), the shearing strain is given by the angle θ through which a line perpendicular to the fixed plane is turned due to deformation. (The angle θ is usually very small.) Then we can write
∆x

θ=

∆x y x

Mechanics of Solids and Fluids

F

Notes y θ

A

F

Fixed

Fig. 8.8 : Shearing strain

8.2.5 Stress-strain Curve for a Metallic Wire

Stress

Refer to Fig. 8.9 which shows variation of stress with strain when a metallic wire of uniform cross-section is subjected to an increasing load. Let us study the regions and points

Elastic limit
C E
B
A

F
Breaking Point
Plastic behaviour

Elastic behaviour
Permanent Set
O

D

Strain

X

Fig. 8.9: Stress-strain curve for a steel wire

on this curve that are of particular importance.
(i)

Region of Proportionality OA is a straight line which indicates that in this region, stress is linearly proportional to strain and the body behaves like a perfectly elastic body. (ii) Elastic Limit : If we increase the strain a little beyond A, the stress is not linearly proportional to strain. However, the wire still remains elastic, i.e. after removing the deforming force (load), it regains its original state. The maximum value of strain for which a body(wire) shows elastic property is called elastic limit. Beyond the elastic limit, a body behaves like a plastic body.
(iii) Point C : When the wire is stretched beyond the limit B, the strain increases more rapidly and the body becomes plastic. It means that even if the deforming load is removed, the wire will not recover its original length. The material follows dotted line
CD on the graph on gradual reduction of load. The left over strain on zero load strain is known as a permanent set. After point E on the curve, no extension is recoverable.
3.187
187

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics
(iv) Breaking point F : Beyond point E, strain increases very rapidly and near point F, the length of the wire increases continuously even without increasing of load. The wire breaks at point F. This is called the breaking point or fracture point and the corresponding stress is known as breaking stress.
The stress corresponding to breaking point F is called breaking stress or tensile strength.
Within the elastic limit, the maximum stress which an object can be subjected to is called working stress and the ratio between working stress and breaking stress is called factor of safety. In U.K, it is taken 10, in USA it is 5. We have adopted UK norms. If large deformation takes place between the elastic limit and the breaking point, the material is called ductile. If it breaks soon after the elastic limit is crossed, it is called brittle e.g. glass. 8.2.6 Stress-Strain Curve for Rubber
When we stretch a rubber cord to a few times its natural length, it returns to its original length after removal of the forces. That is, the elastic region is large and there is no well defined plastic flow region. Substances having large strain are called elastomers. This property arises from their molecular arrangements. The stress-strain curve for rubber is distinctly different from that of a metallic wire. There are two important things to note from Fig. 8.10. Firstly, you can observe that there is no region of proportionality. Secondly, when the deforming force is gradually reduced, the original curve is not retraced, although the sample finally acquires its natural length. The work done by the material in returning to its original shape is less than the work done by the deforming force. This difference of energy is absorbed by the material and appears as heat. (You can feel it by touching the rubber band with your lips.) This phenomenon is called elastic hysteresis.
Elastic hysteresis has an important application in shock absorbers. A part of energy transferred by the deforming force is retained in a shock absorber and only a small part of it is transmitted to the body to which the shock absorber is attached.

A body is said to be more elastic if on applying a large deforming force on it, the strain produced in the body is small. If you take two identical rubber and steel wires and apply equal deforming forces on both of them, you will see that the extension produced in the steel wire is smaller than the extension produced in the rubber wire.
But to produce same strain in the two wires, significantly higher stress is required in the steel wire than in rubber wire. Large amount of stress needed for deformation of steel indicates that

188

Stress

8.2.7. Steel is more Elastic than Rubber

0
2

4

6

8

Fig. 8.10: Stress-strain curve for rubber

Strain

Elastic Properties of Solids magnitude of internal restoring force produced in steel is higher than that in rubber. Thus, steel is more elastic than rubber.

MODULE - 2
Mechanics of Solids and Fluids

Example 8.1 : A load of 100 kg is suspended by a wire of length 1.0 m and cross sectional area 0.10 cm2. The wire is stretched by 0.20 cm. Calculate the (i) tensile stress, and (ii) strain in the wire. Given, g = 9.80 ms–2.

Notes

Solution :
(i) Tensile stress =

F
Mg
=
A
A

(100 kg) (9.80 ms – 2 )
=
0.10 × 10–4 m2

= 9.8 x 107 Nm–2
0.20 × 10–2 m
∆l
(ii) Tensile strain =
=
1.0 m l = 0.20 × 10–2
Example 8.2 : Calculate the maximum length of a steel wire that can be suspended without breaking under its own weight, if its breaking stress = 4.0 x 108 Nm–2, density =
7.9 × 103 kg m–3 and g = 9.80 ms–2
Solution :The weight of the wire W = Alρg, where, A is area of cross section of the wire, l is the maximum length and ρ is the density of the wire. Therefore, the breaking stress developed in the wire due to its own weight

W
= ρlg. We are told that
A

breaking stress is 4.0 x 108 Nm–2. Hence

l

4.0 ×108 Nm– 2
=
(7.9×103 kg m – 3 ) (9.8 ms – 2 )

= 0.05 × 105 m
= 5 × 103 m = 5 km.
Now it is time to take a break and check your understanding

Intext Questions 8.1
1.

What will be the nature of inter-atomic forces when deforming force applied on an object (i) increases, (ii) decreases the inter-atomic separation?
................................................................................................................................................

3.189
189

MODULE - 2
Mechanics of Solids and Fluids

Physics
2.

If we clamp a rod rigidly at one end and a force is applied normally to its cross section at the other end, name the type of stress and strain?
................................................................................................................................................

3.

The ratio of stress to strain remains constant for small deformation of a metal wire.
For large deformations what will be the changes in this ratio?

Notes
................................................................................................................................................

4.

Under what conditions, a stress is known as breaking stress ?
................................................................................................................................................

5.

If mass of 4 kg is attached to the end of a vertical wire of length 4 m with a diameter
0.64 mm, the extension is 0.60 mm. Calculate the tensile stress and strain?
................................................................................................................................................

8.3 Hooke’s Law
In 1678, Robert Hooke obtained the stress-strain curve experimentally for a number of solid substances and established a law of elasticity known as Hooke’s law. According to this law: Within elastic limit, stress is directly proportional to corresponding strain.
i.e.
stress α strain

stress
= constant (E) strain or

(8.2)

This constant of proportionality E is a measure of elasticity of the substance and is called modulus of elasticity. As strain is a dimensionless quantity, the modulus of elasticity has the same dimensions (or units) as stress. Its value is independent of the stress and strain but depends on the nature of the material. To see this, you may like to do the following activity. Activity 8.1
Arrange a steel spring with its top fixed with a rigid support on a wall and a metre scale along its side, as shown in the Fig. 8.11.

steel spring Add 100 g load at a time on the bottom of the hanger in steps. It means that while putting each 100 g load, you are increasing the stretching force by 1N. Measure the extension. Take the reading upto 500 g and note the extension each time.
Plot a graph between load and extension. What is the shape of the graph? Does it obey Hooke’s law?
The graph should be a straight line indicating that the ratio (load/ extension) is constant.
Repeat this activity with rubber and other materials.

190

hanger meter scale

Fig. 8.11: Hooke’s law apparatus Elastic Properties of Solids
You should know that the materials which obey Hooke’s law are used in spring balances or as force measurer, as shown in the Fig. 8.11. You would have seen that when some object is placed on the pan, the length of the spring increases. This increase in length shown by the pointer on the scale can be treated as a measure of the increase in force
(i.e., load applied).

Robert Hooke
(1635 – 1703)

MODULE - 2
Mechanics of Solids and Fluids

Notes

Robert Hooke, experimental genius of seventeenth century, was a contemporary of Sir Isaac Newton. He had varied interests and contributed in the fields of physics, astronomy, chemistry, biology, geology, paleontology, architecture and naval technology. Among other accomplishments he has to his credit the invention of a universal joint, an early proto type of the respirator, the iris diaphragm, anchor escapement and balancing spring for clocks. As chief surveyor, he helped rebuild London after the great fire of 1666. He formulated Hooke’s law of eleasticity and correct theory of combustion. He is also credited to invent or improve meteorological instruments such as barometer, anemometer and hygrometer.

8.3.1 Moduli of Elasticity
In previous sections, you have learnt that there are three kinds of strain. It is therefore clear that there should be three modulli of elasticity corresponding to these strains. These are Young’s modulus, Bulk Modulus and Modulus of rigidity corresponding to linear strain, volume strain and shearing strain, respectively. We now study these one by one.
(i)

Young’s Modulus: The ratio of the longitudinal stress to the longitudinal strain is called Young’s modulus for the material of the body.

Suppose that when a wire of length L and area of cross-section A is stretched by a force of magnitude F, the change in its length is equal to ∆L. Then
Table 8.1. Young’s modulus of some typical materials

F
Longitudinal stress =
A
and

Name of substance ∴

M gL
Y = π r2 ∆ L

(8.3)

70

Copper

120

Iron

190

Steel

200

Glass

65

Bone

F×L
F/A
Hence,
Young’s modulus Y =
= A × ∆L
∆L/L
If the wire of radius r is suspended vertically with a rigid support and a mass M hangs at its lower end, then A = πr2 and F = M g.

Y (109Nm–2)

Aluminium

∆L
Longitudinal strain =
L

9

Polystyrene

3

The SI unit of Y in is N m–2. The values of Young’s modulus for a few typical substances are given in Table. 8.1. Note that steel is most elastic.
(ii) Bulk Modulus: The ratio of normal stress to the volume strain is called bulk modulus

3.191
191

MODULE - 2

Physics

Mechanics of Solids and Fluids

of the material of the body.
If due to increase in pressure P, volume V of the body decreases by ∆V without change in shape, then
Normal stress = ∆P
Volume strain = ∆V/V

Notes

Bulk modulus B =

∆P
∆P
=V
∆V/V
∆V

(8.4)

The reciprocal of bulk modulus of a substance is called compressibility : k =

1
1 ∆V
=
B V ∆P

(8.5)

Gases being most compressible are least elastic while solids are most elastic or least compressible i.e. Bsolid > Bliquid > Bgas
(iii) Modulus of Rigidity or Shear Modulus: The ratio of the shearing stress to shearing strain is called modulus of rigidity of the material of the body.
If a tangential force F acts on an area A and θ is the shearing strain, the modulus of rigidity

Shearing stress
F/A
F
=
η = Shearing strain = θ Αθ

(8.6)

You should know that both solid and fluids have bulk modulus. However, fluids do not have
Young’s modulus and shear modulus because a liquid can not sustain a tensile or shearing stress. Example 8.3 : Calculate the force required to increase the length of a wire of steel of cross sectional area 0.1 cm2 by 50%. Given Y = 2 × 1011 N m–2.
Solution : Increase in the length of wire = 50%. If ∆L is the increase and L is the normal length of wire then

or

1
∆L
=
L
2
F×L
Y = A × ∆L

Y × A × ∆L
(2 × 1011 Nm – 2 ) (0.1 × 10 –4 m 2 ) × 1
F =
=
L
2
7
= 0.1 × 10 N = 106 N

Example 8.4 : When a solid rubber ball is taken from the surface to the bottom of a lake, the reduction in its volume is 0.0012 %. The depth of lake is 360 m, the density of lake water is 10 3 kgm –3 and acceleration due to gravity at the place is
10 m s–2. Calculate the bulk modulus of rubber.

192

Elastic Properties of Solids

MODULE - 2
Mechanics of Solids and Fluids

Solution :
Increase of pressure on the ball
P = hρg = 360m × 103 kgm–3 × 10 ms–3
= 3.6 × 106 Nm–2

Notes

0.0012
∆V
Volume strain =
=
= 1.2 × 10-5
100
V

Bulk Modulus B =

3.6 × 106
PV
=
= 3.0 × 1011 Nm–2
1.2 × 10 –5
∆V

8.3.2 Poisson’s Ratio d l d–∆d ∆l
F
Fig: 8.12 : A stretched rubber tube. You may have noticed that when a rubber tube is stretched along its length, there is a contraction in its diameter (Fig.8.12). (This is also true for a wire but may not be easily visible.) While the length increases in the direction of forces, a contraction occurs in the perpendicular direction. The strain perpendicular to the applied force is called lateral strain. Poisson pointed out that within elastic limit, lateral strain is directly proportional to longitudinal strain i.e. the ratio of lateral strain to longitudinal strain is constant for a material body and is known as Poisson’s ratio. It is denoted by a Greek letter σ (sigma). If α and β are the longitudinal strain and lateral strain respectively, then Poisson’s ratio σ = β / α.

If a wire (rod or tube) of length l and diameter d is elongated by applying a stretching force by an amount ∆ l and its diameter decreases by ∆d, then longitudinal strain α =

∆l l lateral strain

β =

∆d d and Possion’s ratio

σ =

∆ d/d l ∆d
=
∆l/l d ∆l

(8.7)

Since Poisson’s ratio is a ratio of two strains, it is a pure number.
The value of Poisson’s ratio depends only on the nature of material and for most of the substances, it lies between 0.2 and 0.4. When a body under tension suffers no change in volume, i.e. the body is perfectly incompressible, the value of Poisson’s ratio is maximum
i.e. 0.5. Theoretically, the limiting values of Poisson’s ratio are –1 and 0.5.
3.193
193

MODULE - 2

Physics

Mechanics of Solids and Fluids

Activity 8.2
Take two identical wires. Make one wire to execute torsional vibrations for some time.
After some time, set the other wire also in similar vibrations. Observe the rate of decay of vibrations of the two wires.

Notes

You will note that the vibrations decay much faster in the wire which was vibrating for longer time. The wire gets tired or fatigued and finds it difficult to continue vibrating. This phenomenon is known as elastic fatigue.

Some other facts about elasticity :
1. If we add some suitable impurity to a metal, its elastic properties are modified.
For example, if carbon is added to iron or potassium is added to gold, their elasticity increases. 2. The increase in temperature decreases elasticity of materials. For example, carbon, which is highly elastic at ordinary temperature, becomes plastic when heated by a current through it. Similarly, plastic becomes highly elastic when cooled in liquid air. 3. The value of modulus of elasticity is independent of the magnitude of stress and strain. It depends only on the nature of the material of the body.
Example 8.5: A Metal cube of side 20 cm is subjected to a shearing stress of
10 4 Nm –2. Calculate the modulus of rigidity, if top of the cube is displaced by
0.01 cm. with respect to bottom.
Solution :

Shearing stress = 104 Nm–2, ∆x



∆x
0.01 cm
Shearing strain = y = 20 cm

Hence,

= 0.01 cm, and y = 20 cm.

= 0.005

Shearing stress
104 Nm –2
Modulus of rigidity η = Shearing strain =
.0005
= 2 × 107 N m–2
Example 8.6 : A 10 kg mass is attached to one end of a copper wire of length 5 m long and 1 mm in diameter. Calculate the extension and lateral strain, if Poisson’s ratio is 0.25.
Given Young’s modulus of the wire = 11 × 1010 N m–2.
Solution : Here L= 5 m, r = 0.05 × 10-3 m, y = 11 × 1010 Nm–2 F = 10 × 9.8 N, and σ = 0.25.
Extension produced in the wire

194

Elastic Properties of Solids
(10 kg) × (9.8ms – 2 ) × (5m)
F. l
∆l =
=
3.14 (0.5 ×10 –3 m)2 × (11×1010 Nm – 2 ) πr 2 Y

=

490 m 8.63 × 104

MODULE - 2
Mechanics of Solids and Fluids

Notes

= 5.6 × 10-3 m longitudinal streain = α =

∆l l 5.6 × 10 –3 m
=
5m
= 1.12 × 10-2

lateral strain(β)
Poission’s ratio (σ) = longitudinal strain(α)


lateral strain β = σ × α
= 0.125 × 1.12 × 10-2
= 0.14 × 10–3.

Now take a break to check your progress.

Intext Questions 8.2
1.

Is the unit of longitudinal stress same as that of Young’s modulus of elasticity? Give reason for your answer.
................................................................................................................................................

2.

Solids are more elastic than liquids and gases. Justify
................................................................................................................................................

3.

The length of a wire is cut to half. What will be the effect on the increase in its length under a given load?
................................................................................................................................................

4.

Two wires are made of the same metal. The length of the first wire is half that of the second and its diameter is double that of the second wire. If equal loads are applied on both wires, find the ratio of increase in their lengths?
................................................................................................................................................

5.

A wire increases by 10–3 of its length when a stress of 1 × 108 Nm-2 is applied to it.
Calculate Young’s modulus of material of the wire.
................................................................................................................................................

3.195
195

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics

8.4 Applications of Elastic Behaviour of Materials
Elastic behaviour of materials plays an important role in our day to day life. Pillars and beams are important parts of our structures. A uniform beam clamped at one end and loaded at the other is called a Cantilever [Fig.(i)].
The hanging bridge of Laxman Jhula in Rishkesh and
Vidyasagar Sethu in Kolkata are supported on cantilevers.
(i)
A cantilever of length l, breadth b and thickness d undergoes a depression δ at its free end when it is loaded by a weight of mass M :

δ=

4M g l3 γ b d3

It is now easy to understand as to why the cross-section of girders and rails is kept
I-shaped (Fig. ii). Other factors remaining same, δ α d–3. Therefore, by increasing thickness, we can decrease depression under the same load more effectively. This considerably saves the material without sacrificing strength for a beam clamped at both ends and loaded in the middle (Fig.iii), the sag in the middle is given by

δ=

(ii)

M g l3
4 b d3γ

(iii)

Thus for a given load, we will select a material with a large Young’s modulus Y and again a large thickness to keep δ small. However, a deep beam may have a tendency to buckle (Fig iv). To avoid this, a large load bearing surface is provided. In the form I-shaped cross-section, both these requirements are fulfilled.
In cranes, we use a thick metal rope to lift and move heavy loads from one place to another. To lift a load of 10 metric tons with a steel rope of yield strength 300 mega pascal, it can be shown, that the minimum area of cross section required will be 10 cm or so. A single wire of this radius will practically be a rigid rod. That is why ropes are always made of a large number of turns of thin wires braided together. This provides ease in manufacturing, flexibility and strength.

(iv)

Do you know that the maximum height of a mountain on earth can be ~ 10 km or else the rocks under it will shear under its load.Cantilever
196

Elastic Properties of Solids

What You Have Learnt

MODULE - 2
Mechanics of Solids and Fluids

A force which causes deformation in a body is called deforming force.
On deformation, internal restoring force is produced in a body and enables it to regain its original shape and size after removal of deforming force.
The property of matter to restore its original shape and size after withdrawal of deforming force is called elasticity.

Notes

The body which gains completely its original state on the removal of the deforming forces is called perfectly elastic.
If a body completely retains its modified form after withdrawal of deforming force, it is said to be perfectly plastic.
The stress equals the internal restoring force per unit area. Its units is Nm–2
The strain equals the change in dimension (e.g. length, volum or shape) per unit dimension. Strain has no unit.
In normal state, the net inter-atomic force on an atom is zero. If the separation between the atoms becomes more than the separation in normal state, the interatomic forces become attractive. However, for smaller separation, these forces become repulsive.
The maximum value of stress up to which a body shows elastic property is called its elastic limit. A body beyond the elastic limit behaves like a plastic body.
Hooke’s law states that within elastic limit, stress developed in a body is directly proportional to strain.
Young’s modulus is the ratio of longitudinal stress to longitudinal strain.
Bulk modulus is the ratio of normal stress to volume strain.
Modulus of rigidity is the ratio of the shearing stress to shearing strain.
Poisson’s ratio is the ratio of lateral strain to longitudinal strain.

Terminal Questions
1.

Define the term elasticity. Give examples of elastic and plastic objects.

2.

Explain the terms stress, strain and Hooke’s Law.

3.

Explain elastic properties of matter on the basis of inter-molecular forces.

4.

Define Young’s modulus, Bulk modulus and modulus of rigidity.

5.

Discuss the behaviour of a metallic wire under increasing load with the help of stressstrain graph.

6.

Why steel is more elastic than rubber.

7.

Why poission’s ratio has no units.

8.

In the three states of matter i.e., solid, liquid and gas, which is more elastic and why?
3.197
197

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics
9.

A metallic wire 4m in length and 1mm in diameter is stretched by putting a mass 4kg.
Determine the alongation produced. Given that the Young’s modulus of elasticity for the material of the wire is 13.78 × 1010 N m–2.

10. A sphere contracts in volume by 0.02% when taken to the bottom of sea 1km deep.
Calculate the bulk modulus of the material of the sphere. You make take density of sea water as 1000 kgm–3 and g = 9.8ms–2.
11. How much force is required to have an increase of 0.2% in the length of a metallic wire of radius 0.2mm. Given Y = 9 × 1010 N m–2.
12. What are shearing stress, shearing strain and modulus of rigidity?
13. The upper face of the cube of side 10cm is displaced 2mm parallel to itself when a tangential force of 5 × 105 N is applied on it, keeping lower face fixed. Find out the strain?
14. Property of elasticity is of vital importance in our lives. How does the plasticity helps us?
15. A wire of length L and radius r is clamped rigidly at one end. When the other end of wire is pulled by a force F, its length increases by x. Another wire of the same material of length 2L and radius 2r, when pulled by a force 2F, what will be the increase in its length.

Answers to Intext Questions
8.1
1.

If R > R0 , the nature of force is attractive and if (ii) R < R0 it is repulsive.

2.

Longitudinal stress and linear strain.

3.

The ratio will decrease.

4.

The stress corresponding to breaking point is known as breaking stress.

5.

0.12 × 1010N m–2.

8.2
1.

Both have same units since strain has no unit?

2.

As compressibility of liquids and gases is more than solids, the bulk modulus is reciprocal of compressibility. Therefore solids are more elastic than liquid and gases.

3.

Half.

4.

1:8

5.

1 × 1011N m– 2.

Answers To Terminal Problems
9.
10.
11.
13.
15.
198

0.15 m.
4.9 × 10–10 N m–2
22.7 N
2 × 10–2
x.

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

9
PROPERTIES OF FLUIDS

Notes

In the previous lesson, you have learnt that interatomic forces in solids are responsible for

determining the elastic properties of solids.Does the same hold for liquids and gases? (These are collectively called fluids because of their nature to flow in suitable conditions). Have you ever visited the site of a dam on a river in your area / state/ region? If so, you would have noticed that as we go deeper, the thickness of the walls increases. Did you think of the underlying physical principle? Similarly, can you believe that you can lift a car, truck or an elephant by your own body weight standing on one platform of a hydraulic lift? Have you seen a car on the platform of a hydraulic jack at a service centre? How easily is it lifted? You might have also seen that mosquitoes can sit or walk on still water, but we cannot do so. You can explain all these observations on the basis of properties of liquids like hydrostatic pressure, Pascal’s law and surface tension. You will learn about these in this lesson. Have you experienced that you can walk faster on land than under water? If you pour water and honey in separate funnels you will observe that water comes out more easily than honey. In this lesson we will learn the properties of liquids which cause this difference in their flow.
You may have experienced that when the opening of soft plastic or rubber water pipe is pressed, the stream of water falls at larger distance. Do you know how a cricketer swings the ball? How does an aeroplane take off? These interesting observations can be explained on the basis of Bernoulli’s principle. You will learn about it in this lesson.

Objectives
After studying this lesson, you would be able to : calculate the hydrostatic pressure at a certain depth inside a liquid; describe buoyancy and Archimedes Principle; state Pascal’s law and explain the functioning of hydrostatic press , hydraulic lift and hydraulic brakes.; explain surface tension and surface energy ; derive an expression for the rise of water in a capillary tube;
3.199
199

MODULE - 2
Mechanics of Solids and Fluids

Physics differentiate between streamline and turbulent motion of fluids; define critical velocity of flow of a liquid and calculate Reynold’s number; define viscosity and explain some daily life phenomena based on viscosity of a liquid; and

Notes

state Bernoulli’s Principle and apply it to some daily life experiences.

9.1 Hydrostatic Pressure
While pinning papers, you must have experienced that it is easier to work with a sharp tipped pin than a flatter one. If area is large, you will have to apply greater force. Thus we can say that for the same force, the effect is greater for smaller area. This effect of force on unit area is called pressure.
Refer to Fig. 9.1. It shows the shape of the side wall of a dam. Note that it is thicker at the base. Do we use similar shape for the walls of our house. No, the walls of rooms are of uniform thickness. Do you know the basic physical characteristic which makes us to introduce this change?

Fig. 9.1 : The structure of side wall of a dam

From the previous lesson you may recall that solids develop shearing stress when deformed by an external force, because the magnitude of inter-atomic forces is very large. But fluids do not have shearing stress and when an object is submerged in a fluid, the force due to the fluid acts normal to the surface of the object (Fig. 9.2). Also, the fluid exerts a force on the container normal to its walls at all points.
The normal force or thrust per unit area exerted by a fluid is called pressure. We denote it by P :
P=

Thrust area (9.1)

Fig. 9.2 : Force exerted by a
The pressure exerted by a fluid at rest is known as hydrostatic fluid on a submerged object pressure

200

Properties of Fluids
The SI Unit of pressure is Nm–2 and is also called pascal (Pa) in the honour of French scientist Blaise Pascal.

9.1.1 Hydrostatic Pressure at a point in side a liquid

A

MODULE - 2
Mechanics of Solids and Fluids

P2 h Consider a liquid in a container and an imaginary right circular cylinder of cross sectional area A and height h, as
P1
shown in Fig. 9.3. Let the pressure exerted by the liquid on the bottom and top faces of the cylinder be P1, and P2, respectively. Therefore, the upward force exerted by the
Fig. 9.3 : An imaginary liquid on the bottom of the cylinder is P1A and the downward cylinder of height h force on the top of the cylinder is P2 A. in a liquid.
∴ The net force in upward direction is (P1A – P2A).
Now mass of the liquid in cylinder = density × volume of the cylinder
= ρ. A. h where ρ is the density of the liquid.
∴ Weight of the liquid in the cylinder = ρ. g. h. A
Since the cylinder is in equilibrium, the resultant force acting or it must be equal to zero, i.e.

Notes

P1 A – P2A – ρ g h A = 0


P1 – P

2

=ρgh

(9.2)

So, the pressure P at the bottom of a column of liquid of height h is given by
P = ρgh
That is, hydrostatic pressure due to a fluid increases linearly with depth. It is for this reason that the thickness of the wall of a dam has to be increased with increase in the depth of the dam. If we consider the upper face of the cylinder to be at the open surface of the liquid, as shown in Fig.(9.4), then P2 will have to be replaced by Patm (Atmospheric pressure). If we denote P1 by P, the absolute pressure at a depth below the surface will be free surface of the liquid
P2
h
P1

Fig. 9.4 : Cylinder in a liquid with one face at the surface of the liquid

P – Patm + ρ g h or P = Patm + ρ g h

(9.3)
3.201
201

MODULE - 2
Mechanics of Solids and Fluids

Physics
Note that the expression given in Eqn. (9.3) does not show any term having area of the cylinder It means that pressure in a liquid at a given depth is equal, irrespective of the shape of the vessel(Fig 9.5).

Notes

Fig. 9.5 : Pressure does not depend upon shape f the versel.

Example 9.1: A cemented wall of thickness one metre can withstand a side pressure of
105 Nm–2. What should be the thickness of the side wall at the bottom of a water dam of depth 100 m. Take density of water = 103 kg m–3 and g = 9.8 ms–2.
Solution: The pressure on the side wall of the dam at its bottom is given by
P=hdg
= 100 × 103× 9.8
= 9.8 × 105 Nm–2
Using unitary method, we can calculate the thickness of the wall, which will withstand pressure of 9.8×105 Nm–2. Therefore thickness of the wall
9.8 × 10 5 Nm
–2
10 5
–2

t=

Nm

= 9.8 m

9.1.2 Atmospheric Pressure
We know that the earth is surrounded by an atmosphere upto a height of about 200 km.
The pressure exerted by the atmosphere is known as the atmospheric pressure. A German
Scientist O.V. Guericke performed an experiment to demonstrate the force exerted on bodies due to the atmospheric pressure. He took two hollow hemispheres made of copper, having diameter 20 inches and tightly joined them with each other. These could easily be separated when air was inside. When air between them was exhausted with an air pump,
8 horses were required to pull the hemispheres apart.
Vacuum
76 cm = h

B

P
A

Fig: 9.6 : Toricelli’s
Barometer

202

Toricelli used the formula for hydrostatic pressure to determine the magnitude of atmospheric pressure.
He took a tube of about 1 m long filled with mercury of density
13,600 kg m–3 and placed it vertically inverted in a mercury tub as shown is Fig. 9.6. He observed that the column of
76 cm of mercury above the free surface remained filled in the tube.
In equi1ibrium, atmospheric pressure equals the pressure exerted by the mercury column. Therefore,

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

P atm = h ρ g = 0.76 × 13600 × 9.8 Nm–2
= 1.01 × 10 5 Nm–2
= 1.01 × 105 Pa

9.2 Buoyancy
It is a common experience that lifting an object in water is easier than lifting it in air. It is because of the difference in the upward forces exerted by these fluids on these object.
The upward force, which acts on an object when submerged in a fluid, is known as buoyant force. The nature of buoyant force that acts on objects placed inside a fluid was discovered by. Archimedes Based on his observations, he enunciated a law now known as Archimedes principle. It state that when an object is submerged partially or fully in a fluid, the magnitude of the buoyant force on it is always equal to the weight of the fluid displaced by the object.

Notes

The different conditions of an object under buoyant force is shown in Fig 9.7.

B

B
W

W

W

B

(a) : The magnitude of buoyant force B on the object is exactly equal to its weight in equilibrium.

Fig. 9.7:
(b) : A totally submerged object of density less than that of the fluid experiences a net upward force. (c) : A totally submerged object denser than the fluid sinks. Another example of buoyant force is provided by the motion of hot air balloon shown in Fig. 9.8. Since hot air has less density than cold air, a net upward buoyant force on the balloon makes it to float.

Floating objects
You must have observed a piece of wood floating on the surface of water. Can you identify the forces acting on it when it is in equilibrium? Obviously, one of the forces is due to gravitational force, which pulls it downwards. However, the displaced water exerts buoyant force which acts upwards.
These forces balance each other in equilibrium state and the object is then said to be floating on water. It means that a floating body displaces the fluid equal to its own weight.

Fig. 9.8: Hot air balloon floating in air

3.203
203

MODULE - 2

Physics

Mechanics of Solids and Fluids

Archimedes
( 287- 212 B.C)
A Greek physicist, engineer and mathematician was perhaps the greatest scientist of his time. He is well known for discovering the nature of buoyant forces acting on objects.
The Archimedes screw is used even today. It is an inclined rotating coiled tube used originally to lift water from the hold of ships. He also invented the catapult and devised the system of levers and pulleys.

Notes

Once Archimedes was asked by king Hieron of his native city Syracuse to determine whether his crown was made up of pure gold or alloyed with other metals without damaging the crown. While taking bath, he got a solution, noting a partial loss of weight when submerging his arm and legs in water. He was so excited about his discovery that he ran undressed through the streets of city shouting “ Eureka, Eureka’’, meaning I have found it.

9.3 Pascal’s Law
While travelling by a bus, you must have observed that the driver stops the bus by applying a little force on the brakes by his foot. Have you seen the hydraulic jack or lift which can lift a car or truck up to a desired height? For this purpose you may visit a motor workshop.
Packing of cotton bales is also done with the help of hydraulic press which works on the same principle.
These devices are based on Pascal’s law, which states that when pressure is applied at any part of an enclosed liquid, it is transmitted undiminished to every point of the liquid as well as to the walls of the container.
This law is also known as the law of transmission of liquid pressure.

9.3.1 Applications of Pascal’s Law
(A) Hydraulic Press/Balance/Jack/Lift
It is a simple device based on Pascal’s law and is used to lift heavy loads by applying a small force. The basic arrangement is shown in Fig.9.9. Let a force F1 be applied to the smaller piston of area A1. On the other side, the piston of large area A2 is attached to a platform where heavy load may be placed. The pressure on the smaller piston is transmitted to the larger piston through the liquid filled in-between the two pistons. Since the pressure is same on both the sides, we have
F1

Heavy Load

A1

A2
F2

Fig. 9.9 : Hydraulic lift

204

Fig. 9.10 : Hydraulic jack

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

force
F1
Pressure on the smaller piston, P =
=
A1 area According to Pascal’s law, the same pressure is transmitted to the larger cylinder of area A2.
Hence the force acting on the larger piston

F1
× A2
(9.4)
A1
2
It is clear from Eqn. ( 9.4) that force F2 > F1 by an amount equal to the ratio (A2/A1)
F = pressure × area =

Notes

With slight modifications, the same arrangement is used in hydraulic press, hydraulic balance, and hydraulic Jack, etc.
(B) Hydraulic Jack or Car Lifts
At automobile service stations, you would see that cars, buses and trucks are raised to the desired heights so that a mechanic can work under them (Fig 9.10). This is done by applying pressure, which is transmited through a liquid to a large surface to produce sufficient force needed to lift the car.
(C) Hydraulic Brakes
While traveling in a bus or a car, we see how a driver applies a little force by his foot on the brake paddle to stop the vehicle. The pressure so applied gets transmitted through the brake oil to the piston of slave cylinders, which, in turn, pushes the break shoes against the break drum in all four wheels, simultaneously. The wheels stop rotating at the same time and the vehicle comes to stop instantaneously.

Fig. 9.11(a) : Hydraulic balance

Fig. 9.11(b) : Hydraulic press

Intext Questions 9.1
1.

Why are the shoes used for skiing on snow made big in size?
..................................................................................................................................

2

Calculate the pressure at the bottom of an ocean at a depth of 1500 m. Take the density of sea water 1.024 × 103 kg m–3, atmospheric pressure=1.01 × 105 Pa and g = 9.80 ms–2.
..................................................................................................................................

3.

An elephant of weight 5000 kg f is standing on the bigger piston of area 10 m2 of a
3.205
205

MODULE - 2

Physics

Mechanics of Solids and Fluids

hydraulic lift. Can a boy of 25 kg wt standing on the smaller piston of area 0.05m2 balance or lift the elephant?
..................................................................................................................................
4.

If a pointed needle is pressed against your skin, you are hurt but if the same force is applied by a rod on your skin nothing may happen. Why?
..................................................................................................................................

Notes
5.

A body of 50 kg f is put on the smaller piston of area 0.1m2 of a big hydraulic lift.
Calculate the maximum weight that can be balanced on the bigger piston of area
10m2 of this hydraulic lift.
..................................................................................................................................

9.4 Surface Tension
It is common experience that in the absence of external forces, drops of liquid are always spherical in shape. If you drop small amount of mercury from a small height, it spreads in small spherical globules. The water drops falling from a tap or shower are also spherical.
Do you know why it is so? You may have enjoyed the soap bubble game in your childhood.
But you can not make pure water bubbles with same case? All the above experiences are due to a characteristic property of liquids, which we call surface tension. To appreciate this, we would like you to do the following activity.

Activity 9.1
1. Prepare a soap solution.
2. Add a small amount of glycerin to it.
3. Take a narrow hard plastic or glass tube. Dip its one end in the soap solution so that some solution enters into it.
4. Take it out and blow air at the other end with your mouth.
5. Large soap bubble will be formed.
6. Give a jerk to the tube to detach the bubble which then floats in the air.
To understand as to how surface tension arises, let us refresh our knowledge of intermolecular forces. In the previous lesson, you have studied the variation of intermolecular forces with distance between the centres of molecules/atoms.
The intermolecular forces are of two types: cohesive and adhesive. Cohesive forces characterise attraction between the molecules of the same substance, whereas force of adhesion is the attractive force between the molecules of two different substances. It is the force of adhesion which makes it possible for us to write on this paper. Gum, Fevicol etc. show strong adhesion.
We hope that now you can explain why water wets glass while mercury does not.

206

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

Activity 9.2
To show adhesive forces between glass and water molecule.
1. Take a clean sheet of glass
2. Put a few drops of water on it

Notes

3. Hold water containing side downward.
4. Observe the water drops.
Glass sheet

Water drops
Fig. 9.12 Water drops remain stuck to the glass sheet

The Adhesive forces between glass and water molecules keep the water drops sticking on the glass sheet, as shown in Fig. 9.12.

9.4.1 Surface Energy
The surface layer of a liquid in a container exhibits a property different from the rest of the liquid. In
Fig. 9.13, molecules are shown at different heights in a liquid. A molecule, say P, well inside the liquid is attracted by other molecules from all sides.
However, it is not the case for the molecules at the surface. Spheres of molecular attraction
A
C

Q

R

S B Surface film
D

P
Fig 9.13 : Resultant force acting on P

Molecules S and R, which lie on the surface layer, and Q is zero but molecules experience a net resultant force downward because
R and S experience a net vertically downward force. the number of molecules in the upper half of sphere of influence attracting these molecules is less than those in the lower half. If we consider the molecules of liquid on the upper half of the surface of the liquid or liquid-air interface, even then the molecules will experience a net downward force because of less number of molecules of liquid. Therefore, if any liquid molecule is brought to the surface layer, work has to be done against the net inward force, which increases their potential energy. This means that surface layer possesses an additional energy, which is termed as surface energy.
For a system to be in equilibrium, its potential energy must be minimum. Therefore, the area of surface must be minimum. That is why free surface of a liquid at rest tends to attain minimum surface area. This produces a tension in the surface, called surface tension. 3.207
207

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics
Surface tension is a property of the liquid surface due to which it has the tendency to decrease its surface area. As a result, the surface of a liquid acts like a stretched membrane You can visualise its existence easily by placing a needle gently on water surface and see it float.
Let us now understand this physically. Consider an imaginary line AB drawn at the surface of a liquid at rest, as shown in Fig 9.14. The surface on either side of this line exerts a pulling force on the surface on the other side.
The surface tension of a liquid can be defined as the force per unit length in the plane of liquid surface :

B

T = F/L

F

(9.5)

where surface tension is denoted by T and F is the magnitude of total force acting in a direction normal to the imaginary line of length L, (Fig 9.14) and tangential to the liquid surface. SI unit of surface tension is Nm–1 and its dimensions are [MT–2].

F
A

Fig. 9.14 : Direction of surface tension Let us take a rectangular frame, as shown in Fig. 9.15 having a sliding wire on one of its arms. Dip the frame in a soap on a liquid solution and take out. A soap film will be formed on the frame surface and have two surfaces. Both the surfaces are in contact with the sliding wire, So we can say that surface tension acts on the wire due to both these surfaces. Let T be the surface tension of the soap solution and L be the length of the wire.
∆x

L
F

F

F = T ×2 l

Fig.9.15 : A Film in equilibirum

The force exerted by each surface on the wire will be equal to T × L. Therefore, the total force F on the wire = 2TL.
Suppose that the surfaces tend to contract say, by ∆x. To keep the wire in equilibrium we will have to apply an external uniform force equal to F. If we increase the surface area of the film by pulling the wire with a constant speed through a distance ∆x, as shown in Fig.
9.15b, the work done on the film is given by
W = F × ∆x = T × 2L × ∆x where 2L × ∆x is the total increase in the area of both the surfaces of the film. Let us denote it by A. Then, the expressopm for work done on the film simplifies to
W =T×A
208

Properties of Fluids
This work done by the external force is stored as the potential energy of the new surface and is called as surface energy. By rearranging terms, we get the required expresion for surface tension :
T = W/A

MODULE - 2
Mechanics of Solids and Fluids

(9.6)

Thus, we see that surface tension of a liquid is equal to the work done in increasing the surface area of its free surface by one unit. We can also say that surface tension is equal to the surface energy per unit area.
We may now conclude that surface tension is a property of the surface layer of the liquid or the interface between a liquid and any other substance like air; tends to reduce the surface area of the free surface of the liquid; acts perpendicular to any line at the free surface of the liquid and is tangential to its meniscus; has genesis in intermolecular forces, which depend on temperature; and decreases with temperature.
A simple experiment described below demonstrates the property of surface tension of liquid surfaces.

Notes

Activity 9.3
Take a thin circular frame of wire and dip it in a soap solution. You will find that a soap film is formed on it. Now take a small circular loop of cotton thread and put it gently on the soap film. The loop stays on the film in an irregular shape as shown in Fig. 9.16(a). Now take a needle and touch its tip to the soap film inside the loop. What do you observe?
Thread
Thread
A

Soap film

T

T
T

Soap film
T
T

Fig 9.16 (a) : A soap film with closed loop of thread

A
T

Fig. 9.16 (b) : The shape of the thread without inner soap film

You will find that the loop of cotton thread takes a circular shape as shown in Fig 9.16(b).
Initially there was soap film on both sides of the thread. The surface on both sides pulled it and net forces of surface tension were zero. When inner side was punctured by the needle, the outside surface pulled the thread to bring it into the circular shape, so that it may acquire minimum area.

9.4.2 Applications of Surface Tension
(a) Mosquitoes sitting on water
In rainy reason, we witness spread of diseases like dengue, malaria and chickungunya by mosquito breeding on fresh stagnant water. Have you seen mosquitoes sitting on water surface? They do not sink in water due to surface tension. At the points where the legs of
3.209
209

MODULE - 2
Mechanics of Solids and Fluids

Physics the mosquito touch the liquid surface, the surface becomes concave due to the weight of the mosquito. The surface tension acting tangentially on the free surface, therefore, acts at a certain angle to the horizontal. Its vertical component acts upwards. The total force acting vertically upwards all along the line of contact of certain length balances the weight of the mosquito acting vertically downward, as shown in Fig 9.17.

Notes

Leg of mosquito
T cos θ θ T
T sin θ

T cos θ
T sin θ

θ

leg of mosquito

mg

(a)

(b)

Fig. 9.17 : The weight of a mosquito is balanced by the force of surface tension = 2π rT cos θ π (a) Dip in the level to form concave surface, and (b) magnified image

(b) Excess pressure on concave side of a spherical surface
Consider a small surface element with a line PQ of unit length on it, as shown in Fig. 9.18.
If the surface is plane, i.e. θ = 900, the surface tension on the two sides tangential to the surface balances and the resultant tangential force is zero [Fig. 9.18 (a)]. If, however, the surface is convex, [Fig. (9.18 (b)] or concave [Fig. 9.18 (c)], the forces due to surface tension acting across the sides of the line PQ will have resultant force R towards the center of curvature of the surface.
Thus, whenever the surface is curved, the surface tension gives rise to a pressure directed towards the center of curvature of the surface. This pressure is balanced by an equal and opposite pressure acting on the surface. Therefore, there is always an excess pressure on the concave side of the curved liquid surface [Fig. (9.18 b)].

T

P

Q

P

T

R (Resultant force) Q

r

T
T

T

Q
P

R

Fig. 9.18: (a) plane surface

(b) convex surface

(c) concave surface

(i) Spherical drop
A liquid drop has only one surface i.e. the outer surface. (The liquid area in contact with air is called the surface of the liquid.) Let r be the radius of a small spherical liquid drop and P be excess pressure inside the drop (which is concave on the inner side, but convex on the outside). Then
P = (Pi – P0) where Pi and P0 are the inside and outside pressures of the drop, respectively (Fig 9.19a)
If the radius of the drop increases by ∆r due to this constant excess pressure P, then

210

Properties of Fluids increase in surface area of the spherical drop is given by

p0

r + ∆r

∆A = 4π (r + ∆r)2 – 4πr2

MODULE - 2
Mechanics of Solids and Fluids

= 8π r ∆r air where we have neglected the term containing second power of ∆r.
The work done on the drop for this increase in area is given by Notes
Fig. 9.19 (a) : A spherical drop W = Extra surface energy = T∆A = T. 8π r ∆r

(9.7)

If the drop is in equilibrium, this extra surface energy is equal to the work done due to expansion under the pressure difference or excess pressure P:
Work done = P ∆V = P. 4π r2 ∆r

(9.8)

On combining Eqns. (9.7) and (9.8), we get
P. 4π r2 ∆r = T.8 π r ∆r
Or

P = 2 T/ r

(9.9)

(ii) Air Bubble in water p0 An air bubble also has a single surface, which is the inner surface
(Fig. 9.19b). Hence, the excess of pressure P inside an air bubble of radius r in a liquid of surface tension T is given by
P = 2T/ r

pc air (9.10)

(iii) Soap bubble floating in air
The soap bubble has two surfaces of equal surface area (i.e. Fig. 9.19 b : Air Bubble the outer and inner), as shown in Fig. 9.19(c). Hence, excess pressure inside a soap bubble floating in air is given by p0 P = 4T/ r

(9.11)

where T is suface tension of soap solution.
This is twice that inside a spherical drop of same radius or an air bubble in water. Now you can understand why a little extra pressure is needed to form a soap bubble.

pc air air
Fig.9.19 (c)

Example 9.3: Calculate the difference of pressure between inside and outside of a
(i) spherical soap bubble in air, (ii) air bubble in water, and (iii) spherical drop of water, each of radius 1 mm. Given surface tension of water = 7.2 × 10–2 Nm–1 and surface tension of soap solution = 2.5 × 10–2 Nm–1.
Solution:
(i) Excess pressure inside a soap bubble of radius r is
3.211
211

MODULE - 2

Physics

Mechanics of Solids and Fluids

P = 4T/r

=

4 × 2.5 × 10 –2
Nm–1
1 × 10 –3 m

= 100 Nm–2

Notes

(ii) Excess pressure inside an air bubble in water
= 2T ′/ r
=

2 × 7.2 × 10 –2 Nm –1
1 × 10 –3 m

= 144 Nm–2
(iii) Excess pressure inside a spherical drop of water =2T ′/ r
= 144 Nm–2
(c) Detergents and surface tension
You may have seen different advertisements highlighting that detergents can remove oil stains from clothes. Water is used as cleaning agent. Soap and detergents lower the surface tension of water. This is desirable for washing and cleaning since high surface tension of pure water does not allow it to penetrate easily between the fibers of materials, where dirt particles or oil molecules are held up.
You now know that surface tension of soap solution is smaller than that of pure water but the surface tension of detergent solutions is smaller than that of soap solution. That is why detergents are more effective than soap. A detergent dissolved in water weakens the hold of dirt particles on the cloth fibers which therefore, get easily detached on squeezing the cloth.
Soap
molecules water Soap molecules with head attracted to water

Platter with particles of greasy dirt

Inert ends surround dirt and the platter dirt can now be dislodged say by moving water.

Water is added; dirt is not dislooged

Dirt is held suspended, surrounded by soap molecules. Detergent is added the inert waxy ends of its molecules are attracted to boundary where water meals dirt.

Fig: 9.20 : Detergent action

The addition of detergent, whose molecules attract water as well as oil, drastically reduces the surface tension (T) of water-oil. It may even become favourable to form such interfaces,
212

Properties of Fluids
i.e. globes of dirt surrounded by detergent and then by water. This kind of process using surface active detergents is important for not only cleaning the clothes but also in recovering oil, mineral ores etc.

MODULE - 2
Mechanics of Solids and Fluids

(d) Wax-Duck floating on water
You have learnt that the surface tension of liquids decreases due to dissolved impurities. If you stick a tablet of camphor to the bottom of a wax-duck and float it on still water surface, you will observe that it begins to move randomly after a minute or two. This is because camphor dissolves in water and the surface tension of water just below the duck becomes smaller than the surrounding liquid. This creates a net difference of force of surface tension which makes the duck to move.

Notes

Now, it is time for you to check how much you have learnt. Therefore, answer the following questions. Intext Questions 9.2
1.

What is the difference between force of cohesion and force of adhesion?
................................................................................................................................................

2.

Why do small liquid drops assume a spherical shape.
................................................................................................................................................

3.

Do solids also show the property of surface tension? Why?
................................................................................................................................................

4.

Why does mercury collect into globules when poured on plane surface?
................................................................................................................................................

5.

Which of the following has more excess pressure?
(i) An air bubble in water of radius 2 cm. Surface tension of water is 727 × 10–3 Nm–1 or
(ii) A soap bubble in air of radius 4 cm. Surface tension of soap solution is 25 × 10–3 Nm–1.

9.5 Angle of Contact
You can observe that the free surface of a liquid kept in a container is curved. For example, when water is filled in a glass jar, it becomes concave but if we fill water in a paraffin wax container, the surface of water becomes convex. Similarly, when mercury is filled in a glass jar, its surface become convex. Thus, we see that shape of the liquid surface in a container depends on the nature of the liquid, material of container and the medium above free surface of the liquid. To characterize it, we introduce the concept of angle of contact.
It is the angle that the tangential plane to the liquid surface makes with the tangential plane to the wall of the container, to the point of contact, as measured from within the liquid, is known as angle of contact.
3.213
213

MODULE - 2

Physics

Mechanics of Solids and Fluids

θ

Fig. 9.21 shows the angles of contact for water in a glass jar and paraffin jar.
The angle of contact is acute for concave spherical meniscus, e.g. water with glass and obtuse (or greater than 900) for convex spherical meniscus e.g. water in paraffin or mercury in glass tube.

θ

Notes

Various forces act on a molecule in the surface of a liquid contained in a vessel near the boundary of the menisus. As the liquid is present only in the lower quadrant, the resultant cohesive force
Fig 9.21 : Nature of free surface when water is acts on the molecule at P symmetrically, filled in (a) glass jar, and as shown in the Fig.9.22(a). Similarly due
(b) paraffin wax jar to symmetry, the resultant adhesive force Fa acts outwards at right angles to the walls of the container vessel . The force Fc can be resolved into two mutually perpendicular components Fc cos θ acting vertically downwards and Fc sin θ acting at right angled to the boundary, The value of the angle of contact depends upon the relative values of Fc and Fa.

P

Fa

Fc sin θ

Fa θ Fc
Fc

Fc cos θ

Fc

Fa

Fa
Fc

F

F
(a)

Fc

(b)

(c)

Fig. 9.22 : Different shapes of liquid meniscuses

CASE 1: If Fa > Fc sin θ, the net horizontal force is outward and the resultant of (Fa – Fc sin θ) and Fc cos θ lies outside the wall. Since liquids can not sustain constant shear, the liquid surface and hence all the molecules in it near the boundary adjust themselves at right angles to Fc so that no component of F acts tangential to the liquid surface. Obviously such a surface at the boundary is concave spherical ( Since radius of a circle is perpendicular to the circumference at every point.) This is true in the case of water filled in a glass tube.
Case 2 : If Fa < Fc sin θ the resultant F of (Fc sin θ – Fa) acting horizontally and
Fc cos θ acting vertically down wards is in the lower quadrant acting into the liquid. The

214

Properties of Fluids liquid surface at the boundary, therefore, adjusts itself at right angles to this and hence becomes convex spherical. This is true for the case of mercury filled in the glass tube.

MODULE - 2
Mechanics of Solids and Fluids

Case 3 :When Fa = Fc sinθ, the resultant force acts vertically downwards and hence the liquid surface near the boundary becomes horizontal or plane.

9.6 Capillary Action

Notes

You might have used blotting paper to absorb extra ink from your notebook. The ink rises in the narrow air gaps in the blotting paper. Similarly, if the lower end of a cloth gets wet, water slowly rises upward. Also water given to the fields rises in the innumerable capillaries in the stems of plants and trees and reaches the branches and leaves. Do you know that farmers plough their fields only after rains so that the capillaries formed in the upper layers of the soil are broken. Thus, water trapped in the soil is taken up by the plants. On the other hand, we find that when a capillary tube is dipped into mercury, the level of mercury inside it is below the outside level. Such an important phenomenon of the elevation or depression of a liquid in an open tube of small cross- section (i.e., capillary tube) is basically due to surface tension and is known as capillary action.
The phenomenon of rise or depression of liquids in capillary tubes is known as capillary action or capillarity.

9.6.1 Rise of a Liquid in a Capillary Tube
Let us take a capillary tube dipped in a liquid, say water. The meniscus inside the tube will be concave, as shown in Fig. 9.23 (a). This is essentially because the forces of adhesion between glass and water are greater than cohesive forces.

A
B
h

A D
B C

E
D
C

(a)
(b)

Fig. 9.23 : Capillary action

Let us consider four points A, B, C and D near the liquid-air interface Fig. 9.23(a). We know that pressure just below the meniscus is less than the pressure just above it by 2T/R, i.e.
P B = PA – 2T/R

(9.12)

where T is surface tension at liquid-air interface and R is the radius of concave surface.
But pressure at A is equal to the pressure at D and is equal to the atmospheric pressure
3.215
215

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics
P (say). And pressure at D is equal to pressure at C . Therefore, pressure at B is less than pressure at D. But we know that the pressure at all points at the same level in a liquid must be same. That’s why water begins to flow from the outside region into the tube to make up the deficiency of pressure at point B.
Thus liquid begins to rise in the capillary tube to a certain height h (Fig 9.23 b) till the pressure of liquid column of height h becomes equal to 2T/R..Thereafter, water stops rising. In this condition h ρ g = 2 T/R

(9.13)

where ρ is the density of the liquid and g is the acceleration due to gravity. If r be radius of capillary tube and θ be the angle of contact, then from
C
T
Fig. 9.24, we can write
R

R = r /cosθ

θ
O

P

Substituting this value of R in Equation (9.13) h p g = 2T/ r /cos θ

θ
Q
S
Fig.9.24 : Angle of contact

or

h = 2T cosθ / r ρ g

(9.14)

It is clear from the above expression that if the radius of tube is less (i.e. in a very fine bore capillary), liquid rise will be high.

Intext Questions 9.3
1.

Does the value of angle of contact depend on the surface tension of the liquid?
..................................................................................................................................

2.

The angle of contact for a solid and liquid is less than the 900. Will the liquid wet the solid? If a capillary is made of that solid, will the liquid rise or fall in it?
..................................................................................................................................

3.

Why it is difficult to enter mercury in a capillary tube, by simply dipping it into a vessel containing mercury while designing a thermometer.
..................................................................................................................................

4.

Calculate the radius of a capillary to have a rise of 3 cm when dipped in a vessel containing water of surface tension 7.2 × 10–2 N m–1. The density of water is
1000 kg m–3, angle of contact is zero, and g = 10 m s–2.
..................................................................................................................................

5.

How does kerosene oil rise in the wick of a lantern?
................................................................................................................................................

216

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

9.7 Viscosity
If you stir a liquid taken in a beaker with a glass rod in the middle, you will note that the motion of the liquid near the walls and in the middle is not same (Fig.9.25). Next watch the flow of two liquids (e.g. glycerin and water) through identical pipes. You will find that water flows rapidly out of the vessel whereas glycerine flows slowly. Drop a steel ball through each liquid. The ball falls more slowly in glycerin than in water. These observations indicate a characteristic property of the liquid that determines their motion. This property is known as viscosity. Let us now learn how it arises. Notes

Fig. 9.25: Water being stirred with a glass rod

9.7.1 Viscosity
We know that when one body slides over the other, a frictional force acts between them.
Similarly, whenever a fluid flows, two adjacent layers of the fluid exert a tangential force on each other; this force acts as a drag and opposes the relative motion between them.
The property of a fluid by virtue of which it opposes the relative motion in its adjacent layers is known as viscosity.
Fig. 9.26 shows a liquid flowing through a tube. The layer of the liquid in touch with the wall of the tube can be assumed to be stationary due to friction between the solid wall and the liquid. Other layers are in motion and have different velocities Let v be the velocity of the layer at a distance x from the surface and v + dv be the velocity at a distance x + dx. Moving

Q

v + dv

P

v

x + dx

x

Rest
Fig. 9.26 : Flow of a liquid in a tube: Different layers move with different velocities

Thus, the velocity changes by dv in going through a distance dx perpendicular to it. The quantity dv/dx is called the velocity gradient.
The viscous force F between two layers of the fluid is proportional to
• area (A) of the layer in contact : F α A
3.217
217

MODULE - 2
Mechanics of Solids and Fluids

Physics
• velocity gradient (dv/dx) in a direction perpendicular to the flow of liquid : F α dv/dx
On combining these, we can write
F α A dv/dx or Notes

F = – η A (dv/dx)

(9.15)

where η is constant of proportionality and is called coefficient of viscosity. The negative sign indicates that force is frictional in nature and opposes motion.
The SI unit of coefficient of viscosity is Nsm–2. In cgs system, the unit of viscosity is poise.

Table 10.1 : Viscosity of a few typical fluids
Name T [0C] of fluid

Viscosity η
(PR)

Water

20

1.0 × 10–3

Water

100

0.3 × 10–3

blood

37

2.7 × 10–3

Air

40

1.9 × 10–5

1 poise = 0.1 Nsm–2
Dimensions of coefficient of viscosity are [ML–1 T–1]

9.8 Types of Liquid Flow
Have you ever seen a river in floods? Is it similar to the flow of water in a city water supply system? If not, how are the two different? To discover answer to such questions, let as study the flow of liquids.

9.8.1 Streamline Motion
The path followed by fluid particles is called line of flow. If every particle passing through a given point of the path follows the same line of flow as that of preceding particles, the flow is said to be streamlined. A streamline can be represented as the curve or path whose
Fig. 9.27: Streamline flow tangent at any point gives the direction of the liquid velocity at that point. In steady flow, the streamlines coincide with the line of flow (Fig. 9.27).
Note that streamlines do not intersect each other because two tangents can then be drawn at the point of intersection giving two directions of velocities, which is not possible.
When the velocity of flow is less than the critical velocity of a given liquid flowing through a tube, the motion is streamlined. In such a case, we can imagine the entire thickness of the stream of the liquid to be made up of a large number of plane layers (laminae) one sliding past the other, i.e. one flowing over the other. Such a flow is called laminar flow. If the velocity of flow exceeds the critical velocity vc, the mixing of streamlines takes place and the flow path becomes zig-zag. Such a motion is said to be turbulent.

9.8.2 Equation of Continuity
If an incompressible, non-viscous fluid flows through a tube of non-uniform cross section,
218

Properties of Fluids

MODULE - 2

A2 Mechanics of Solids the product of the area of cross section and the fluid speed at any and Fluids point in the tube is constant for a streamline flow. Let A1 and A2 denote the areas of cross section of the tube where the
B
fluid is entering and leaving, as shown in Fig. 9.28.
If v1 and v2 are the speeds of the fluid at the ends A and B respectively, and ρ is the density of the fluid, then A1
Notes
the liquid entering the tube at A
A
Fig. 9.28: Liquid flowing through a tube covers a distance v 1 in one second. So volume of the liquid entering per second= A1 × v1. Therefore

Mass of the liquid entering per second at point A = A1 v1 ρ
Similarly, mass of the liquid leaving per second at point B = A2 v2 ρ
Since there is no accumulation of fluid inside the tube, the mass of the liquid crossing any section of the tube must be same. Therefore, we get
A1 v1 ρ = A2 v2 ρ or A1 v1 = A2 v2

This expression is called equation of continuity.

9.8.3 Critical Velocity and Reynolds’s Number
We now know that when the velocity of flow is less than a certain value, valled critical velocity, the flow remains streamlined. But when the velocity of flow exceeds the critical velocity, the flow becomes turbulent.
The value of critical velocity of any liquid depends on the
• nature of the liquid, i.e. coefficient of viscosity ( η ) of the liquid;
• diameter of the tube (d) through which the liquid flows; and
• density of the liquid (ρ).
Experiments show that vc α η ; vc α
Hence, we can write

1
1
and vc α . ρ d

vc = R.η/ρ d

(9.16)

where R is constant of proportionality and is called Reynolds’s Number. It has no dimensions.
Experiments show that if R is below 1000, the flow is laminar. The flow becomes unsteady when R is between 1000 and 2000 and the flow becomes turbulent for R greater than 2000.
Example 9.1: The average speed of blood in the artery (d =2.0 cm) during the resting part of heart’s cycle is about 30 cm s–1. Is the flow laminar or turbulent? Density of blood
1.05 g cm–3; and η = 4.0 × 10–2 poise.
Solution: From Eqn. (9.16) we recall that Reynold’s number R = vc ρ d/η. On substituting
3.219
219

MODULE - 2
Mechanics of Solids and Fluids

Physics the given values, we get
(30 cm s –1 ) × 2cm × (1.05g cm –3 )
R =
(4.0 × 10 –2 g cm –1s –1 )

= 1575

Notes

Since 1575 < 2000, the flow is unsteady.

9.9 Stokes’ Law
George Stokes gave an empirical law for the magnitude of the tangential backward viscous force F acting on a freely falling smooth spherical body of radius r in a highly viscous liquid of coefficient of viscosity η moving with velocity v. This is known as Stokes’ law.
According to Stokes’ law
Fαη rv
F=Kηrv

or

where K is constant of proportionality. It has been found experimentally that K = 6π.
Hence Stokes’ law can be written as
F = 6π η r v

(9.17)

Stokes’ Law can also be derived using the method of dimensions as follows:
According to Stokes, the viscous force depends on: coefficient of viscosity (η) of the medium radius of the spherical body (r) velocity of the body (v)
Then

F α ηa rb vc

or

F = K ηa rb vc

where K is constant of proportionality
Taking dimensions on both the sides, we get
[MLT –2] = [ML–1T–1]a [L]b [LT–1]c or [MLT –2] = [Ma L–a+b+c T–a-c]

Comparing the exponents on both the sides and solving the equations we get a = b = c = 1.
Hence

220

F =Kηrv

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

9.9.1 Terminal Velocity
Let us consider a spherical body of radius r and density ρ falling through a liquid of density σ.
The forces acting on the body will be

B

F v W

viscous liquid

(i)

Weight of the body W acting downward.

(ii)

The viscous force F acting vertically upward. Fig. 9.29 : Force acting on a sphere

(iii)

The buoyant force B acting upward.

Notes

falling in viscous fluid

Under the action of these forces, at some instant the net force on the body becomes zero,
(since the viscous force increases with the increase of velocity). Then, the body falls with a constant velocity known as terminal velocity. We know that magnitude of these forces are F = 6π η r v0 where v0 is the terminal velocity.
W = (4/3) π r3 ρg
B = (4/3) π r3 σg

and

The net force is zero when object attains terminal velocity. Hence
6π η r v0 =
Hence

4
4
π r3 ρg – π r3 σg
3
3

2r 2 (ρ – σ) g v0 =


(9.18)

9.9.2 Applications of Stokes’ Law
A. Parachute
When a soldier jumps from a flying aeroplane, he falls with acceleration due to gravity g but due to viscous drag in air, the acceleration goes on decreasing till he acquires terminal velocity. The soldier then descends with constant velocity and opens his parachute close to the ground at a pre-calculated moment, so that he may land safely near his destination.
B. Velocity of rain drops
When raindrops fall under gravity, their motion is opposed by the viscous drag in air. When viscous force becomes equal to the force of gravity, the drop attains a terminal velocity.
That is why rain drops reaching the earth do not have very high kinetic energy.
Example 9.2: Determine the radius of a drop of rain falling through air with terminal velocity 0.12 ms–1. Given η = 1.8 × 10–5 kg m–1 s–1, ρ = 1.21 kg m–3, σ = 1.0 × 103 kg m–3 and g = 9.8 m s–2.
Solution: We know that terminal velocity is given by
3.221
221

MODULE - 2
Mechanics of Solids and Fluids

Physics
2r 2 (ρ – σ) g v0 =

On rearranging terms, we can write r =

Notes
=

9η v 0
2 (ρ – σ)g
9 × 1.8 × 10 –5 × 0.12 m 2 (1000 – 1.21) 9.8

= 10–5 m

Intext Questions 9.4
1.

Differentiate between streamline flow and turbulent flow?
..................................................................................................................................

2.

Can two streamlines cross each other in a flowing liquid?
..................................................................................................................................

3.

Name the physical quantities on which critical velocity of a viscous liquid depends.
..................................................................................................................................

4.

Calculate the terminal velocity of a rain drop of radius 0.01m if the coeflicient of viscosity of air is 1.8 × 10–5 Ns m–2 and its density is 1.2 kg m–3. Density of water =
1000 kg m–3. Take g = 10 m s–2.
..................................................................................................................................

5.

When a liquid contained in a tumbler is stirred and placed for some time, it comes to rest, Why?
..................................................................................................................................

Daniel Bernoulli (1700-1782)
Daniel Bernoulli, a Swiss Physicist and mathematician was born in a family of mathematicians on February 8, 1700. He made important contributions in hydrodynamics. His famous work,
Hydrodyanamica was published in 1738. He also explained the behavior of gases with changing pressure and temperature, which led to the development of kinetic theory of gases.
He is known as the founder of mathematical physics. Bernoulli’s principle is used to produce vacuum in chemical laboratories by connecting a vessel to a tube through which water is running rapidly.

222

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

9.10 Bernoulli’s Principle
Have you ever thought how air circulates in a dog’s burrow, smoke comes quickly out of a chimney or why car’s convertible top bulges upward at high speed? You must have definitely experienced the bulging upwards of your umbrella on a stormy- rainy day. All these can be understood on the basis of Bernoulli’s principle.
Bernoulli’s Principle states that where the velocity of a fluid is high, the pressure is low and where the velocity of the fluid is low, pressure is high.

Notes

9.10.1 Energy of a Flowing Fluid
Flowing fluids possess three types of energy. We are familiar with the kinetic and potential energies. The third type of energy possessed by the fluid is pressure energy. It is due to the pressure of the fluid. The pressure energy can be taken as the product of pressure difference and its volume. If an element of liquid of mass m, and density d is moving under a pressure difference p, then
Pressure energy = p × (m/d) joule
Pressure energy per unit mass = (p/d) J kg–1

9.10.2 Bernoulli’s Equation
Bernoulli developed an equation that expresses this principle quantitatively. Three important assumptions were made to develop this equation:
1.The fluid is incompressible, i.e. its density does not change when it passes from a wide bore tube to a narrow bore tube.
2.The fluid is non-viscous or the effect of viscosity is not to be taken into account.
3.The motion of the fluid is streamlined.

P2 A2

U2

P1 A1

U2 h2 U1

h2

Fig. 9.30

We consider a tube of varying cross section shown in the Fig. 9.30. Suppose at point A the pressure is P1, area of cross section A1, velocity of flow v1, height above the ground h1 and at B, the pressure is P2 ,area of cross-section A2 velocity of flow = v2 , and height above the ground h2.
3.223
223

MODULE - 2
Mechanics of Solids and Fluids

Physics
Since points A and B can be any two points along a tube of flow, we write Bernoulli’s equation P + 1/2 dv2 + h dg = Constant.
That is, the sum of pressure energy, kinetic energy and potential energy of a fluid remains constant in streamline motion.

Activity 9.4

Notes
1.

Take a sheet of paper in your hand.

2.

Press down lightly on horizontal part of the paper as shown in Fig. 9.31 so that the paper curves down.

3.

Blow on the paper along the horizontal line.

Watch the paper. It lifts up because speed increases and pressure on the upper side of the paper decreases.

Fig. 9.31

9.10.3 Applications of Bernoulli’s Theorem
Bernoulli’s theorem finds many applications in our lives. Some commonly observed phenomena can also be explained on the basis of Bernoulli’s theorem.
A. Flow meter or Venturimeter
It is a device used to measure the rate of flow of liquids through pipes. The device is inserted in the flow pipe, as shown in the Fig. 9.32
P1
H1
Main
pipe

v

v

h
A2

A

P1
P2
h1 h2 v2 A2 A1 r1
B

v

Main pipe Venturimeter

Fig. 9.32 : A Venturimeter

It consists of a manometer, whose two limbs are connected to a tube having two different cross-sectional areas say A1 and A2 at A and B, respectively. Suppose the main pipe is horizontal at a height h above the ground. Then applying Bernoulli’s theorem for the steady flow of liquid through the venturimeter at A and B, we can write
Total Energy at A = Total Energy At B

1 mp1 1 mp2 2
2
m υ1 + mgh +
=
m υ2 + mgh +
2
d
2
d
On rearranging terms we can write,
2
⎤ v12 d ⎡⎛ v 2 ⎞ d 2
2
⎢⎜ ⎟ − 1⎥
( p 1 – p2 ) =
( v2 – v1 ) =
2 ⎣⎝ v1 ⎠
2


224

(9.19)

Properties of Fluids
It shows that points of higher velocities are the points of lower pressure (because of the sum of pressure energy and K.E. remain constant). This is called Venturi’s Principle.

MODULE - 2
Mechanics of Solids and Fluids

For steady flow through the ventrurimeter, volume of liquid entering per second at A = liquid volume leaving per second at B. Therefore
A 1v 1 = A2v2

(9.20)

(The liquid is assumed incompressible i.e., velocity is more at narrow ends and vice versa.

Notes

Using this result in Eqn. (9.19), we conclude that pressure is lesser at the narrow ends; p1 – p2 =

v12 d
2

2
⎡ A1 ⎤
⎢ A2 − 1⎥
⎣ 2 ⎦

1 2
= dv1
2

⎡⎛ A ⎞ 2 ⎤
⎢⎜ 1 ⎟ − 1⎥
⎢⎝ A 2 ⎠




2( p1 – p2 )
⎛ A2 ⎞ d ⎜ 1 ⎟ –1
2
⎝ A2 ⎠

v1 =

(9.21)

If h denotes level difference between the two limbs of the venturimeter, then p1 – p2 = h d g and 2
2hg [(A1 / A 2 ) –1]
2

v1 =

From this we note that v1 ∝ venturimeter. Thus

h since all other parameters are constant for a given

v1 = K

h;

where K is constant.
The volume of liquid flowing per second is given by
V = A1 v1 = A1 × K h or V = K′h

where K′ = K A1 is another constant.
Bernaulli’s principle has many applications in the design of many useful appliances like atomizer, spray gun, Bunsen burner, carburetor, Aerofoil, etc.
(i) Atomizer : An atomizer is shown in Fig. 9.33. When the rubber bulb A is squeezed, air blows through the tube B and comes out of the narrow orifice with larger velocity creating a region of low pressure in its neighborhood. The liquid (scent or paint) from the vessel is, therefore, sucked into the tube to come out to the nozzles N. As the liquid reaches the
3.225
225

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics nozzle, the air stream from the tube B blows it into a fine spray.
(ii) Spray gun : When the piston is moved in, it blows the air out of the narrow hole ‘O’ with large velocity creating a region of low pressure in its neighborhood. The liquid (e.g. insecticide) is sucked through the narrow tube attached to the vessel end having its opening just below ‘O’. The liquid on reaching the end gets sprayed by out blown air from the piston (Fig. 9.34).
(iii) Bunsen Burner : When the gas emerges out of the nozzle N, its velocity being high the pressure becomes low in its vicinity. The air, therefore, rushed in through the side hole
A and gets mixed with the gas. The mixture then burns at the mouth when ignited, to give a hot blue flame (Fig.9.35).
(iv) Carburetor : The carburetor shown in Fig. 9.36. is a device used in motor cars for supplying a proper mixture of air and petrol vapours to the cylinder of the engine. The energy is supplied by the explosion of this mixture inside the cylinders of the engine. Petrol is contained in the float chamber. There is a decrease in the pressure on the side A due to motion of the piston.This causes the air from outside to be sucked in with large velocity. This causes a low pressure near the nozzle B (due to constriction, velocity of air sucked is more near B) and, therefore, petrol comes out of the nozzle
B which gets mixed with the incoming. Air. The mixture of vaporized petrol and air forming the fuel then enters the cylinder through the tube A.

Fig. 9.33 : Atomizer

Fig. 9.34 : Spray gun

Fig. 9.35 : Bunsen Burner

Fig. 9.36 : Carburettor

(Sometimes when the nozzle B gets choked due to deposition of carbon or some impurities, it checks the flow of petrol and the engine not getting fuel stops working. The nozzle has therefore, to be opened and cleaned.
(v) Aerofoil : When a solid moves in air , streamlines are formed . The shape of the body of the aeroplane is designed specially as shown in the Fig. 9.37. When the aeroplane runs on its runway, high velocity streamlines of air are formed. Due to crowding of more streamlines on the upper side, it becomes a region of more velocity and hence of comparatively low pressure region than below it. This pressure difference gives the lift to the aeroplane.

226

Properties of Fluids

MODULE - 2
Mechanics of Solids and Fluids

Notes

Fig. 9.37 : Crowding of streamlines on the upper side.

Based on this very principle i.e., the regions of high velocities due to crowding of steam lines are the regions of low pressure, following are interesting demonstrations.
(a) Attracted disc paradox : When air is blown through a narrow tube handle into the space between two cardboard sheets [Fig. 9.38] placed one above the other and the upper disc is lifted with the handle, the lower disc is attracted to stick to the upper disc and is lifted with it. This is called attracted disc paradox,

Fig. 9.38 : Attracted disc paradox

(b) Dancing of a ping pong ball on a jet of water:
If a light hollow spherical ball (ping-pong ball or table tennis ball) is gently put on a vertical stream of water coming out of a vertically upward directed jet end of a tube, it keeps on dancing this way and that way without falling to the ground
(Fig.9.39). When the ball shifts to the lefts , then most of the jet streams pass by its right side thereby creating a region of high velocity and hence low pressure on its right side in comparison to that on the left side and the ball is again pushed back to the center of the jet stream .
(c) Water vacuum pump or aspirator or filter pump : Fig. Fig. 9.39 :Dancing Pring
9.40 shows a filter pump used for producing moderately low
Pongball
pressures. Water from the tap is allowed to come out of the narrow jet end of the tube A . Due to small aperture of the nozzle, the velocity becomes high and hence a low-pressure region is created around the nozzle N. Air is, therefore, sucked from the vessel to be evacuated through the tube B; gets mixed with the steam of water and goes out through the outlet. After a few minutes., the pressure of air in the vessel is decreased to about 1 cm of mercury by such a pump
3.227
227

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics
(d) Swing of a cricket ball:
When a cricketer throws a spinning ball, it moves along a curved path in the air. This is called swing of the ball. It is clear from
Fig. 9.41. That when a ball is moved forward, the air occupies the space left by the ball with a velocity v (say). When the ball spins, the layer of air around it also moves with the ball, say with the velocity ‘u’. So the resultant velocity of air above the ball becomes (v – u) and below the ball becomes (v + u).
Hence, the pressure difference above and below the ball moves the ball in a curved path.

Fig. 9.40 : Filter Pump

v u Curved path of the ball

u v Fig. 9.41 : Swing of a cricket ball

Example 9.3: Water flows out of a small hole in the wall of a large tank near its bottom (Fig. 942). What is the speed of efflux of water when the height of water level in the tank is 2.5m?
Solution: Let B be the hole near the bottom. Imagine a tube of flow A to B for the water to flow from the surface point A to the hole B. We can apply the Bernoulli’s theorem to the points A and B for the streamline flow of small mass m .

A VA = 0

hA
B

hB

Fig. 9.42

Total energy at B = Total energy at A
At A, vA= 0, pA= p = atmospheric pressure, h = height above the ground.
At B, vB = v = ?, pB = p, hB = height of the hole above the ground.
Let hA – hB = H = height of the water level in the vessel = 2.5m and d = density of the water.
Applying the Bernoulli’s Principle and substituting the values we get,
2
½m v B = mg (hA – hB)

vB =

2g (hA – hB )

=

or

2 × 9.8 × 2.5

= 7 m s–1
228

VB

Properties of Fluids

Intext Questions 9.5
1.

MODULE - 2
Mechanics of Solids and Fluids

The windstorm often blows off the tin roof of the houses, How does Bernoulli’s equation explain the phenomenon?
..................................................................................................................................

2.

When you press the mouth of a water pipe used for watering the plants, water goes to a longer distance, why?

Notes

..................................................................................................................................
3

What are the conditions necessary for the application of Bernoulli’s theorem to solve the problems of flowing liquid?
..................................................................................................................................

4.

Water flows along a horizontal pipe having non-uniform cross section. The pressure is
20 mm of mercury where the velocity is 0.20m/s. find the pressure at a point where the velocity is 1.50 m/s?
..................................................................................................................................

5.

Why do bowlers in a cricket match shine only one side of the ball?
..................................................................................................................................

What You Have Learnt
Hydrostatic pressure P at a depth h below the free surface of a liquid of density is given by
P = hdg
The upward force acting on an object submerged in a fluid is known as buoyant force. According to Pascal’s law, when pressure is applied to any part of an enclosed liquid, it is transmitted undiminished to every point of the liquid as well as to the walls of the container. The liquid molecules in the liquid surface have potential energy called surface energy.
The surface tension of a liquid may be defined as force per unit length acting on a imaginary line drawn in the surface. It is measured in Nm–1.
Surface tension of any liquid is the property by virtue of which a liquid surface acts like a stretched membrane.
Angle of contact is defined as the angle between the tangent to the liquid surface and the wall of the container at the point of contact as measured from within the liquid.
The liquid surface in a capillary tube is either concave or convex. This curvature is
3.229
229

MODULE - 2
Mechanics of Solids and Fluids

Physics due to surface tension. The rise in capillary is given by

h=

2T cos θ rd g

The excess pressure P on the concave side of the liquid surface is given by

Notes

2T
, where T is surface tension of the liquid
R

P=

P=

P=

2T
, for air bubble in the liquid and
R

4T ′
, where T ′ is surface tension of soap solution, for soap bubble in air r Detergents are considered better cleaner of clothes because they reduce the surface tension of water-oil.
The property of a fluid by virtue of which it opposes the relative motion between its adjacent layers is known as viscosity.
The flow of liquid becomes turbulent when the velocity is greater than a certain value called critical velocity (vc) which depends upon the nature of the liquid and the diameter of the tube i.e. (η.P and d).
Coefficient of viscosity of any liquid may be defined as the magnitude of tangential backward viscus force acting between two successive layers of unit area in contact with each other moving in a region of unit velocity gradient.
Stokes’ law states that tangential backward viscous force acting on a spherical mass of radius r falling with velocity ‘v’ in a liquid of coefficient of viscosity η is given by
F = 6π η r v.
Bernoulli’s theorem states that the total energy of an element of mass (m) of an incompressible liquid moving steadily remains constant throughout the motion.
Mathematically, Bernoullis’s equation as applied to any two points A and B of tube of flow 1 mPA 1 mPB 2
2
m vA + m g h +
= m vB + m g hB +
A
2 d 2 d Terminal Exercises
1. Derive an expression for hyhostatic pressure due to a liquid column.
2. State pascal’s law. Explain the working of hydraulic press.

230

Properties of Fluids
3. Define surface tension. Find its dimensional formula.
4. Describe an experiment to show that liquid surfaces behave like a stretched membrane.

MODULE - 2
Mechanics of Solids and Fluids

5. The hydrostatic pressure due to a liquid filled in a vessel at a depth 0.9 m is 3.0 N m2.
What will be the hydrostatic pressure at a hole in the side wall of the same vessel at a depth of 0.8 m.
6. In a hydraulic lift, how much weight is needed to lift a heavy stone of mass 1000 kg?
Given the ratio of the areas of cross section of the two pistons is 5. Is the work output greater than the work input? Explain.

Notes

7. A liquid filled in a capillary tube has convex meniscus. If Fa is force of adhesion,
Fc is force of cohesion and θ = angle of contact, which of the following relations should hold good?
(a) Fa > Fc sinθ; (b) Fa < Fc sinθ; (c) Fa cosθ = Fc; (d) Fa sinθ > Fc
8. 1000 drops of water of same radius coalesce to form a larger drop. What happens to the temperature of the water drop? Why?
9. What is capillary action? What are the factors on which the rise or fall of a liquid in a capillary tube depends?
10. Calculate the approximate rise of a liquid of density 103 kg m–3 in a capillary tube of length 0.05 m and radius 0.2 × 10–3 m. Given surface tension of the liquid for the material of that capillary is 7.27 × 10–2 N m–1.
11. Why is it difficult to blow water bubbles in air while it is easier to blow soap bubble in air? 12. Why the detergents have replaced soaps to clean oily clothes.
13. Two identical spherical balloons have been inflated with air to different sizes and connected with the help of a thin pipe. What do you expect out of the following observations? (i) The air from smaller balloon will rush into the bigger balloon till whole of its air flows into the later.
(ii) The air from the bigger balloon will rush into the smaller balloon till the sizes of the two become equal.
What will be your answer if the balloons are replaced by two soap bubbles of different sizes. 14. Which process involves more pressure to blow a air bubble of radius 3 cm inside a soap solution or a soap bubble in air? Why?
15. Differentiate between laminar flow and turbulent flow and hence define critical velocity.
16. Define viscosity and coefficient of viscosity. Derive the units and dimensional formula of coefficient of viscosity. Which is more viscous : water or glycerine? Why?
17. What is Reynold’s number? What is its significance? Define critical velocity on the basis of Reynold’s number.
18. State Bernoulli’s principle. Explain its application in the design of the body of an aeroplane. 3.231
231

MODULE - 2
Mechanics of Solids and Fluids

Notes

Physics
19. Explain Why :
(i) A spinning tennis ball curves during the flight?
(ii) A ping pong ball keeps on dancing on a jet of water without falling on to either side? (iii) The velocity of flow increases when the aperture of water pipe is decreased by squeezing its opening.
(iv) A small spherical ball falling in a viscous fluid attains a constant velocity after some time.
(v) If mercury is poured on a flat glass plate; it breaks up into small spherical droplets.
20. Calculate the terminal velocity of an air bubble with 0.8 mm in diameter which rises in a liquid of viscosity of 0.15 kg m–1 s–1 and density 0.9 g m–3. What will be the terminal velocity of the same bubble while rising in water? For water η = 10–2 kg m–1 s–1.
21. A pipe line 0.2 m in diameter, flowing full of water has a constriction of diameter 0.1
m. If the velocity in the 0.2 m pipe-line is 2 m s–1. Calculate
(i) the velocity in the constriction, and
(ii) the discharge rate in cubic meters per second.
22. (i) With what velocity in a steel ball 1 mm is radius falling in a tank of glycerine at an instant when its acceleration is one-half that of a freely falling body?
(ii) What is the terminal velocity of the ball? The density of steel and of glycerine are
8.5 gm cm–3 and 1.32 g cm–3 respectively; viscosity of glycerine is 8.3 Poise.
23. Water at 20ºC flows with a speed of 50 cm s–1 through a pipe of diameter of 3 mm.
(i) What is Reynold’s number?
(ii) What is the nature of flow?
Given, viscosity of water at 20ºC as = 1.005 × 10–2 Poise; and
Density of water at 20ºC as = 1 g cm–3.
24. Modern aeroplane design calls for a lift of about 1000 N m–2 of wing area. Assume that air flows past the wing of an aircraft with streamline flow. If the velocity of flow past the lower wing surface is 100 m s–1, what is the required velocity over the upper surface to give a desired lift of 1000 N m–2? The density of air is 1.3 kg m–3.
25. Water flows horizontally through a pipe of varying cross-section. If the pressure of water equals 5 cm of mercury at a point where the velocity of flow is 28 cm s–1, then what is the pressure at another point, where the velocity of flow is 70 cm s–1? [Tube density of water 1 g cm–3].

Answers to Intext Questions
9.1
1. Because then the weight of the person applies on a larger area hence pressure on snow decreases.

232

Properties of Fluids
2. P = Pa + ρ gh

Mechanics of Solids and Fluids

P = 1.5 × 107 Pa
3. Pressure applied by the weight of the boy =
Pressure due to the weight of the elephant =

MODULE - 2

2.5
= 500 N m–2.
0.05

5000
= 500 N m–2.
10

Notes

∴ The boy can balance the elephant.
4. Because of the larger area of the rod, pressure on the skin is small.

w
50
=
, w = 5000 kg wt.
0.1 10

5.

9.2
1. Force of attraction between molecules of same substance is called force of cohesion and the force of attractive between molecules of different substance is called force of adhesion. 2. Surface tension leads to the minimum surface area and for a given volume, sphere has minimum surface area.
3. No, they have tightly bound molecules.
4. Due to surface tension forces.
5. For air bubble in water

2T
2 × 727 × 10–3
P=
=
= 72.7 N m–2. r 2 × 10–2
For soap bubble in air
P′ =

4T ′
4 × 25 × 10–3
=
= 2.5 N m–2. r′ 4 × 10–2

9.3
1. No.
2. Yes, the liquid will rise.
3. Mercury has a convex meniscus and the angle of contact is obtuse. The fall in the level of mercury in capillary makes it difficult to enter.

2T
2 × 7.2 × 10 –2
4. r = h ρ g =
3 × 1000 × 10
= 4.8 × 10–6m.
5. Due to capillary action.
3.233
233

MODULE - 2
Mechanics of Solids and Fluids

Physics

9.4
1. If every particle passing through a given point of path follows the same line of flow as that of preceding particle the flow is stream lined, if its zig-zag, the flow is turbulent.
2. No, otherwise the same flow will have two directions.

Notes

3. Critical velocity depends upon the viscous nature of the liquid, the diameter of the tube and density of the liquid.
4. .012 ms–1
5. Due to viscous force.

9.5
1. High velocity of air creates low pressure on the upper part.
2. Decreasing in the area creates large pressure.
3. The fluid should be incompressible and non-viscous on (very less). The motion should be steamlined.
4. (P1 – P2) =

1
2
d ( v 2 – v12 )
2

5. So that the stream lines with the two surfaces are different. More swing in the ball will be obtained.

Answers to the Terminal Exercises
5. 2.67 N m–2.
6. 200 N, No.
20. 2.1 mm s–1, 35 cm s–1.
21. 8 m s–1, 6.3 × 10–2 m3 s–1.
22. 7.8 mm s–1, 0.19 m s–1.
23. 1500, Unsteady.
24. 2 cm of mercury.

234

Properties of Fluids

SENIOR SECONDARY COURSE
PHYSICS
STUDENT’S ASSIGNMENT – 2

MODULE - 2
Mechanics of Solids and Fluids

Notes
1

Time : 1

Maximum Marks: 50

2

Hours

INSTRUCTIONS
Answer All the questions on a seperate sheet of paper
Give the following information on your answer sheet:
Name
Enrolment Number
Subject
Assignment Number
Address
Get your assignment checked by the subject teacher at your study centre so that you get positive feedback about your performance.

Do not send your assignment to NIOS
1.

Stress-straits graph for two samples of rubber are shown in the figures given below. Which of the two will serve as better shock absorber?
(1)

Stress

Stress

Strain
(a)

Strain
(b)

2.

Two wires A and B having equal lengths and made of the same metal are subjected to equal loads. If extension in A is twice the extension in B what is the ratio of the radii of A and B.
(1)

3.

Why are the walls of a dam made thicker at the base?

(1)

4.

A balloon filled with helium gas does not rise in air indefinitely but halts after a certain height.
Why?

(1)

5.

How does the viscosity of a gas change with increase in temperature of the gas?

(1)

6.

Which is more elastic iron or rubber?

(1)
3.235
235

7.

Is Surface tension dependent on the area of the surface?

(1)

8.

For what values of Raynold number is the flow of a fluid stream-lined.

(1)

9.

When solid rubber ball is taken from the surface to bottom of a lake the reduction in its volume is 0.0012%.
The depth of the lake is 0.360 km, density of water is 1g cm–3 and acceleration due to gravity is 10 N kg–
1
. Calculate bulk modulus of rubber. [Ans : 3 × 1011N m–2]
(2)

10. Show the variation of stress with strain when a metallic wire of uniform cross.section is subjected to an increasing load.
(2)
11. Explain why the detergents should have small angle of contact.

(2)

12. A 40 kg girl, wearing high heel shoes, balances on a single heel which is circular and has a diameter
10 mm. What is the pressure exerted by the heel on the floor?
(2)
13. (i) Why does a spinning cricket ball in air not follow a parabolic trajectory?
(ii) Discuss the magnus effect.

(2 + 2)

14. State Bernoulli’s principle.
A fully loaded aircraft has a mass 330 tonnes and total wing area 500 m2. It is in level flight with a speed of 960 km h–1. Estimate the pressure difference between the lower and upper surfaces of the wings. Also estimate the fractional increase in the speed of the air on the upper surface of the wing relative to the lower surface. The density of air is 1.2 kg m–3.
∆P
F


3
–2 V2 – V1
=
= 0.08 ⎪
2
⎪∆P' = A = 6.5 × 10 Nm , V
Pv


av


Hint : ⎪
2∆P

V2 – V1 =


P(V2 + V1 )



(4)

15. A smooth spherical body of density(ρ) and radius(r), falling freely in a highly viscous liquid of density σ and coefficient of viscosity(η) with a velocity (v), state the law for the magnitude of the tangential backward viscous force (F) acting on the body. Obtain the expression for the constant velocity acquired by the spherical body in the liquid.
(4)
16. Increasing surface area costs energy. Discuss the behaviour of molecules in a liquid and hence explain surface energy.
(4)
17. A soap bubble has two surfaces of equal surface area i.e. the outer and the inner but pressure inside is different from the pressure outside. Obtain the expression for the difference in pressure inside a soap bubble floating in air.
(4)
18. State equation of continuity and prove it.

(4)

19. What is the function of a flow meter? Obtain the expression for the volume of liquid flowing per second through a venturimeter.
(5)
20. State three assumptions required to develop Bernoulli’s equation. Show that pressure energy, kinetic energy, and potential energy per unit Volume of a fluid remains constant in a stream line motion.
(5)
or
If a capillary tube is dipped in water what do you observe? What do you call this phenomenon? Obtain the expression for this phenomenon relating the symbols T, r, h, θ, f and g where symbols have their usual meaning. Also discuss what would happen if the thin tube of uniform bore immersed in water is of insufficient length.

236

MODULE - III
THERMAL PHYSICS
10. Kinetic Theory of Gases
11. Thermodynamics
12. Heat Transfer and Solar Energy

Kinetic Theory of Gases

MODULE - 3
Thermal Physics

10
KINETIC THEORY OF GASES

Notes

studied in lessons, at standard temperature and pressure,
As you havethree states –the previous and gas. These are composed of atoms/molecules matter exists in solid, liquid which are held together by intermolecular forces. At room temperature, these atoms/ molecules have finite thermal energy. If thermal energy increases, molecules begin to move more freely. This state of matter is said to be the gaseous state. In this state, intermolecular forces are very weak and very small compared to their kinetic energy.
Under different conditions of temperature, pressure and volume, gases exhibit different properties. For example, when the temperature of a gas is increased at constant volume, its pressure increases. In this lesson you will learn the kinetic theory of gases which is based on certain simplifying assumptions.You will also learn the kinetic interpretation of temperature and its relationship with the kinetic energy of the molecules. Why the gases have two types of heat capacities will also be explained in this lesson.

Objectives
After studying this lesson, you should be able to : state the assumptions of kinetic theory of gases; derive the expression for pressure P =

1 ρc2 ;
3

explain how rms velocity and average velocity are related to temperature; derive gas laws on the basis of kinetic theory of gases; give kinetic interpretation of temperature and compute the mean kinetic energy of a gas; explain the law of equipartition of energy; explain why a gas has two heat capacities; and derive the relation cp – cV = R/J.

3.237
237

MODULE - 3
Thermal Physics

Notes

Physics

10.1 Kinetic Theory of Gases
You now know that matter is composed of very large number of atoms and molecules.
Each of these molecules shows the characteristic properties of the substance of which it is a part. Kinetic theory of gases attempts to relate the macroscopic or bulk properties such as pressure, volume and temperature of an ideal gas with its microscopic properties such as speed and mass of its individual molecules. The kinetic theory is based on certain assumptions. (A gas whose molecules can be treated as point masses and there is no intermolecular force between them is said to be ideal.) A gas at room temperature and atmospheric pressure (low pressure) behaves like an ideal gas.

10.1.1 Assumptions of Kinetic Theory of Gases
Clark Maxwell in 1860 showed that the observed properties of a gas can be explained on the basis of certain assumptions about the nature of molecules, their motion and interaction between them. These resulted in considerable simplification. We now state these.
(i)

A gas consists of a very large number of identical rigid molecules, which move with all possible velocities randomly. The intermolecular forces between them are negligible.

(ii)

Gas molecules collide with each other and with the walls of the container. These collisions are perfectly elastic.

(iii) Size of the molecules is negligible compared to the separation between them.
(iv) Between collisions, molecules move in straight lines with uniform velocities.
(v)

Time taken in a collision is negligible as compared to the time taken by a molecule between two successive collisions.

(vi) Distribution of molecules is uniform throughout the container.
To derive an expression for the pressure exerted by a gas on the walls of the container, we consider the motion of only one molecule because all molecules are identical
(Assumption i). Moreover, since a molecule moving in space will have velocity components along x, y and z–directions, in view of assumption (vi)it is enough for us to consider the motion only along one dimension, say x-axis.(Fig. 10.1). Note that if there were
N (= 6 ×1026 molecules m–3), instead of considering 3N paths, the assumptions have reduced the roblem to only one molecule in one dimension. Let us consider a molecule having velocity C in the face LMNO. Its x, y and z components are u, v and w, respectively. If the mass of the molecule is m and it is moving with a speed u along x–axis, its momentum will be mu towards the wall and normal to it. On striking the wall, this molecule will rebound in the opposite direction with the same speed u, since the collision has been assumed to be perfectly elastic (Assumption ii). The momentum of the molecule after it rebounds is (– mu). Hence, the change in momentum of a molecule is mu – (–mu) = 2mu
If the molecule travels from face LMNO to the face ABCD with speed u along x–axis and rebounds back without striking any other molecule on the way, it covers a distance 2l in time 2l/u. That is, the time interval between two successive collisions of the molecules with the wall is 2l/u.
238

Kinetic Theory of Gases
According to Newton’s second law of motion, the rate of change of momentum is equal to y the impressed force. Therefore
Rate of change of

Change in momentum momentum at ABCD =
Time
=

2mu mu =
2l / u l l

L

M

2

l

MODULE - 3
Thermal Physics

B
A
l

w u
O

l

Notes
C

x

D

This is the rate of change of momentum of one z N
Fig. 10.1 : Motion of a molecule molecule. Since there are N molecules of the gas, the in a container total rate of change of momentum or the total force exerted on the wall ABCD due to the impact of all the
N molecules moving along x-axis with speeds, u1, u2, ..., uN is given by
Force on ABCD =

m 2
2
( u1 + u 22 + u 32 + ... + u N ) l We know that pressure is force per unit area. Therefore, the pressure P exerted on the wall ABCD of areas l 2 by the molecules moving along x-axis is given by

m
2
( u 12 + u 22 + ... + u N l P = l2 )

m
2
2 u 2 + u 2 + ... + u N
3 ( 1 l )

=

(10.1)

–2

If u represents the mean value of the squares of all the speed components along x-axis, we can write
2
2
2
2

u 2 = u 1 + u 2 + u 3 + ... + u N
N

or



2
2
2
N u 2 = u12 + u2 + u3 + ... + u N

Substituting this result in Eqn. (10.1), we get

P =

Nmu 2 l3 (10.2)

It can be shown by geometry that c 2 = u2 + v2 + w2

3.239
239

MODULE - 3
Thermal Physics

Physics since u, v and w are components of c along the three orthogonal axes. This relation also holds for the mean square values, i.e.



– c 2 = u 2 + v 2 + w2

Notes

Since the molecular distribution has been assumed to be isotropic, there is no preferential motion along any one edge of the cube. This means that the mean value of u2, v2, w2 are equal :



u 2 = v 2 = w2
–2
– u2 = c
3

so that

Substituting this result in Eqn. (10.2), we get
P

=

1 Nm – c2 3 l3

But l 3 defines the volume V of the container or the volume of the gas. Hence, we get
PV =

1
– 1 –
Nm c 2 = M c 2
3
3

(10.3)

Note that the left hand side has macroscopic properties i.e. pressure and volume and the right hand side has only microscopic properties i.e. mass and mean square speed of the molecules. Eqn (10.3) can be re-written as
P =

If ρ =

mN is the density of the gas, we can write
V
P =

or

1 Nm – c2 3 V

1 – ρ c2
3

3P

c2 = ρ

(10.4)

If we denote the ratio N/V by number density n, Eqn. (10.3) can also be expressed as
P =

1 m n c2
3

(10.3a)

The following points about the above derivation should be noted:
(i)
240

From Eqn. (10.4) it is clear that the shape of the container does not play any

Kinetic Theory of Gases role in kinetic theory; only volume is of significance. Instead of a cube we could have taken any other container. A cube only simplifies our calculations.
(ii) We ignored the intermolecular collisions but these would not have affected the result, because, the average momentum of the molecules on striking the walls is unchanged by their collision; same is the cose when they collide with each other. MODULE - 3
Thermal Physics

Notes


(iii) The mean square speed c 2 is not the same as the square of the mean speed.
This is illustrated by the following example.
Suppose we have five molecules and their speeds are 1, 2, 3, 4, 5 units, respectively. Then their mean speed is

1+ 2 + 3 + 4 + 5
= 3 units
5
Its square is 9 (nine).
On the other hand, the mean square speed is

55
12 + 22 + 32 + 42 + 52
=
= 11
5
5
Thus we see that mean square speed is not the same as square of mean speed.
Example 10.1 : Calculate the pressure exerted by 1022 molecules of oxygen, each of mass 5 × 10–2 6 kg, in a hollow cube of side 10 cm where the average translational speed of molecule is 500 m s–1.
Solution : Change in momentum 2m u = 2 × (5 × 10–26 kg) × (500 ms –1)
= 5 × 10–23 kg ms–1.
Time taken to make successive impacts on the same face is equal to the time spent in travelling a distance of 2 × 10 cm or 2 × 10–1 m. Hence
Time =


Rate of change of momentum =

2 × 10 –2 m
= 4 × 10–4 s
500 ms –1
5 × 10−23 kg ms −1
= 1.25 × 10–19 N
4 × 10−4 s

The force on the side due to one third molecules and pressure =

f =

1
× 1.25 × 10–19 × 1022 = 416.7 N
3

417 N
Force
=
100 × 10–4 m 2
Area
= 4.2 × 10–4 N m–2
3.241
241

MODULE - 3

Physics

Thermal Physics

Intext Questions 10.1
1.

(i) A gas fills a container of any size but a liquid does not. Why?
(ii) Solids have more ordered structure than gases. Why?
..................................................................................................................................

Notes
2.

What is an ideal gas?
..................................................................................................................................

3.

How is pressure related to density of molecules?
..................................................................................................................................

10.2 Kinetic Interpretation of Temperature
From Eqn. (10.3) we recall that
P V=

1

m N c2
3

Also, for n moles of a gas, the equation of state is PV = n RT, where gas constant R is equal to 8.3 J mol–1 K–1. On combining this result with the expression for pressure, we get nRT =

1

m N c2
3

3
Multiplying both sides by 2n we have

3
1 Nmc 2
1

RT =
= m NA c 2
2
2 n
2
where

N
= NA is Avogadro’s number. It denotes the number of atoms or molecules in n one mole of a substance. Its value is 6.023×1023 per gram mole. In terms of NA, we can write 3 ⎛ R ⎞T
1 –

⎟ = m c2
2 ⎝ NA ⎠
2
But

1 – m c 2 is the mean kinetic energy of a molecule. Therefore, we can write
2
1 –
3 ⎛ R ⎞
3

⎟T = m c2 = kT 2
2 ⎝ NA ⎠
2

242

(10.5)

Kinetic Theory of Gases

MODULE - 3
Thermal Physics

where k =

R
NA

(10.6)

is Boltzmamn constant. The value of k is 1.38 × 10–23 J K–1.

Notes

In terms of k, the mean kinetic energy of a molecule of the gas is given as ε =

1 –
3
m c2 = k T
2
2

Hence, kinetic energy of a gram mole of a gas is

(10.7)

3
RT
2

This relationship tells us that the kinetic energy of a molecule depends only on the absolute temperature T of the gas and it is quite independent of its mass. This fact is known as the kinetic interpretation of temperature.
Clearly, at T = 0, the gas has no kinetic energy. In other words, all molecular motion ceases to exist at absolute zero and the molecules behave as if they are frozen in space.
According to modern concepts, the energy of the system of electrons is not zero even at the absolute zero. The energy at absolute zero is known as zero point energy.


From Eqn.(10.5), we can write the expression for the square root of c 2 , called root mean square speed : crms =

c2 =

3kT
=
m

3RT
M

This expression shows that at any temperature T, the crms is inversely proportional to the square root of molar mass. It means that lighter molecule, on an average, move faster than heavier molecules. For example, the molar mass of oxygen is 16 times the molar mass of hydrogen. So according to kinetic theory, the hydrogen molecules should move 4 times faster then oxygen molecules. It is for this reason that lighter gases are in the above part of our atmosphere. This observed fact provided an early important evidence for the validity of kinetic theory.

10.3 Deduction of Gas Laws from Kinetic Theory
(i) Boyle’s Law
We know that the pressure P exerted by a gas is given by Eqn. (11.3) :
PV =

1 –
M c2
3

When the temperature of a given mass of the gas is constant, the mean square speed is

constant. Thus, both M and c 2 on the right hand side of Eqn. (10.3) are constant. Thus, we can write

3.243
243

MODULE - 3

Physics

Thermal Physics
P V = Constant

(10.9)

This is Boyle’s law, which states that at constant temperature, the pressure of a given mass of a gas is inversely proportional to the volume of the gas.
(ii) Charle’s Law

Notes

From Eqn. (10.3) we know that
PV = or 1 –
M c2
3

V=

1 M – c2 3 P



i.e, V ∝ c 2 , if M and P do not vary or M and P are constant. But c 2 ∝ T


V ∝T

(10.9)

This is Charle’s law : The volume of a given mass of a gas at constant pressure is directly proportional to temperature.

Robert Boyle
(1627 – 1691)
British experimentalist Robert Boyle is famous for his law relating the pressure and volume of a gas (PV = constant). Using a vacuum pump designed by Robert Hook, he demonstrated that sound does not travel in vacuum. He proved that air was required for burning and studied the elastic properties of air.
A founding fellow of Royal Society of London, Robert Boyle remained a bachalor throughout his life to pursue his scientific interests. Crater Boyle on the moon is named in his honour.
(iii) Gay Lussac’s Law – According to kinetic theory of gases, for an ideal gas
P =

1 M – c2 3 V

For a given mass (M constant) and at constant volume (V constant),


P ∝ c2
But

– c2 ∝ T



P∝T

(10:11)

which is Gay Lussac’s law. It states that the pressure of a given mass of a gas is directly proportional to its absolute temperature T, if its volume remains constant.
(iv) Avogadro’s Law
Let us consider two different gases 1 and 2. Then from Eqn. (10.3), we recall that
244

Kinetic Theory of Gases

Thermal Physics

1

P 1 V 1 = m1 N1 c12
3
and

P2 V2 =

MODULE - 3

1

m N c2
3 2 2 2

Notes

If their pressure and volume are the same, we can write
P 1V 2 = P 2 V 2
Hence

1
1

–2
m1 N1 c12 = m2 N2 c2
3
3

Since the temperature is constant, their kinetic energies will be the same, i.e.

1
1

–2
m1 c12 = m2 c2
2
2
Using this result in the above expression, we get N1 = N2.

(10.12)

That is, equal volume of ideal gases under the same conditions of temperature and pressure contain equal number of molecules. This statement is Avogadro’s Law.
(v) Dalton’s Law of Partial Pressure
Suppose we have a number of gases or vapours, which do not react chemically. Let their

– – –

2
2
densities be ρ1, ρ2, ρ3 ... and mean square speeds c12 , c2 , c3 ... respectively. We put these

gases in the same enclosure. They all will have the same volume. Then the resultant pressure P will be given by
P =
Here

1 –2


1 c2 1 c2 ρ1 c1 + ρ2 2 + ρ3 3 + ...
3
3
3

1 –2 1 –2 1 –2 ρ c , ρ c , ρ c ... signify individual (or partial) pressures of different
3 1 1 3 2 2 3 3 3

gases or vapours. If we denote these by P1, P2, P3, respectively we get
P = P1 + P2 + P3 +....

(10.13)

In other words, the total pressure exerted by a gaseous mixture is the sum of the partial pressures that would be exerted, if individual gases occupied the space in turn. This is Dalton’s law of partial pressures.
(vi) Graham’s law of diffusion of gases
Graham investigated the diffusion of gases through porous substances and found that the rate of diffusion of a gas through a porous partition is inversely proportional to the square root of its density. This is known as Graham’s law of diffusion.
On the basis of kinetic theory of gases, the rate of diffusion through a fine hole will be proportional to the average or root mean square velocity crms. From Eqn. (10.4) we recall that
3.245
245

MODULE - 3

Physics

Thermal Physics
3P
– c2 = ρ


or

Notes

c 2 = crms =

3P ρ That is, the root mean square velocities of the molecules of two gases of densities ρ 1 and ρ 2 respectively at a pressure P are given by
(crms)1 =

3P ρ1 and

(crms)2=

3P ρ 2

Thus,

Rate of diffusion of one gas
(crms )1
=
Rate of diffusion of other gas
(crms )2 =

ρ2 ρ1 (10.14)

Thus, rate of diffusion of gases is inversely proportional to the square root of their densities at the same pressure, which is Graham’s law of diffusion.
Example 10.2 : Calculate is the root mean square speed of hydrogen molecules at
300 k. Take m(H2) as 3.347 × 10–27 kg and k = 1.38 × 10–23 J mol–1 K–1
Solution : We know that

c rms

=

3kT
=
m

3 ´ (1.38 ´ 10 –27 J K –1 ) (300 K)
3.347 ´ 10 –27 kg

= 1927 m s–1

Intext Questions 10.2
1.

Five gas molecules chosen at random are found to have speeds 500 ms–1, 600 ms–1,
700 ms–1, 800 ms–1, and 900 ms–1. Calculate their RMS speed.
..................................................................................................................................

2.

If equal volumes of two non–reactive gases are mixed, what would be the resultant pressure of the mixture?
..................................................................................................................................

3.

When we blow air in a balloon, its volume increases and the pressure inside is also more than when air was not blown in. Does this situation contradict Boyle’s law?
..................................................................................................................................

Example 10.3 : At what temperature will the root mean square velocity of hydrogen be double of its value at S.T.P., pressure being constant (STP = Standard temperature and pressure). 246

Kinetic Theory of Gases

Thermal Physics

Solution : From Eqn. (10.8), we recall that crms α

MODULE - 3

T

Let the rms velocity at S.T.P. be c0 .
If T K is the required temperature, the velocity c = 2 c0 as given in the problem

Notes


2c0 c = c0 c0 =

T
T0

Squaring both sides, we get
4 = or T
T0

T = 4T0

Since T0 = 273K, we get
T = 4×273K = 1092K = 8190C
Example 10.4 : Calculate the average kinetic energy of a gas at 300 K. Given k = 1.38
× 10–23 JK–1.
Solution : We know that

1
3

M c2 = k T
2
2
Since k = 1.38 × 10–23 J K–1 and T= 300 K, we get


E =

3
(1.38 × 10–23 J K–1) (300 K)
2

= 6.21 × 10–21 J

10.4.1 The Law of Equipartition of Energy
We now know that kinetic energy of a molecule of a gas is given by

1 —2 3 m c = kT .
2
2

Since the motion of a molecule can be along x, y, and z directions equally probably, the average value of the components of velocity c (i.e., u, v and w) along the three directions should be equal. That is to say, for a molecule all the three directions are equivalent :

and
Since

u = v = w
1 –



u 2 = v2 = w 2 = c 2
3
– 2 + w2
2
2 c =u + v
3.247
247

MODULE - 3

Physics

Thermal Physics



– c 2 = u 2 + – 2 + w2 v Multiplying throughout by

1 m, where m is the mass of a molecule, we have
2

1 –
1
1 – m u 2 = m – 2 = m w2 v 2
2
2

Notes

But

1 – m u 2 = E = total mean kinetic energy of a molecule along x–axis. Therefore,
2

Ex = Ey = Ez. But the total mean kinetic energy of a molecule is

3 k T. Hence, we get an
2

important result :
Ex = Ey = Ez =

1 kT 2

Since three velocity components u, v and w correspond to the three degree of freedom of the molecule, we can conclude that total kinetic energy of a dynamical system is equally

1 k T for each degree of
2

divided among all its degrees of freedom and it is equal to

freedom. This is the law of equipartition of energy and was deduced by Ludwing Boltzmann.
Let us apply this law for different types of gases.
So far we have been considering only translational motion. For a monoatomic molecule, we have only translational motion because they are not capable of rotation (although they can spin about any one of the three mutually perpendicular axes if it is like a finite sphere).
Hence, for one molecule of a monoatomic gas, total energy
E =

3 kT 2

(10.15)

A diatomic molecule can be visualised as if two spheres are joined by a rigid rod. Such a molecule can rotate about any one of the three mutually perpendicular axes. However, the rotational inertia about an axis along the rigid rod is negligible compared to that about an axis perpendicular to the rod. It means that rotational energy consists of two terms such as

1
1
2
I ω y and I ω 2 . z 2
2
Now the special description of the centre of mass of a diatomic gas molecules will require three coordinates. Thus, for a diatomic gas molecule, both rotational and translational motion are present but it has 5 degrees of freedom. Hence

⎛1
⎝2




⎛1
⎝2




E = 3 ⎜ kT ⎟ + 2 ⎜ kT ⎟
=
248

5 kT 2

(10.16)

Kinetic Theory of Gases

MODULE - 3
Thermal Physics

Ludwing Boltzmann
(1844 – 1906)
Born and brought up in Vienna (Austria), Boltzmann completed his doctorate under the supervision of Josef Stefan in 1866. He also worked with Bunsen, Kirchhoff and Helmholtz. A very emotional person, he tried to commit suicide twice in his life and succeeded in his second attempt. The cause behind these attempts, people say, were his differences with
Mach and Ostwald.

Notes

He is famous for his contributions to kinetic theory of gases, statistical mechanics and thermodynamics. Crater Bolzmann on moon is named in his memory and honour.

10.5 Heat Capacities of Gases
We know that the temperature of a gas can be raised under different conditions of volume and pressure. For example, the volume or the pressure may be kept constant or both may be allowed to vary in some arbitrary manner. In each of these cases, the amount of thermal energy required to increase unit rise of temperature in unit mass is different.
Hence, we say that a gas has two different heat capacities.
If we supply an amount of heat ∆Q to a gas to raise its temperature through ∆T, the heat capacity is defined as
Heat capacity =

∆Q
∆T

The heat capacity of a body per unit mass of the body is termed as specific heat capacity of the substance and is usually denoted by c. Thus
Specific heat capacity, c =

heat capacity m (10.17)

Eqns. (10.16) and (10.17) may be combined to get c =

∆Q m ∆T

(10.18)

Thus, specific heat capacity of a material is the heat required to raise the temperature of its unit mass by 1 ºC (or 1 K).
The SI unit of specific heat capacity is kilo calories per kilogram per kelvin (kcal kg–1K–1).
It may also the expressed in joules per kg per K. For example the specific heat capacity of water is
1 kilo cal kg–1 K–1 = 4.2 × 103 J kg–1 K–1.
The above definition of specific heat capacity holds good for solids and liquids but not for gases, because it can vary with external conditions. In order to study the heat capacity of a gas, we keep the pressure or the volume of a gas constant. Consequently, we define two specific heat capacities :

3.249
249

MODULE - 3
Thermal Physics

Physics
(i)

Specific heat at constant volume, denoted as cV.

(ii)

Specific heat at constant pressure, denoted as cP.

(a)

The specific heat capacity of a gas at constant volume (cv) is defined as the amount of heat required to raise the temperature of unit mass of a gas through 1K, when its volume is kept constant :

Notes

⎛ ∆Q ⎞

⎝ ∆T ⎠ V

cv = ⎜
(b)

(10.19)

The specific heat capacity of a gas at constant pressure (cP) is defined as the amount of heat required to raise the temperature of unit mass of a gas through 1K when its pressure is kept constant.

⎛ ∆Q ⎞

⎝ ∆T ⎠ P

cp = ⎜

(10.20)

When 1 mole of a gas is considered, we define molar heat capacity.
We know that when pressure is kept constant, the volume of the gas increases. Hence in the second case note that the heat required to raise the temperature of unit mass through
1 degree at constant pressure is used up in two parts :
(i) heat required to do external work to produce a change in volume of the gas, and
(ii) heat required to raise the temperature of the gas through one degree (cv).
This means the specific heat capacity of a gas at constant pressure is greater than its specific heat capacity at constant volume by an amount which is thermal equivalent of the work done in expending the gas against external pressure. That is c p = W + cv

(10.21)

10.6 Relation between cp and cv
Let us consider one mole of an ideal gas enclosed in a cylinder fitted with a frictionless movable piston (Fig. 10.2). Since the gas has been assumed to be ideal (perfect), there is no intermolecular force between its molecules. When such a gas expands, some work is done in overcoming internal pressure.
A
P
V1

V2

Fig.10.2 : Gas heated at constant pressure

Let P be the external pressure and A be the cross sectional area of the piston. The force acting on the piston = P × A. Now suppose that the gas is heated at constant pressure by
1K and as a result, the piston moves outward through a distance x, as shown in Fig. 10.2.
250

Kinetic Theory of Gases
Let V1 be the initial volume of the gas and V2 be the volume after heating. Therefore, the work W done by the gas in pushing the piston through a distance x, against external pressure
P is given by

MODULE - 3
Thermal Physics

W =P×A×x
= P × (Increase in volume)

Notes

= P (V2 – V1)
We know from Eqn. (10.22) that cp – cv = Work done (W) against the external pressure in raising the temperature of 1 mol of a gas through 1 K, i.e. cp – cv = P (V2 – V1)

(10.22)

Now applying perfect gas equation to these two stages of the gas i.e. before and after heating, we have
PV 1 = RT

(10.23)

PV 2 = R (T + 1)

(10.24)

Substracting Eqn. (10.23) from Eqn.(10.24), we get
P (V2 – V1) = R

(10.25)

Hence from Eqns. (10.19) and (10.22) we get cp – cv = R

(10.26)

where R is in J mol–1 K–1
Converting joules into calories, we can write cp – cv =

R
J

(10.27)

where J = 4.18 cal is the mechanical equivalent of heat.
Example 10.5 : Calculate the value of cp and cv for a monoatomic, diatomic and triatomic gas molecules.
Solution : We know that the average KE for 1 mol of a gas is given as
E =

3
RT
2

Now cv is defined as the heat required to raise the temperature of 1 mole of a gas at constant volume by one degree i.e. if ET denotes total energy of gas at T K and
ET + 1signifies total energy of gas at (T + 1) K, then cv = ET+1 – ET .
(i) We know that for monoatomic gas, total energy =

3
RT
2
3.251
251

MODULE - 3

Physics

Thermal Physics


monoatomic gas cV =

Hence

Notes

c p = cV + R =

(ii) For diatomic gases, total energy =


3
3
3
R (T + 1) – R T = R.
2
2
2

cV =

3
5
R + R = R.
2
2

5
RT
2

5
5
5
R (T + 1) – R R T = R
2
2
2

c p = cV + R =

5
7
R + R = R.
2
2

(iii) You should now find out cV and cp for triatomic gas.

Intext Questions 10.3
1.

What is the total energy of a nitrogen molecule?
..................................................................................................................................

2.

Calculate the value of cp and cV for nitrogen (given, R = 8.3J mol–1 K–1).
..................................................................................................................................

3.

Why do gases have two types of specific heat capacities?
..................................................................................................................................

Brownian Motion and Mean Free Path
Scottish botanist Robert Brown, while observing the pollen grains of a flower suspended in water, under his microscope, found that the pollen grains were tumbling and tossing and moving about in a zigzag random fashion. The random motion of pollen grains, was initially attributed to live objects. But when motion of pollens of dead plants and particles of mica and stone were seen to exhibit the same behaviour, it became clear that the motion of the particles, now called Brownian motion, was caused by unbalanced forces due to impacts of water molecules. Brownian motion provided a direct evidence in favour of kinetic theory of matter. The Brownian displacement was found to depend on.
(i)

Size of the particles of the suspension – smaller the particles, more the chances of inbalanced impacts and more pronounced the Brownian motion.

(ii)

The Brownian motion also increases with the increase in the temperature and decreases with the viscosity of the medium.

Due to mutual collisions, the molecules of a fluid also move on zig-zag paths. The

252

Kinetic Theory of Gases

MODULE - 3
Thermal Physics

average distance between two successive collisions of the molecules is called mean free path. The mean free path of a molecule is given by
1

σ =

2 n π d2

where n is the number density and d the diameter of the molecules.

Notes

What You Have Learnt
Kinetic theory assumes the existence of atoms and molecules of a gas and applies the law of mechanics to large number of them using averaging technique.
Kinetic theory relates macroscopic properties to microscopic properties of individual molecules. The pressure of a gas is the average impact of its molecules on the unit area of the walls of the container.
Kinetic energy of a molecule depends on the absolute temperature T and is independent of its mass.
At absolute zero of temperature, the kinetic energy of a gas is zero and molecular motion ceases to exist.
Gas law can be derived on the basis of kinetic theory. This provided an early evidence in favour of kinetic theory.
Depending on whether the volume or the pressure is kept constant, the amount of heat required to raise the temperature of unit mass of a gas by 1ºC is different.
Hence there are two specific heats of gas :
i) Specific heat capacity at constant volume (cV) ii) Specific heat capacity at constant pressure (cp)
These are related as

c p = W + cV cp – cV =

R
J

The law of equipartition of the energy states that the total kinetic energy of a dynamical system is distributed equally among all its degrees of freedom and it is equal to

1 k T per degree of freedom.
2
Total energy for a molecule of (i) a monatomic gas is

3 k T, (ii) a diatomic gas is
2

5
, and (iii) a triatomic gas is 3 k T.
2
3.253
253

MODULE - 3

Physics

Thermal Physics

Terminal Exercise
1.

Can we use Boyle’s law to compare two different ideal gases?

2.

What will be the velocity and kinetic energy of the molecules of a substance at absolute zero temperature?

3.

If the absolute temperature of a gas is raised four times, what will happen to its kinetic energy, root-mean square velocity and pressure?

4.

What should be the ratio of the average velocities of hydrogen molecules (molecular mass = 2) and that of oxygen molecules (molecular mass = 32) in a mixture of two gases to have the same kinetic energy per molecule?

5.

If three molecules have velocities 0.5, 1 and 2 km s–1 respectively, calculate the ratio between their root mean square and average speeds.

6.

Explain what is meant by the root-mean square velocity of the molecules of a gas.
Use the concepts of kinetic theory of gases to derives an expression for the rootmean square velocity of the molecules in term of pressure and density of the gas.

7.

i) Calculate the average translational kinetic energy of a neon atom at 25 0C.

Notes

ii) At what temperature does the average energy have half this value?
8.

A container of volume of 50 cm3 contains hydrogen at a pressure of 1.0 Pa and at a temperature of 27 0C. Calculate (a)the number of molecules of the gas in the container, and (b)their root-mean square speed.
( R= 8.3 J mol–1 K–1 , N = 6 × 1023 mol–1. Mass of 1 mole of hydrogen molecule =
20 × 10–3 kg mol–1).

9.

A closed container contains hydrogen which exerts pressure of 20.0 mm Hg at a temperature of 50 K.
(a)At what temperature will it exert pressure of 180 mm Hg?
b) If the root-mean square velocity of the hydrogen molecules at 10.0 K is
800 m s–1, what will be their root-mean square velocity at this new temperature?

10. State the assumptions of kinetic theory of gases.
11. Find an expression for the pressure of a gas.
12. Deduce Boyle’s law and Charle’s law from kinetic the theory of gases.
13. What is the interpretation of temperature on the basis of kinetic theory of gases?.
14. What is Avagardo’s law? How can it be deduced from kinetic theory of gases
15. Calculate the root-mean square of the molecules of hydrogen at 0 0C and at 100 0C
( Density of hydrogen at 00C and 760 mm of mercury pressure = 0.09 kg m–3).
16. Calculate the pressure in mm of mercury exerted by hydrogen gas if the number of molecules per m3 is 6.8 × 1024 and the root-mean square speed of the molecules is
254

Kinetic Theory of Gases
1.90 × 10 m s–1. Avogadro’s number 6.02 × 1023 and molecular weight of hydrogen =
2.02).

MODULE - 3
Thermal Physics

17. Define specific heat of a gas at constant pressure. Derive the relationship between cp and cV.
18. Define specific heat of gases at constant volume. Prove that for a triatomic gas cV = 3R

Notes

19. Calculate cP and cV for argon. Given R = 8.3 J mol–1 K–1.

Answers to Intext Questions
10.1
1.

(i) Because in a gas the cohesive force between the molecules are extremely small as compared to the molecules in a liquid.
(ii) Because the molecules in a solid are closely packed. The bonds between the molecules are stronger giving a ordered structure.

2.

The gas which follows the kinetic theory of molecules is called as an ideal gas.

3.

P=

1 – ρ c2
3

10.2
1.


Average speed c
=

500 + 600 + 700 + 800 + 900
5

= 700 m s–1


Average value of c 2
=

5002 + 6002 + 7002 + 8002 + 9002
5

= 510,000 m2 s–2 crms =

c2 =

510, 000 = 714 m s–1

crms and c are not same
2.

The resultant pressure of the mixture will be the sum of the pressure of gases 1 and
2 respectively i.e. P = P1 + P2.

3.

Boyle’s law is not applicable.
3.255
255

MODULE - 3
Thermal Physics

Physics

10.3
1.

For each degree of freedom, energy =

1 kT 2

∴ for 5 degrees of freedom for a molecule of nitrogen, total energy =

Notes
2.

cV for a diatomic molecule = cV =

5
R
2

5
× 8.3 J mol–1 K–1 = 20.75 J mol–1 K–1.
2

cp = cV + R = 29.05 J mol–1 C–1.

Answers to Terminal Problem
2.

zero

3.

becomes 4 times, doubles, becomes 4 time.

4.

4:1

5.

2

7.

6.18 × 10–21 ms–1, – 124 ºC

8.

12 × 1020, 7.9 × 1011 m s–1

9.

2634ºC, 2560 ms–1

15. 1800 ms–1, 2088 ms–1
16. 3.97 × 103 Nm– 2
17. 12.45 J mol–1 K–1, 20.75 J mol–1 K–1.

256

5 k T.
2

Thermodynamics

MODULE - 3
Thermal Physics

11
THERMODYNAMICS

Notes

You are familiar with the sensation of hotness and coldness. When you rub your hands together, you get the feeling of warmth. You will agree that the cause of heating in this case is mechanical work.This suggests that there is a relationship between mechanical work and thermal effect. A study of phenomena involving thermal energy transfer between bodies at different temperatures forms the subject matter of thermodynamics, which is a phenomenological science based on experience. A quantitative description of thermal phenomena requires a definition of temperature, thermal energy and internal energy. And the laws of thermodynamics provide relationship between the direction of flow of heat, work done on/by a system and the internal energy of a system.
In this lesson you will learn three laws of thermodynamics : the zeroth law, the first law and the second law of thermodynamics. These laws are based on experience and need no proof. As such, the zeroth, first and second law introduce the concept of temperature, internal energy and entropy, respectively. While the first law is essentially the law of conservation of energy for a thermodynamic system, the second law deals with conversion of heat into work and vice versa.You will also learn that Carnot’s engine has maximum efficiency for conversion of heat into work.

Objectives
After studying this lesson, you should be able to : draw indicator diagrams for different thermodynamic processes and show that the area under the indicator diagram represents the work done in the process; explain thermodynamic equilibrium and state the Zeroth law of thermodynamics; explain the concept of internal energy of a system and state first law of thermodynamics; apply first law of thermodynamics to simple systems and state its limitations; define triple point; state the second law of thermodynamics in different forms; and describe Carnot cycle and calculate its efficiency.
3.257
257

MODULE - 3
Thermal Physics

Physics

11.1 Concept of Heat and Temperature
11.1.1 Heat

Notes

Energy has pervaded all facets of human activity ever since man lived in caves. In its manifestation as heat, energy is intimate to our existence. The energy that cooks our food, lights our houses, runs trains and aeroplanes originates in heat released in burning of wood, coal, gas or oil. You may like to ask : What is heat? To discover answer to this question, let us consider as to what happens when we inflate the tyre of a bicycle using a pump. If you touch the nozzle, you will observe that pump gets hot. Similarly, when you rub you hands together, you get the feeling of warmth. You will agree that in these processes heating is not caused by putting a flame or something hot underneath the pump or the hand. Instead, heat is arising as a result of mechanical work that is done in compressing the gas in the pump and forcing the hand to move against friction. These examples, in fact, indicate a relation between mechanical work and thermal effect.
We know from experience that a glass of ice cold water left to itself on a hot summer day eventually warms up. But a cup of hot coffee placed on the table cools down. It means that energy has been exchanged between the sysem – water or coffee – and its surrounding medium. This energy transfer continues till thermal equilibrium is reached. That is until both – the system and the suroundings – are as the same temperature. It also shows that the direction of energy transfer is always from the body at high temprature to a body at lower temperature. You may now ask : In what form is energy being transferred? In the above examples, energy is said to be transfered in the form of heat. So we can say that heat is the form of energy transferred between two (or more) systems or a system and its surroundings because of temperature difference.
You may now ask. What is the nature of this form of energy? The answer to this question was provided by Joule through his work on the equivalence of heat and mechanical work :
Mechanical motion of molecules making up the system is associated with heat.
The unit of heat is calorie. One calorie is defined as the quantity of heat energy required to raise the temperature of 1 gram of water from 14.5oC to 15.5oC. It is denoted as cal.
Kilocalorie (k cal) is the larger unit of heat energy :
1 kcal = 103 cal.
Also

1 cal = 4.18 J

11.1.2 Concept of Temperature
While studying the nature of heat, you learnt that energy exchange between a glass of cold water and its surroundings continues until thermal equilibrium was reached. All bodies in thermal equilibrium have a common property, called temperature, whose value is same for all of them. Thus, we can say that temperature of a body is the property which determines whether or not it is in thermal equilibrium with other bodies.

258

Thermodynamics

Thermal Physics

11.1.3. Thermodynamic Terms
(i)

MODULE - 3

Thermodynamic system : A thermodynamic system refers to a definite quantity of matter which is considered unique and separated from everything else, which can influence it. Every system is enclosed by an arbitrary surface, which is called its boundary. The boundary may enclose a solid, a liquid or a gas. It may be real or imaginary, either at rest or in motion and may change its size and shape. The region of space outside the boundary of a system constitutes its surroundings.

Notes

(a) Open System : It is a system which can exchange mass and energy with the surroundings. A water heater is an open system.
(b) Closed system : It is a system which can exchange energy but not mass with the surroundings. A gas enclosed in a cylinder fitted with a piston is a closed system. (c) Isolated system : It is a system which can exchange neither mass nor energy with the surrounding. A filled thermos flank is an ideal example of an isolated system. (ii) Thermodynamic Variables or Coordinates : In module–1, we have studied the motion of a body (or a system) in terms of its mass, position and velocity. To describe a thermodynamic system, we use its physical properties such on temperature (T), pressure (P), and volume (V). These are called thermodynamic variables.
(iii) Indicator diagram : You have learnt about displacement–time and velocity–time graphs in lesson 2. To study a thermodynamic system, we use a pressure-volume graph. This graph indicates how pressure (P) of a system varies with its volume (V) during a thermodynamic process and is known as an indicator diagram.
The indicator diagram can be used to obtain an expression for the work done. It is equal to the area under the P-V diagram (Fig. 11.1). Suppose that pressure is P at the start of a very small expansion ∆V. Then, work done by the system.
∆W = P ∆V

(11.1)

= Area of a shaded strip ABCD
Now total work done by the system when it expands from V1 to V2 = Area of P1P2V2V1P1
Note that the area depends upon the shape of the indicator diagram.

P
P1
P.∆V

D
The indicator diagram is widely used in
P2
A calculating the work done in the process of expansion or compression. It is found more useful in processes where relationship between
V
P and V is not known. The work done on the
V1
V2
B C system increases its energy and work done by
Fig. 11.1 : Indicater Diagram the system reduces it. For this reason, work done on the system is taken as negative. You must note that the area enclosed by an isotherm

3.259
259

MODULE - 3
Thermal Physics

Physics
(plot of p versus V at constant temperature) depends on its shape. We may conclude that work done by or on a system depends on the path. That is, work does not depend on the initial and final states.

11.2 Thermodynamic Equilibrium
Notes

Imagine that a container is filled with a liquid (water, tea, milk, coffee) at 60º C. If it is left to itself, it is common experience that after some time, the liquid attains the room temperature. We then say that water in the container has attained thermal equilibrium with the surroundings.
If within the system, there are variations in pressure or elastic stress, then parts of the system may undergo some changes. However, these changes cease ultimately, and no unbalanced force will act on the system. Then we say that it is in mechanical equilibrium.
Do you know that our earth bulged out at the equator in the process of attaining mechanical equilibrium in its formation from a molten state?
If a system has components which react chemically, after some time, all possible chemical reactions will cease to occur. Then the system is said to be in chemical equilibrium.
A system which exhibits thermal, mechanical and chemical equilibria is said to be in thermodynamic equilibrium. The macroscopic properties of a system in this state do not change with time.

11.2.1 Thermodynamic Process
If any of the thermodynamic variables of a system change while going from one equilibrium state to another, the system is said to execute a thermodynamic process. For example, the expansion of a gas in a cylinder at constant pressure due to heating is a thermodynamic process. A graphical representation of a thermodynamic process is called a path.
Now we will consider different types of thermodynamic processes.
(i)

Reversible process : If a process is executed so that all intermediate stages between the inital and final states are equilibrium states and the process can be executed back along the same equilibrium states from its final state to its initial state, it is called reversible process. A reversible process is executed very slowly and in a controlled manner. Consider the following examples :


Take a piece of ice in a beaker and heat it. You will see that it changes to water.
If you remove the same quantity of heat of water by keeping it inside a refrigerator, it again changes to ice (initial state).



Consider a spring supported at one end. Put some masses at its free end one by one. You will note that the spring elongates (increases in length). Now remove the masses one by one. You will see that spring retraces its initial positions.
Hence it is a reversible process.
As such, a reversible process can only be idealised and never achieved in practice.

(ii) Irreversible process : A process which cannot be retraced along the same
260

Thermodynamics equilibrium state from final to the initial state is called irreversible process.
All natural process are irrerersible. For example, heat poduced during friction, sugar dissolved in water, or rusting of iron in the air. It means that for irrerersible process, the intermediate states are not equilibrium states and hence such process can not be represented by a path. Does this mean that we can not analyse an irrerersible process? To do so, we use quasi-static process, which is infinitesimally close to the equilibrium state.

MODULE - 3
Thermal Physics

Notes

(iii) Isothermal process : A thermodynamic process that occurs at constant temperature is an isothermal process. The expansion and compression of a perfect gas in a cylinder made of perfectly conducting walls are isothermal processes. The change in pressure or volume is carried out very slowly so that any heat developed is transferred into the surroundings and the temperature of the system remains constant. The thermal equilibrium is always maintained. In such a process, ∆Q, ∆U and ∆W are finite.
(iv) Adiabatic process : A thermodynamic process in which no exchange of thermal energy occurs is an adiabatic process. For example, the expansion and compression of a perfect gas in a cylinder made of perfect insulating walls. The system is isolated from the surroundings. Neither any amount of heat leaves the system nor enters it from the surroundings. In this process, therefore ∆Q = 0 and ∆U = –∆W.
The change in the internal energy of the system is equal to the work done on the system. When the gas is compressed, work is done on the system. So, ∆U becomes positive and the internal energy of the system increases. When the gas expands, work is done by the system. It is taken as positive and ∆U becomes negative. The internal energy of the system decreases.
(v) Isobaric process : A thermodynamic process that occurs at constant pressure is an isobaric process. Heating of water under atmospheric pressure is an isobaric process.
(vi) Isochoric process : A thermodynamic process that occurs at constant volume is an isochoric process. For example, heating of a gas in a vessel of constant volume is an isochoric process. In this process, volume of the gas remains constant so that no work is done, i.e. ∆W = 0. We therefore get ∆Q = ∆U.
In a Cyclic Process the system returns back to its initial state. It means that there is no change in the internal energy of the system. ∆U = 0.
∴ ∆Q = ∆W.

11.2.2 Zeroth Law of Thermodynamics
Let us consider three metal blocks A, B and C. Suppose block A is in thermal equilibrium with block B. Further suppose that block A is also in thermal equilibrium with block C. It means the temperature of the block A is equal to the temperature of block B as well as of block C. It follows that the temperatures of blocks B and C are equal. We summarize this result in the statement known as Zeroth Law of Thermodynamics :
If two bodies or systems A and B are separately in thermal equilibrium with a third body C, then A and B are in thermal equilibrium with each other.
3.261
261

MODULE - 3

Physics

Thermal Physics

Phase Change and Phase Diagram

Notes

You have learnt that at STP, matter exists in three states : solid, liquid and gas. The different states of matter are called its phases. For example, ice (solid), water
(liquid) and steam (gas) are three phases of water. We can discuss these three phases using a three dimensional diagram drawn in pressure (P), temperature (T) and volume (V). It is difficult to draw three dimensional diagram. Thus, we discuss the three phases of matter by drawing a pressure-temperature diagram. This is called phase diagram.
B

line
Ice

D

e lin am
Ste
A

lin

e

C
P

Ho

ar

fro

st

P

E

F
T

Fig. 11.3: Phase diagram of water

Refer to Fig. 11.3, which shows phase diagram of water. You can see three curves
CD; AB and EF. Curve CD shows the variation of melting point of ice with pressure.
It is known as a fusion curve. Curve AB shows variation of boiling point of water with pressure. It is known as vaporization curve. Curve EF shows change of ice directly to steam. It is known as a sublimation curve. This curve is also known as
Hoarfrost Line.
If you extend the curve AB, CD and EF (as shown in the figure with dotted lines), they meet at point P. This point is called triple point. At triple point, all three phases co-exist. When we heat a solid, its temperature increases till it reaches a temperature at which it starts melting. This temperature is called melting point of the solid. During this change of state, we supply heat continuously but the temperature does not rise.
The heat required to completely change unit mass of a solid into its corresponding liquid state at its melting point is called latent heat of fusion of the solid.
On heating a liquid, its temperature also rises till its boiling point is reached. At the boiling point, the heat we supply is used up in converting the liquid into its gaseous state. The amount of heat required to convert unit mass of liquid in its gaseous state at constant temperature is called latent heat of vaporization of the liquid.

11.2.3 Triple Point of Water
Triple point of a pure substance is a very stable state signified by precisely constant temperature and pressure values. For this reason, in kelvin’s scale of thermometry, triple point of water is taken as the upper fixed point.
On increasing pressure, the melting point of a solid decreases and boiling point of the liquid increases. It is possible that by adjusting temperature and pressure, we can obtain all the
262

Thermodynamics three states of matter to co-exist simultaneously. These values of temperature and pressure signify the triple point.

MODULE - 3
Thermal Physics

P

Intext Questions 11.1

P1

A

1. Fill in the blanks
(i) Zeroth law of thermodynamics provides the basis for the concept of .............
(ii) If a system A is in thermal equilibrium with a system B and B is in thermal equilibrium with another system C, then system A will also be in thermal equilibrium with system............... P2

Notes
C

B

V1

Fig. 11.2

V2

V

(iii) The unit of heat is
..................................................................................................................................
2.

Fig. 11.2 is an indicator diagram of a thermodynamic process. Calculate the work done by the system in the process :
(a) along the path ABC from A to C
(b) If the system is returned from C to A along the same path, how much work is done by the system.
..................................................................................................................................

3.

Fill in the blanks.
(i)

A reversible process is that which can be ...................... in the opposite direction from its final state to its initial state.

(ii) An ............................. process is that which cannot be retraced along the same equilibrium states from final state to the initial state.
4.

State the basic difference between isothermal and adiabatic processes.
..................................................................................................................................

5.

State one characteristic of the triple point.
..................................................................................................................................

11.3 Internal Energy of a System
Have you ever thought about the energy which is released when water freezes into ice ?
Don’t you think that there is some kind of energy stored in water. This energy is released when water changes into ice. This stored energy is called the internal energy. On the basis of kinetic theory of matter, we can discuss the concept of internal energy as sum of
3.263
263

MODULE - 3
Thermal Physics

Notes

Physics the energies of individual components/constituents. This includes kinetic energy due to their random motion and their potential energy due to interactions amongst them. Let us now discuss these.
(a) Internal kinetic energy : As you now know, according to kinetic theory, matter is made up of a large number of molecules. These molecules are in a state of constant rapid motion and hence possess kinetic energy. The total kinetic energy of the molecules constitutes the internal kinetic energy of the body.
(b) Internal potential energy : The energy arising due to the inter-molecular forces is called the internal potential energy.
The internal energy of a metallic rod is made up of the kinetic energies of conduction electrons, potential energies of atoms of the metal and the vibrational energies about their equilibrium positions. The energy of the system may be increased by causing its molecules to move faster (gain in kinetic energy by adding thermal energy). It can also be increased by causing the molecules to move against inter-molecular forces, i.e., by doing work on it.
Internal energy is denoted by the letter U.
Internal energy of a system = Kinetic energy of molecules + Potential energy of molecules Let us consider an isolated thermodynamic system subjected to an external force. Suppose
W amount of work is done on the system in going from initial state i to final state f adiabatically. Let Ui and Uf be internal energies of the system in its initial and final states respectively. Since work is done on the system, internal energy of final state will be higher than that of the initial state.
According to the law of conservation of energy, we can write
Ui – Uf = – W
Negative sign signifies that work is done on the system.
We may point out here that unlike work, internal energy depends on the initial and final states, irrespective of the path followed. We express this fact by saying that U is a function of state and depends only on state variables P, V, and T. Note that if some work is done by the system, its internal energy will decrease.

11.4 First Law of Thermodynamics
You now know that the zeroth law of thermodynamics tells us about thermal equilibrium among different systems characterised by same temperature. However, this law does not tell us anything about the non-equilibrium state. Let us consider two examples : (i) Two systems at different temperatures are put in thermal contact and (ii) Mechanical rubbing between two systems. In both cases, change in their temperatures occurs but it cannot be explained by the Zeroth law. To explain such processes, the first law of thermodynamics was postulated.
The first law of thermodynamics is, in fact, the law of conservation of energy for a thermodynamic system. It states that change in internal energy of a system during a

264

Thermodynamics thermodynamic process is equal to the sum of the heat given to it and the work done on it.

MODULE - 3
Thermal Physics

Suppose that ∆Q amount of heat is given to the system and – ∆W work is done on the system. Then increase in internal energy of the system, ∆U, according to the first law of thermodynamics is given by
∆U = ∆Q – ∆W

(11.3 a)

Notes

This is the mathematical form of the first law of thermodynamics. Here ∆Q, ∆U and ∆W all are in SI units.
The first law of thermodynamics can also be written as
∆Q = ∆U + ∆W

(11.3 b)

The signs of ∆Q, ∆U and ∆W are known from the following sign conventions :
1. Work done (∆W) by a system is taken as positive whereas the work done on a system is taken as negative. The work is positive when a system expands. When a system is compressed, the volume decreases, the work done is negative. The work done does not depend on the initial and final thermodynamic states; it depends on the path followed to bring a change.
2. Heat gained by (added to) a system is taken as positive, whereas heat lost by a system is taken as negative.
3. The increase in internal energy is taken as positive and a decrease in internal energy is taken as negative.
If a system is taken from state 1 to state 2, it is found that both ∆Q and ∆W depend on the path of transformation. However, the difference (∆Q – ∆W) which represents ∆U, remains the same for all paths of transformations.
We therefore say that the change in internal energy ∆U of a system does not depend on the path of the thermodynamic transformations.

11.4.1 Limitations of the First Law of Thermodynamics
The first law of thermodynamics asserts the equivalence of heat and other forms of energy.
This equivalence makes the world around us work. The electrical energy that lights our houses, operates machines and runs trains originates in heat released in burning of fossil or nuclear fuel. In a sense, it is universal. It explains the fall in temperature with height; the adiabatic lapse rate in upper atmosphere. Its applications to flow process and chemical reations are also very interesting. However, consider the following processes :


You know that heat always flows from a hot body to a cold body. But first law of thermodynamics does not prohibit flow of heat from a cold body to a hot body. It means that this law fails to indicate the direction of heat flow.



You know that when a bullet strikes a target, the kinetic energy of the bullet is converted into heat. This law does not indicate as to why heat developed in the target cannot be changed into the kinetic energy of bullet to make it fly. It means that this law fails to provide the conditions under which heat can be changed into work.
3.265
265

MODULE - 3

Physics

Thermal Physics

Moreover, it has obvious limitations in indicating the extent to which heat can be converted into work.
Now take a pause and answer the following questions :

Intext Questions 11.2

Notes
1.

Fill in the blanks

(i)

The total of kinetic energy and potential energy of molecules of a system is called its.......................... (ii) Work done = – W indicates that work is done.......................... the system.
2.

The first law of thermodynamics states that ........................................................
..................................................................................................................................

11.5 Second Law of Thermodynamics
You now know that the first law of thermodynamics has inherent limitations in respect of the direction of flow of heat and the extent of convertibility of heat into work. So a question may arise in your mind : Can heat be wholly converted into work? Under what conditions this conversion occurs? The answers of such questions are contained in the postulate of
Second law of thermodynamics. The second law of thermodynamics is stated in several ways. However, here you will study Kelvin-Planck and Clausius statements of second law of thermodynamics.
The Kelvin-Planck’s statement is based on the experience about the performance of heat engines. (Heat engine is discussed in next section.) In a heat engine, the working substance extracts heat from the source (hot body), converts a part of it into work and rejects the rest of heat to the sink (environment). There is no engine which converts the whole heat into work, without rejecting some heat to the sink. These observations led
Kelvin and Planck to state the second law of thermodynamics as
It is impossible for any system to absorb heat from a reservoir at a fixed temperature and convert whole of it into work.
Clausius statement of second law of thermodynamics is based on the performance of a refrigerator. A refrigerator is a heat engine working in the opposite direction. It transfers heat from a colder body to a hotter body when external work is done on it. Here concept of external work done on the system is important. To do this external work, supply of energy from some external source is a must. These observations led Clausius to state the second law of thermodynamics in the following form.
It is impossible for any process to have as its sole result to transfer heat from a colder body to a hotter body without any external work.
Thus, the second law of thermodynamics plays a unique role for practical devices like heat engine and refrigerator.

266

Thermodynamics

MODULE - 3
Thermal Physics

11.5.1 Carnot Cycle
You must have noticed that when water is boiled in a vessel having a lid, the steam generated inside throws off the lid. This shows that high pressure steam can be made to do useful work. A device which can convert heat into work is called a heat engine.
Modern engines which we use in our daily life are based on the principle of heat engine.
These may be categorised in three types : steam engine, internal combustion engine and gas turbine. However, their working can be understood in terms of Carnot’s reversible engine. Let us learn about it now.

T1

Notes

A (P1, V1)
H 1, T 1
B (P2, V2)
T2

P

D
T1

(P4,V4)

C (P3, V3)

H 2, T 2

T2
E

F

G

H

V

Fig. 11.4 : Indicator diagram of Carnot cycle

In Carnot cycle, the working substance is subjected to four operations : (a) isothermal expansion, (b) adiabatic expansion, (c) isothermal compression and (d) adiabatic compression. Such a cycle is represented on the P-V diagram in Fig. 11.4. To describe four operations of Carnot’s cycle, let us fill one gram. mol. of the working substance in the cylinder (Fig. 11.5). Original condition of the substance is represented by point A on the indicator diagram. At this point, the substance is at temperature T1, pressure P1 and volume V1.

Fig. 11.5 : The cylinder with working substance

(a)

Isothermal expansion : The cylinder is put in thermal contact with the source and allowed to expand. The volume of the working substance increases to V2. Thus working substance does work in raising the piston. In this way, the temperature of the working substance would tend to fall. But it is in thermal contact with the source.
3.267
267

MODULE - 3

Physics

Thermal Physics

So it will absorb a quantity of heat H1 from the source at temperature T1. This is represented by the point B. At B, the values of pressure and volume are P2 and V2 respectively. On the indicator diagram (Fig. 11.4), you see that in going from A to B, temperature of the system remains constant and working substance expands. We call it isothermal expansion process. H1 is the amount of heat absorbed in the isothermal expansion process. Then, in accordance with the first law of thermodynamics, H1 will be equal to the external work done by the gas during isothermal expansion from A to B at temperature T1. Suppose W1 is the external work done by the gas during isothermal expansion AB. Then it will be equal to the area ABGEA. Hence

Notes

W1 = Area ABGEA
(b)

Adiabatic expansion : Next the cylinder is removed from the source and placed on a perfectly non-conducting stand. It further decreases the load on the piston to
P3. The expansion is completely adiabatic because no heat can enter or leave the working substance. Therefore, the working substance performs external work in raising the piston at the expense of its internal energy. Hence its temperature falls.
The gas is thus allowed to expand adiabatically until its temperature falls to T2, the temperature of the sink. It has been represented by the adiabatic curve BC on the indicator diagram. We call it adiabatic expansion. If the pressure and volume of the substance are P3 and V3, respectively at C, and W2 is the work done by the substance from B to C, then
W 2 = Area BCHGB.

(c)

Isothermal compression : Remove the cylinder from the non-conducting stand and place it on the sink at temperature T2. In order to compress the gas slowly, increase the load (pressure) on the piston until its pressure and volume become P4 and V4, respectively. It is represented by the point D on the indicator diagram (Fig.
11.4). The heat developed (H2) due to compression will pass to the sink. Thus, there is no change in the temperature of the system. Therefore, it is called an isothermal compression process. It is shown by the curve CD (Fig. 11.4). The quantity of heat rejected (H2) to the sink during this process is equal to the work done (say W3) on the working substance. Hence
W3 = Area CHFDC

(d)

Adiabatic compression : Once again place the system on the non-conducting stand.
Increase the load on the piston slowly. The substance will under go an adiabatic compression. This compression continues until the temperature rises to T1 and the substance comes back to its original pressure P1 and volume V1. This is an adiabatic compression process and represented by the curve DA on the indicator diagram
(Fig. 11.4). Suppose W4 is the work done during this adiabatic compression from D to A. Then
W4 = Area DFEAD

During the above cycle of operations, the working substance takes H1 amount of heat from the source and rejects H2 amount of heat to the sink. Hence the net amount of heat absorbed by the working substance is
268

Thermodynamics
∆H= H1 – H2

MODULE - 3
Thermal Physics

Also the net work done (say W) by the engine in one complete cycle
W = Area ABCHEA – Area CHEADC
= Area ABCD
Thus, the work done in one cycle is represented on a P-V diagram by the area of the cycle. Notes

You have studied that the initial and final states of the substance are the same. It means that its internal energy remains unchanged. Hence according to the first law of thermodynamics W = H1 – H2
Therefore, heat has been converted into work by the system, and any amount of work can be obtained by merely repeating the cycle.

11.7.2 Efficiency of Carnot Engine
Efficiency is defined as the ratio of heat converted into work in a cycle to heat taken from the source by the working substance. It is denoted as η: η =

or

Heat converted into work
Heat taken from source

η =

H1 - H 2
H
= 1- 2
H1
H1

It can be shown that for Carnot’s engine,
H 2 T2
=
H1 T1

Hence,

T2 η =1– T
1

Note that efficiency of carnot engine does not depend on the nature of the working substance. Further, if no heat is rejected to the sink, η will be equal to one. But for H2 to be zero, T2 must be zero. It means that efficiency η can be100% only when T2 = 0. The entire heat taken from the hot source is converted into work. This violates the second law of thermodynamics. Therefore, a steam engine can operate only between finite temperature limits and its efficiency will be less than one.
It can also be argued that the Carnot cycle, being a reversible cycle, is most efficient; no engine can be more efficient than a Carnot engine operating between the same two temperatures. 11.7.3 Limitation of Carnot’s Engine
You have studied about Carnot’s cycle in terms of isothermal and adiabatic processes.
Here it is important to note that the isothermal process will take place only when piston
3.269
269

MODULE - 3
Thermal Physics

Physics moves very slowly. It means that there should be sufficient time for the heat to transfer from the working substance to the source. On the other hand, during the adiabatic process, the piston moves extremely fast to avoid heat transfer. In practice, it is not possible to fulfill these vital conditions. Due to these very reasons, all practical engines have an efficiency less than that of Carnot’s engine.

Notes

Intext Questions 11.3
1.

State whether the following statements are true or false.
(i)

In a Carnot engine, when heat is taken by a perfect gas from a hot source, the temperature of the source decreases.

..................................................................................................................................
(ii) In Carnot engine, if temperature of the sink is decreased the efficiency of engine also decreases.
............................................................................................................................
2.

(i) A Carnot engine has the same efficiency between 1000K and 500K and between
TK and 1000K. Calculate T.
..................................................................................................................................
(ii) A Carnot engine working between an unknown temperature T and ice point gives an efficiency of 0.68. Deduce the value of T.
..................................................................................................................................

What You Have Learnt
Heat is a form of energy which produces in us the sensation of warmth.
The energy which flows from a body at higher temperature to a body at lower temperature because of temperature difference is called heat energy.
The most commonly known unit of heat energy is calorie. 1 cal = 4.18 J and
1k cal = 103 cal.
A graph which indicates how the pressure (P) of a system varies with its volume during a thermodynamic process is known as indicator diagram.
Work done during expansion or compression of a gas is P∆V = P(Vf – Vi).
Zeroth law of thermodynamics states that if two systems are separately in thermal equilibrium with a third system, then they must also be in thermal equilibrium with each other. The sum of kinetic energy and potential energy of the molecules of a body gives the internal energy. The relation between internal energy and work is Ui – Uf = –W.
270

Thermodynamics
The first law of thermodynamics states that the amount of heat given to a system is equal to the sum of change in internal energy of the system and the external work done. MODULE - 3
Thermal Physics

First law of thermodynamics tells nothing about the direction of the process.
The process which can be retraced in the opposite direction from its final state to initial state is called a reversible process.

Notes

The process which can not be retraced along the same equilibrium state from final to the initial state is called an irreversible process. A process that occurs at constant temperature is an isothermal process.
Any thermodynamic process that occurs at constant heat is an adiabatic process.
The different states of matter are called its phase and the pressure and temperature diagram showing three phases of matter is called a phase diagram.
Triple point is a point (on the phase diagram) at which solid, liquid and vapour states of matter can co-exist. It is characterised by a particular temperature and pressure.
According to Kelvin-Planck’s statement of second law, it is not possible to obtain a continuous supply of work from a single source of heat.
According to Clausius statement of second law, heat can not flow from a colder body to a hotter body without doing external work on the working substance.
The three essential requirements of any heat engine are :
(i)source from which heat can be drawn
(ii)a sink into which heat can be rejected.
(iii)working substance which performs mechanical work after being supplied with heat. Carnot’s engine is an ideal engine in which the working substance is subjected to four operations (i) Isothermal expansion (ii) adiabatic expansion (iii) isothermal compression and (iv) adiabatic compression. Such a cycle is called a Carnot cycle.
Efficiency of a Carnot engine is given only
H2
η = 1 – H , H1 = Amount of heat absorbed and H2 = Amount of heat rejected.
1
T2
= 1 – T , T1 = Temperature of the source, and T2 = Temperature of the sink.
1

Efficiency does not depend upon the nature of the working substance.

Terminal Exercise
1. Distinguish between the terms internal energy and heat energy.
3.271
271

MODULE - 3
Thermal Physics

Physics
2. What do you mean by an indicator diagram. Derive an expression for the work done during expansion of an ideal gas.
3. Define temperature using the Zeroth law of thermodynamics.
4. State the first law of thermodynamics and its limitations.

Notes

5. What is the difference between isothermal, adiabetic, isobaric and isochoric processes? 6. State the Second law of thermodynamics.
7. Discuss reversible and irreversible processes with examples.
8. Explain Carnot’s cycle. Use the indicator diagram to calculate its efficiency.
9. Calculate the change in the internal energy of a system when (a) the system absorbs
2000J of heat and produces 500 J of work (b) the system absorbs 1100J of heat and
400J of work is done on it.
10. A Carnot’s engine whose temperature of the source is 400K takes 200 calories of heat at this temperature and rejects 150 calories of heat to the sink. (i) What is the temperature of the sink. (ii) Calculate the efficiency of the engine.

Answers to Intext Questions
11.1
1. (i) Temperature (ii) C (iii) Joule or Calorie
2. (a) P2 (V2 – V1) (b) –P2 (V2 – V1)
3. (i) retrace

(ii) irreversible

4. An isothermal process occurs at a constant temperature whereas an adiabatic process occurs at constant heat.
5. At triple point all three states of matter i.e. solid, liquid and vapour can co-exist.

11.2
1. (i) Internal energy

(ii) on

2. It states that the amount of heat given to a system is equal to the sum of the change in internal energy of the system and the external energy.

11.3
1. (i) False

(ii) True

2. (i) 2000 K

(ii) 8583.1K

Answers to Terminal Problems
9. (a) 1500 J (b) 1500 J.
10. 300K, 25%
272

Heat Transfer and Solar Energy

MODULE - 3
Thermal Physics

12
HEAT TRANSFER AND
SOLAR ENERGY

Notes

the
I n the previous lesson you have studieda the laws of thermodynamics, which governwill flow and direction of thermal energy in thermodynamic system. In this lesson you learn about the processes of heat transfer. The energy from the sun is responsible for life on our beautiful planet. Before reaching the earth, it passes through vacuum as well as material medium between the earth and the sun. Do you know that each one of us also radiates energy at the rate of nearly 70 watt? Here we will study the radiation in detail.
This study enables us to determine the temperatures of stars even though they are very far away from us.
Another process of heat transfer is conduction, which requires the presence of a material medium. When one end of a metal rod is heated, its other end also becomes hot after some time. That is why we use handles of wood or similar other bad conductor of heat in various appliances. Heat energy falling on the walls of our homes also enters inside through conduction. But when you heat water in a pot, water molecules near the bottom get the heat first. They move from the bottom of the pot to the water surface and carry heat energy. This mode of heat transfer is called convection. These processes are responsible for various natural phenomena, like monsoon which are crucial for existence of life on the globe.You will learn more about these processes of heat transfer in this unit.

Objectives
After studying this lesson, you should be able to : distinguish between conduction convection and radiation; define the coefficient of thermal conductivity; describe green house effect and its consequenies for life on earth; and apply laws governing black body radiation.
3.273
273

MODULE - 3
Thermal Physics

Notes

Physics

12.1 Processes of Heat Transfer
You have learnt the laws of thermodynamics in the previous lesson. The second law postulates that the natural tendency of heat is to flow spontaneously from a body at higher temperature to a body at lower temperature. The transfer of heat continues until the temperatures of the two bodies become equal. From kinetic theory, you may recall that temperature of a gas is related to its average kinetic energy. It means that molecules of a gas at different temperatures have different average kinetic energies.
There are three processes by which transfer of heat takes place. These are : conduction, convection and radiation. In conduction and convection, heat transfer takes place through molecular motion. Let us understand how this happens.
Heat transfer through conduction is more common in solids. We know that atoms in solids are tightly bound. When heated, they can not leave their sites; they are constrained to vibrate about their respective equilibrium positions. Let us understand as to what happens to their motion when we heat a metal rod at
Fig. 12.1 : Heat conduction in a one end (Fig.12.1). The atoms near the end A become metal rod hot and their kinetic energy increases. They vibrate about their mean positions with increased kinetic energy and being in contact with their nearest neighbouring atoms, pass on some of their kinetic energy (K.E.) to them. These atoms further transfer some K.E to their neighboures and so on. This process continues and kinetic energy is transferred to atoms at the other end B of the rod. As average kinetic energy is proportional to temperature, the end B gets hot. Thus, heat is transferred from atom to atom by conduction. In this process, the atoms do not bodily move but simply vibrate about their mean equilbrium positions and pass energy from one to another.

Fig. 12.2 : Convection currents are formed in water when heated

In convection, molecules of fluids receive thermal energy and move up bodily. To see this, take some water in a flask and put some grains of potassium permanganate
(KMnO4) at its bottom. Put a bunsen flame under the flask. As the fluid near the bottom gets heated, it expands.
The density of water decreases and the buoyant force causes it to move upward (Fig.12.2). The space occupied by hot water is taken by the cooler and denser water, which moves downwards. Thus, a convection current of hotter water going up and cooler water coming down is set up. The water gradually heats up. These convection currents can be seen as KMnO4 colours them red.

In radiation, heat energy moves in the form of waves. You will learn about the characteristics of these waves in a later section. These waves can pass through vacuum and do not require the presence of any material medium for their propagation. Heat from the sun comes to us mostly by radiation.
We now study these processes in detail.

274

Heat Transfer and Solar Energy

MODULE - 3
Thermal Physics

12.1.1 Conduction

d

Consider a rectangular slab of area of cross-section A and thickness d. Its two faces are maintained at temperatures Th and Tc (< Th ), as shown in Fig. 12.3. Let
A
A us consider all the factors on which the quantity of heat
Tc
Q transferred from one face to another depends. We Th can intuitively feel that larger the area A, the greater will be the heat transferd (Q α A). Also, greater the thickness,
Fig. 12.3 : Heat conduction lesser will be the heat transfer (Q α 1/d). Heat transfer through a slab of will be more if the temperature difference between the thickness d and faces, (Th – Tc ), is large. Finally longer the time t allowed surface area A, when the faces are kept at for heat transfer, greater will be the value of Q. temperatures Th and
Mathematically, we can write


A(Th – Tc ) . t

Notes

Tc.

d

KA(Th – Tc ) t
(12.1)
d where K is a constant which depends on the nature of the material of the slab. It is called the coefficient of thermal conductivity,or simply, thermal conductivity of the material.
Thermal conductivity of a material is defined as the amount of heat transferred in one second across a piece of the material having area of cross-section 1m2 and edge 1m when its opposite faces are maintained at a temperature difference of 1 K. The SI unit of thermal conductivity is W m–1 k–1. The value of K for some materials is given in Table 12.1
Q=

Table 12.1 : Thermal
Conductivity of some materials Material

Thermal conductivity (Wm–1 K–1)

Example 12.1 : A cubical thermocole box, full of ice. has side 30 cm and thickness of
5.0 cm. If outside temperature is 45°C, estimate the amount of ice melted in 6 h. (K for thermacole is 0.01 J s–1 m–1 °C–1 and latent heat of fusion of ice is 335 J g–1.

Copper

400

Aluminium

240

Solution : The quantity of heat transferred into the box through its one face can be obtained using Eq. (12.1) :

Concrete

1.2

Glass

0.8

Water

0.60

Body talc

0.20

Air

0.025

Thermocole

0.01

KA(Th – Tc )t d = (0.01 J s–1 m–1 ° C–1) × (900 × 10–4 m2) × (45 ºC)
× (6 × 60 × 60 s) / (5 × 10–2 m)

Q =

= 10496 J
Since the box has six faces, total heat passing into the box
Q = 10496 × 6 J
The mass of ice melted m, can be obtained by dividing Q by L : m = Q/L
=

10496J
×6
335 Jg –1

= 313 × 6 g = 1878 g
3.275
275

MODULE - 3
Thermal Physics

Notes

Physics
We can see from Table 12.1 that metals such as copper and aluminium have high thermal conductivity. This implies that heat flows with more ease through copper.This is the reason why cooking vessels and heating pots are made of copper. On the other hand, air and thermocole have very low thermal conductivities. Substances having low value of K are sometimes called thermal insulators. We wear woollen clothes during winter because air trapped in wool fibres prevents heat loss from our body. Wool is a good thermal insulator because air is trapped between its fibres. The trapped heat gives us a feeling of warmth.
Even if a few cotton clothes are put on one above another, the air trapped in-between layers stops cold. In the summer days, to protect a slab of ice from melting, we put it in a ice box made of thermocole. Sometimes we wrap the ice slab in jute bag, which also has low thermal conductivity.

12.1.2 Convection
It is common experience that while walking by the side of a lake or a sea shore on a hot day, we feel a cool breeze. Do you know the reason? Let us discover it.
Due to continuous evaporation of water from the surface of lake or sea, the temperature of water falls. Warm air from the shore rises and moves upwards (Fig.12.4). This creates low pressure area on the shore and causes cooler air from water surface to move to the shore. The net effect of these convection
Fig. 12.4 : Convection currents. Hot air from the shore rises and moves towards currents is the transfer of heat from the cooler water. The convection current shore,which is hotter, to water, which is from water to the shores is cooler. The rate of heat transfer depends on experienced as cool breeze. many factors.There is no simple equation for convection as for conduction. However, the rate of heat transfer by convection depends on the temperature difference between the surfaces and also on their areas.
Now let us check how much you have learnt about the methods of heat transfer.

Intext Questions 12.1
1.

Distinguish between conduction and convection.
..................................................................................................................................

2.

Verify that the units of K are Js

–1

m–1 °C–1.

..................................................................................................................................
3.

Explain why do humans wrap themselves in woollens in winter season?
..................................................................................................................................

4.

A cubical slab of surface area 1 m2, thickness 1 m, and made of a material of thermal conductivity K. The opposite faces of the slab are maintained at 1°C temperature difference. Compute the energy transferred across the surface in one second. and hence give a numerical definition of K.
..................................................................................................................................

276

Heat Transfer and Solar Energy
5.

During the summer, the land mass gets very hot. But the air over the ocean does not get as hot. This results in the onset of sea breezes. Explain.

MODULE - 3
Thermal Physics

..................................................................................................................................

12.1.3 Radiation
Radiation refers to continuous emission of energy from the surface of a body. This energy is called radiant energy and is in the form of electromagnetic waves. These waves travel with the velocity of light (3 × l08 ms–1) and can travel through vacuum as well as through air. They can easily be reflected from polished surfaces and focussed using a lens.

Notes

All bodies emit radiation with wavelengths that are chracteristic of their temperature. The sun, at 6000 K emits energy mainly in the visible spectrum. The earth at an ideal radiation temperature of 295 K radiates energy mainly in the far infra-red (thermal) region of electromagnetic spectrum. The human body also radiates energy in the infra-red region.
Let us now perform a simple experiment. Take a piece of blackened platinum wire in a dark room. Pass an electrical current through it. You will note that the wire has become hot. Gradually increase the magnitude of the current. After sometime, the wire will begin to radiate. When you pass a slightly stronger current, the wire will begin to glow with dull red light. This shows that the wire is just emitting red radiation of sufficient intensity to affect the human eye. This takes place at nearly 525°C. With further increase in temperature, the colour of the emitted rediation will change from dull red to cherry red (at nearly
900°C) to orange (at nearly 1100°C), to yellow (at nearly 1250°C) until at about 1600°C, it becomes white. What do you infer from this? It shows that the temperature of a luminous body can be estimated from its colour. Secondly, with increase in temperature, waves of shorter wavelengths (since red light is of longer wavelength than orange. yellow etc.) are also emitted with sufficient intensity. Considering in reverse order, you may argue that when the temperature of the wire is below 525°C, it emits waves longer than red but these waves can be detected only by their heating effect.

12.2 Radiation Laws

I (ω m–2) →

At any temperature, the radiant energy emitted by a body is a mixture of waves of different wavelengths.The most intense of these waves will have a particular wavelength
4000 K
(sayλm).At 400°C, the λm will be about 5
×10– 4 cm or 5 µm (1 micron (µ) =10–6m) for a copper block.The intensity
3000 K decreases for wavelengths either greater or less than this value (Fig. 12.5).
Evidently area between each curve and the horizontial axis represents the total rate of radiation at that temperature. You may study the curves shown in Fig. 12.5 and verify the following two facts.
1)

The rate of radiation at a particular temperature (represented by the

0ºC λ (µm)

Fig. 12.5 : Variation in intensity with wavelength for a black body at different temperatures

3.277
277

MODULE - 3

Physics area between each curve and the holizontal axis) increases rapidly with temperature.

Thermal Physics
2)

Notes

Each curve has a definite energy maximum and a corresponding wavelength λm (i.e. wavelength of the most intense wave). The λm shifts towards shorter wavelengths with increasing temperature.

This second fact is expressed quantitatively by what is known as Wien’s displacement law. It states that λ m shifts towards shorter wavelengths as the temperature of a body is increased. This law is., strictly valid only for black bodies. Mathematically, we say that the product λm T is constant for a body emitting radiation at temperature T: λm T = constant

(12.2)

The constant in Eqn. (12.2) has a value 2.884 × 10–3 mK. This law furnishes us with a simple method of determining the temperature of all radiating bodies including those in space. The radiation spectrum of the moon has a peak at λm = 14 micron. Using Eqn.
(12.2), we get
T=

2884 micron K
14 micron = 206K

That is, the temperature of the lunar surface is 206K

Wilhelm Wien
(1864 – 1928)
The 1911 Nobel Leureate in physics, Wilhelm Wien, was son of a land owner in East Prussia. After schooling at Prussia, he went to
Germany for his college. At the University of Berlin, he studied under great physicist Helmholtz and got his doctorate on diffraction of light from metal surfaces in 1886.
He had a very brilliant professional carrer. In 1896, he succeeded Philip Lenard as
Professor of Physics at Aix-la-chappelle. In 1899, he become Professor of Physics at University of Giessen and in 1900, he succeeded W.C. Roentgen at Wurzberg. In
1902, he was invited to succeed Ludwig Boltzmann at University of Leipzig and in
1906 to succeed Drude at University of Berlin. But he refused these invitations. In
1920, he was appointed Professor of Physics at munich and he remained there till his last. 12.2.1 Kirchhoff’s Law
As pointed out earlier, when radiation falls on matter, it may be partly reflected, partly absorbed and partly transmitted. If for a particular wavelength λ and a given surface, rλ , aλ and tλ , respectively denote the fraction of total incident energy reflected, absorbed and transmitted, we can write
1 = rλ + aλ + tλ

278

(12.3)

Heat Transfer and Solar Energy
A body is said to be perfectly black, if rλ = tλ = 0 and aλ = 1. It means that radiations incident on black bodies will be completely absorbed. As such, perfectly black body does not exist in nature. Lamp black is the nearest approximation to a black body. It absorbs about 96% of visible light and platinum black absorbs about 98%. It is found to transmit light of long wavelength.
A perfectly white body, in contrast, defined as a body with aλ = 0, tλ = 0 and rλ = 1. A piece of white chalk approximates to a perfectly white body.

MODULE - 3
Thermal Physics

Notes

This implies that good emitters are also good absorbers. But each body must either absorb or reflect the radiant energy reaching it. So we can say that a good absorber must be a poor reflector (or good emitter).

Designing a Black Body
Kirchoff’s law also enables us to design a perfectly black body for experimental purposes. We go back to an enclosure at constant temperature containing radiations between wavelength range λ and λ + dλ . Now let us make a small hole in the enclosure and examine the radiation escaping out of it.This radiation undergoes multiple reflections from the walls. Thus, if the reflecting power of the surface of the wall is r, and emissive power is eλ , the total radiation escaping out is given by
Eλ = eλ + eλ rλ + eλ r2 + eλ rλ3 +...
= eλ (1 + rλ + rλ2 + rλ3 +...)


= 1– r λ But from Kirchoffs Law

(12.4)


= Eλ aλ eλ = Eλ aλ

(12.5)

where Eλ is the emission from a black body. If now walls are assumed to be opaque
(i.e. t = 0), from Eqn. (12.3), we can write aλ = 1 – r λ

(12.6)

Substituting this result in Eqn. (12.5), we get eλ = Eλ (1 – rλ ) or Eλ =


1 – rλ

(12.7)

On comparing Eqns. (12.4) and (l2.7), we note that the radiation emerging out of the hole will be identical to the radiation from a perfectly black emissive surface. Smaller the hole, the more completely black the emitted radiation is. So we see that the uniformly heated enclosure with a small cavity behaves as a black body for emission. Such an enclosure behaves as a perfectly black body towards incident radiation also.
Any radiation passing into the hole will undergo multiple reflections internally within
3.279
279

MODULE - 3

Physics

Thermal Physics

Notes

the enclosure and will be unable to escape outside. This may be further improved by blackening the inside.Hence the enclosure is a perfect absorber and behaves as a perfectly black body. Fig. 12.6 shows a black body due to Fery. There is a cavity in the form of a hollow sphere and its inside is coated with black material. It has a small conical opening O. Note the conical projection P
Fig. 12.6 : Fery’s black body opposite the hole O. This is to avoid direct radiation from the surface opposite the hole which would otherwise render the body not perfectly black.

Activity 12.1
You have studied that black surface absorbs heat radiations more quickly than a shiny white surface. You can perform the following simple experiment to observe this effect.
Take two metal plates A and B. Coat one surface of A as black and polish one surface of
B. Take an electric heater. Support these on vertical stands such that the coated black surface and coated white surface face the heater. Ensure that coated plates are equidstant from the heater. Fix one cork each with wax on the uncoated sides of the plates.

Polished or white coated metal surface


er at he c tri ec El

te pla t a l black
Me
— oated c Cork
Cork

B
A

Fig. 12.7 : Showing the difference in heat absorption of a black and a shining surface

Switch on the electric heater. Since both metal plates are identical and placed at the same distance from the heater, they receive the same amount of radiation from it. You will observe that the cork on the blackened plate falls first. This is becasuse the black surface absorbs more heat than the white surface. This proves that black surfaces are good aborbers of heat radiations.

280

Heat Transfer and Solar Energy

MODULE - 3
Thermal Physics

12.2.2 Stefan-Boltzmann Law
On the basis of experimental measurements, Stefan and Boltzmann concluded that the radiant energy emitted per second from a surface of area A is proportional to fourth power of temperature :
E =Ae σ T4

(12.8)

where σ is Stefan-Boltzmann constant and has the value 5.672 × 10-8J m–2 s–1 K–4. The temperature is expressed is kelvin, e is emissivity or relative emittance. It depends on the nature of the surface and temperature. The value of e lies between 0 and 1; being small for polished metals and 1 for perfectly black materials.

Notes

From Eqn. (12.8) you may think that if the surfaces of all bodies are continually radiating energy, why don’t they eventually radiate away all their internal energy and cool down to absolute zero. They would have done so if energy were not supplied to them in some way.
In fact, all objects radiate and absorb energy simultaneously. If a body is at the same temperaturture as its surroundings, the rate of emission is same as the rate of absorption; there is no net gain or loss of energy and no change in temperature. However, if a body is at a lower temperture than its surroundings, the rate of absorption will be greater than the rate of emission. Its temperature will rise till it is equal to the room temperature. Similarly, if a body is at higher temperature, the rate of emission will be greater than the rate of absorption. There will be a net energy loss. Hence, when a body at a temperature T1 is placed in surroundings at temperature T2, the amount of net energy loss per second is given by
E net = Ae σ (T14 – T24) for T1 > T2

(12.5)

Example 12.2 : Determine the surface area of the filament of a 100 W incandescent lamp at 3000 K. Given σ = 5.7 × 10-8 W m–2 K–4, and emissivity e of the filament = 0.3.
Solution: According to Stefan-Boltzmann law
E = eA σ T4 where E is rate at which energy is emitted, A is surface area, and T is tempeature of the surface. Hence we can rewrite it as
A=

E eσ T 4

On substituting the given data, we get

100 W
A = 0.3 × (5.7 × 10–8 Wm−2 K−4 × (3000K)4
= 7.25 × 10 –5 m2
Now it is time for you to check your understanding.
3.281
281

MODULE - 3

Physics

Thermal Physics

Intext Questions 12.2
1.

At what wavelength does a cavity radiator at 300K emit most radiation?
..................................................................................................................................

Notes

2.

Why do we wear light colour clothing during summer?
..................................................................................................................................

3.

State the important fact which we can obtain from the experimental study of the spectrum of black body radiation.
..................................................................................................................................

4.

A person with skin temperature 28 oC is present in a room at temperature
22oC.Assuming the emissivity of skin to be unity and surface area of the person as
1.9m2, compute the radiant power of this person.
..................................................................................................................................

12.3 Solar Energy
You have learnt in your previous classes that sun is the ultimate source of all energy available on the earth. The sun is radiating tremendous amount of energy in the form of light and heat and even the small fraction of that radiation received by earth is more than enough to meet the needs of living beings on its surface. The effective use of solar energy, therefore, may some day provide solution to our energy needs.
Some basic issues related with solar radiations are discussed below.
1. Solar Constant
To calculate the total solar energy reaching the earth, we first determine the amount of energy received per unit area in one second. The energy is called solar constant. Solar constant for earth is found to be 1.36 × 103 W m–2. Solar constant multiplied by the surface area of earth gives us the total energy received by earth per second. Mathematically,
Q = 2π Re2C where Re is radius of earth and C is solar constant
Note that Only half of the earth’s surface has been taken into account as only this much of the surface is illuminated at one time. Therefore,
Q = 2 × 3.14 × (6.4 × 106 m)2 × (1.36 × 103 W m–2)
~ 3.5 × 1017 W
~ 3.5 × 1011 MW
To determine solar constant for other planets of the solar system, we may make use of
Stefan-Boltzman law, which gives the total energy emitted by the sun in one second :

282

Heat Transfer and Solar Energy
∈ = (4π r2) σ T4

MODULE - 3
Thermal Physics

where r is radius of sun and T is its temperature.
If R is radius of the orbit of the planet, then
2



⎛r⎞
=
σ T4
E=
2 ⎜R⎟
⎝ ⎠
4πR

(12.6)

Notes

And the solar constant (E′) at any other planet orbiting at distance R′ from the sun would be 2

⎛ r ⎞
4
E′ = ⎜ ⎟ σ T
⎝ R′ ⎠

Hence

(12.7)

2
E′
⎛R⎞
=⎜ ⎟
E
⎝ R′ ⎠

(12.8)

The distance of mars is 1.52 times the distance of earth from the sun. Therefore, the solar constant at mars
⎛ 1 ⎞
E′ = E × ⎜
⎝ 1.52 ⎟


2

= 6 × 102 W m–2
2. Greenhouse Effect
The solar radiations in appropriate amount are necessary for life to flourish on earth. The atmosphere of earth plays an important role to provide a comfortable temperature for the living organisms. One of the processes by which this is done is greenhouse effect.
In a greenhouse, plants, flowers, grass etc. are enclosed in a glass structure. The glass allows short wavelength radiation of light to enter. This radiation is absorbed by plants. It is subsequently re-radiated in the form of longer wavelength heat radiations – the infrared. The longer wavelength radiations are not allowed to escape from the greenhouse as glass is effectively opaque to heat. These heat radiations are thus trapped in the greenhouse keeping it warm.

CO2 blanket

Fig. 12.8 : Green house effect An analogous effect takes place in our atmosphere. The atmosphere, which contains a trace of carbon dioxide, is transparent to visible light. Thus, the sun’s light passes through the atmosphere and reaches the earth’s surface. The earth absorbs this light and subsequently emits it as infrared radiation. But carbon dioxide in air is opaque to infra-red radiations.CO2 reflects these radiations back rather than allowing them to escape into the atmosphere. As a result, the temperature of earth increases. This effect is referred to as the greenhouse effect.

3.283
283

MODULE - 3
Thermal Physics

Notes

Physics
Due to emission of huge quantities of CO2 in our atmosphere by the developed as well as developing countries, the greenhouse effect is adding to global warming and likely to pose serious problems to the existence of life on the earth. A recent report by the UN has urged all countries to cut down on their emissions of CO2, because glaciers have begun to shrink at a rapid rate. In the foreseable future, these can cause disasters beyond imagination beginning with flooding of major rivers and rise in the sea level. Once the glaciers melt, there will be scarcity of water and erosion in the quality of soil. There is a lurking fear that these together will create problems of food security. Moreover, changing weather patterns can cause droughts & famines in some regions and floods in others.
In Indian context, it has been estimated that lack of positive action can lead to serious problems in Gangetic plains by 2030. Also the sea will reclaim vast areas along our coast lie, inundating millions of people and bring unimaginable misery and devastation. How can you contribute in this historical event?

12.4 Newton’s Law of Cooling
Newton’s law of cooling states that the rate of cooling of a hot body is directly proportional to the mean excess temperature of the hot body over that of its surroundings provided the difference of temperature is small. The law can be deduced from stefanBoltzmann law.
Let a body at temperature T be surrounded by another body at Tο. The rate at which heat is lost per unit area per second by the hot body is
E = eσ (T4 – T04 )A
As T4 – T04 = (T 2 − T02 ) (T 2 + T02 ) = (T − T0 ) (T − T0 ) (T 2 + T02 ) . Hence

(12.9)
(12.10)

3
2
E = eσ (T – T0) (T3 + T2 T0 + T T0 + T0 )A

If (T–T0) is very small, each of the term T3, T2T0 , T T02 and T03 may be approximated to T03 .
Hence


E = eσ (T – T0) 4 T03 A
= k (T – T0)

where k = 4eσ T03 A. Hence,
Eα (T – T0)

(12.11)

This is Newton’s law of cooling.

Intext Questions 12.3
1.

Calculate the power received from sun by a region 40m wide and 50m long located on the surface of the earth?
..................................................................................................................................

2.

What threats are being posed for life on the earth due to rapid consumption of fossil fuels by human beings?
..................................................................................................................................

284

Heat Transfer and Solar Energy
3.

What will be shape of cooling curve of a liquid?

MODULE - 3
Thermal Physics

..................................................................................................................................

What You Have Learnt
Heat flows from a body at higher temperature to a body at lower temperature. There are three processes by which heat is transferred : conduction, convection and radiation.
In conduction, heat is transferred from one atom/ molecule to another atom/molecule which vibrate about their fixed positions.
In convection, heat is transferred by bodily motion of molecules. In radiation, heat is transferred through electromagnetic waves.

Notes

The quantity of heat transferred by conduction is given by

K (Th – Tc ) At d Wien’ s Law. The spectrum of energy radiated by a body at temperature T(K) has a maxima at wavelength λ m’ such that λ mT = constant ( = 2880 µK)
Q=

Stefan-Boltzmann Law. The rate of energy radiated by a source at T(K) is given by
E =eσAT4
The absorptive power a is defined as

a=

Total amount of energy absorbed between λ and λ + d λ
Total amount of incident energy between λ and λ + d λ

The emissive power of a surface eλ is the amount of radiant energy emitted per square metre area per second per unit wavelongth range at a given temperature.
The solar constant for the earth is 1.36 × 103 Jm-2 s–1
Newton’s Law of cooling states that the rate of cooling of a body is linearly proportional to the excess of temperature of the body above its surroundings.

Terminal Exercise
1.

A thermosflask (Fig.12.9) is made of a double walled glass bottle enclosed in metal container. The bottle contains some liquid whose temperature we want to maintain, Look at the diagram carefully and explain how the construction of the flask helps in minimizing heat transfer due to conduction convection and radiation.

2. The wavelength corresponding, to
Fig. 12.9 emission of energy maxima of a star is
4000 Aº. Compute the temperature of the star.(1Aº = 10–8 cm).
3. A blackened solid copper sphere of radius 2cm is placed in an evacuated enclosure
3.285
285

MODULE - 3

Physics

Thermal Physics

whose walls are kept at 1000° C. At what rate must energy be supplied to the sphere to keep its temperature constant at 127° C.
4. Comment on the statement “A good absorber must be a good emitter”

Notes

5. A copper pot whose bottm surface is 0.5cm thick and 50 cm in diameter rests on a burner which maintains the bottom surface of the pot at 110°C. A steady heat flows through the bottom into the pot where water boils at atmospheric pressure. The actual temperature of the inside surface of the bottom of the pot is 105°C. How many kilograms of water boils off in one hour?
6. Define the coefficient of thermal conductivity. List the factors on which it depends.
7. Distinguish between conduction and convection methods of heat (transfer).
8. If two or more rods of equal area of cross-section are connected in series, show that their equivalent thermal resistance is equal to the sum of thermal resistance of each rod. [Note : Thermal resistance is reciprocal of thermal conductivity]
9.

Ratio of coefficient of thermal conductivities of the different materials is 4:3. To have the same thermal resistance of the two rods of these materials of equal thickness. what should be the ratio of their lengths?

10. Why do we feel warmer on a winter night when clouds cover the sky than when the sky is clear?
11. Why does a peice of copper or iron appear hotter to touch than a smilar piece of wood even when both are at the same temperature?
12. Why is it more difficult to sip hot tea from a metal cup than from a china-clay cup?
13. Why are the woollen clothes warmer than cotton clothes?
14. Why do two layers of cloth of equal thickness provide warmer covering than a single layer of cloth of double the thickness?
15. Can the water be boiled by convection inside an earth satellite?
16. A. 500 W bulb is glowing. We keep our one hand 5 cm above it and other 5 cm below it. Why more heat is experienced at the upper hand?
17. Two vessels of different materials are identical in size and in dimensions. They are filled with equal quantity of ice at O°C. If ice in both vessles metls completely in 25 minutes and in 20 minutes respectively compare the (thermal conductivities) of metals of both vessels.
18. Calculate the thermal resistivity of a copper rod 20.0 cm. length and 4.0 cm. in diamter.
Thermal conductivity of copper = 9.2 x 10–2 temperature different acrosss the ends of the rod be 50°C. Calculate the rate of heat flow.

286

Heat Transfer and Solar Energy

MODULE - 3
Thermal Physics

Answers to Intext Questions
12.1
1. Conduction is the principal mode of transfer of heat in solids in which the particles transfer energy to the adjoining molecules.
In convection the particles of the fluid bodily move from high temperature region to low temperature region and vice-versa.

Notes

Qd
2. K = t A (Q – Q )
2
1
J m
= s m2 º C

= J s–1 m–1 ºC–1
3. The trapped air in wool fibres prevents body heat from escaping out and thus keeps the wearer warm.
4. The coefficient of thermal conductivity is numerically equal to the amount of heat energy transferred in one second across the faces of a cubical slab of surface area
1m2 and thickness 1m, when they are kept at a temperature difference of 1°C.
5. During the day, land becomes hotter than water and air over the ocean is cooler than the air near the land. The hot dry air over the land rises up and creates a low pressure region. This causes see breeze because the moist air from the ocean moves to the land. Since specific thermal capacity of water is higher than that of sand, the latter gets cooled faster and is responsible for the reverse process during the night causing land breezes.

12.2
1. λ m =
=

Wien 's constant
Temperature
2880µK
300Κ

= 9.6µ
2. Hint: Because light colours absorb less heat.
3. Hint: (a) λmT = S (b) t = σ T4
4. 66.4 W.

12.3
1. Solar constant x .area
= 2.7 × 105 W
2. Constant addition of CO2 in air will increase greenhouse effect causing global warming due to which glaciers are likely to melt and flood the land mass of the earth.
3.287
287

MODULE - 3
Thermal Physics

Physics
3. Exponential decay

Answers to Terminal Problem
2. 7210 K
3. 71.6 × 50–11 W

Notes

5. 4.7 × 105 kg
9. 3 : 4
17. 4 : 5
18. 10.9 m ºC–1 W–1, 0.298 W

288

Heat Transfer and Solar Energy

SENIOR SECONDARY COURSE
PHYSICS
STUDENT’S ASSIGNMENT – 3

MODULE - 3
Thermal Physics

Notes

Maximum Marks: 50

Time : 1½ Hours

INSTRUCTIONS
Answer All the questions on a seperate sheet of paper
Give the following information on your answer sheet:
Name
Enrolment Number
Subject
Assignment Number
Address
Get your assignment checked by the subject teacher at your study centre so that you get positive feedback about your performance.

Do not send your assignment to NIOS
1.

At what temperature molecular motion ceases.

(1)

2.

What is the type (kinetic/or potential) of internal energy of an ideal gas?

(1)

3.

Why change in temperature of water from 14.5° C to 15.5° C is specified in defining one calorie? (1)

4.

At what temperature do the Celsius and Fahrenheit scales coincide?

(1)

5.

What is indicated by the statement. “Internal energy is positive”?

(1)

6. State two reasons due to which all practical engines have an efficiency less than the carnot’s engine.
(1)
7.

Which diagram plays important role to explain the theory of heat engine?

(1)

8.

Write the dimension of coefficient of thermal conductivity.

(1)

9.

State two limitations of carnot’s engine.

(2)

10. Every gas has two specific heats where as each liquid and solid has only one specific value of specific heat, why?
(2)
11. A refrigerator transfers heat from the cooling coil at low temperature to the warm surroundings. Is it against the second law of thermodynamics? Justify your answer.
(2)
12. Two rods X and Y are of equal lengths. Each rod has its ends at temperature T1 and T2 respectively
(T1 > T2). What is the condition that will ensure equal rates of flow of heat through the rods X and Y?
(2)
⎡ dQ1 dQ2
K A ∆T K 2 A2 ∆T
A K ⎤
=
⇒ 1 1
=
⇒ 1 = 2⎥
⎢ Hint : dt dt
∆x
∆x
A2 K1 ⎦


(2)
3.289
289

13. State first law of thermodynamics. Figure shows three paths through which a gas can be taken from the state 1 to state 2. Calculate the work done by the gas in each of the three paths.
(4)

1
2

3
−6
Path1 → 2 w12 = (10 + 3) × 10 × 15 × 10 = 0.3t

Path 1→ 4 ⇒ 2 w14 + w42 = p∆v + 0 = 0.15t]

Volume →

[Hint : Path 1 → 3 → 2 w13 + w32 = 0 + p∆v = 0.455
30cc

4

2

1

3

25cc
20cc
10cc

10kPa

20kPa

30kPa

Pressure →

Temperature (T)

14. The P - V diagram of a certain process (carnot cycle) is reflected in figure a.Represent it on T-V and TS diagrams.
(4)

B

A

C

D
O

→ Volume (V)

(a)

B

A

→ Entropy (s)

B

A

C

D

C

D
O

Pressure (P)

Temperature (T)

Hint :

O

→ Volume (V)

15. Differentiate between isothermal, adiabatic, isobaric and isochoric processes.

(4)

16. State Zeroth and first law of thermodynamics. Discuss the limitations of first law of thermodynamics.
(4)
17. State and explain second law of thermodynamics.

(4)

18. What do you mean by the following terms :
(i) thermal conductivity of a solid (ii) variable state of a metallic rod (iii) steady state of a matallic rod (iv) coefficient of thermal conductivity.
(4)
19. Briefly describe a carnot cycle and derive an expression for efficiency of this cycle.

(5)

20. What is a heat engine? Obtain an expression for its efficiency. Explain the workig principle of a referigerator.
Obtain an expression for its coefficient of performance. Also obtain a relation between coefficient of performance of a refrigerator and efficiency of a heat engine.
2 + 2 + 1 = (5)

290

MODULE - IV
OSCILLATIONS AND WAVES
13. Simple Harmonic Motion
14. Wave Phenomena

Simple Harmonic Motion

MODULE - 4
Oscillations and Waves

13
SIMPLE HARMONIC MOTION

Notes

You are now familiar with motion in a straight line, projectile motion and circular motion.
These are defined by the path followed by the moving object. But some objects execute motion which are repeated after a certain interval of time. For example, beating of heart, the motion of the hands of a clock, to and fro motion of the swing and that of the pendulum of a bob are localised in space and repetitive in nature. Such a motion is called periodic motion. It is universal phenomenon.
In this lesson, you will study about the periodic motion, particularly the oscillatory motion which we come across in daily life. You will also learn about simple harmonic motion.
Wave phenomena – types of waves and their characteristics–form the subject matter of the next lesson.

Objectives
After studying this lesson, you should be able to : show that an oscillatory motion is periodic but a periodic motion may not be necessarily oscillatory; define simple harmonic motion and represent it as projection of uniform circular motion on the diameter of a circle; derive expressions of time period of a given harmonic oscillator; derive expressions for the potential and kinetic energies of a simple harmoic oscillator; and distinguish between free, damped and forced oscillations.

13.1 Periodic Motion
You may have observed a clock and noticed that the pointed end of its seconds hand and that of its minutes hand move around in a circle, each with a fixed period. The seconds hand completes its journey around the dial in one minute but the minutes hand takes one hour to complete one round trip. However, a pendulum bob moves to and fro about a mean

3.291
291

MODULE - 4
Oscillations and Waves

Notes

Physics position and completes its motion from one end to the other and back to its initial position in a fixed time. A motion which repeats itself after a fixed interval of time is called periodic motion. There are two types of periodic motion : (i) non–oscillatory, and (ii) oscillatory.
The motion of the hands of the clock is non-oscillatory but the to and fro motion of the pendulum bob is oscillatory. However, both the motions are periodic. It is important to note that an oscillatory motion is normally periodic but a periodic motion is not necessarily oscillatory. Remember that a motion which repeats itself in equal intervals of time is periodic and if it is about a mean position, it is oscillatory.
We know that earth completes its rotation about its own axis in 24 hours and days and nights are formed. It also revolves around the sun and completes its revolution in 365 days.
This motion produces a sequence of seasons. Similarly all the planets move around the
Sun in elliptical orbits and each completes its revolution in a fixed interval of time. These are examples of periodic non-oscillatory motion.

Jean Baptiste Joseph Fourier
(1768 – 1830)
French Mathematician, best known for his Fourier series to analyse a complex oscillation in the form of series of sine and consine functions.
Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.
Born as the ninth child from the second wife of a taylor, he was orphened at the age of 10. From the training as a priest, to a teacher, a revolutionary, a mathematician and an advisor to Nepolean Bonapart, his life had many shades.
He was a contemporary of Laplace, Lagrange, Biot, Poission, Malus, Delambre,
Arago and Carnot. Lunar crator Fourier and his name on Eiffel tower are tributes to his contributions.

Activity 13.1
Suppose that the displacement y of a particle, executing simple harmonic motion, is represented by the equation : y = a sin θ or (13.1)

y = a cos θ

(13.2)

From your book of mathematics, obtain the values of sin θ and cos θ for θ = 0, 300, 600,
900, 1200, 1500, 1800, 2400, 3000, 3300 and 3600. Then assuming that a = 2.5cm, determine the values of y corresponding to each angle using the relation y = a sin θ. Choose a suitable scale and plot a graph between y and θ. Similarly, using the relation y = a cosθ, plot another graph between y and θ. You will note that both graphs represents an oscillation between +a and – a. It shows that a certain type of oscillatory motion can be represented by an expression containing sine or cosine of an angle or by a combination of such expressions. 292

Simple Harmonic Motion

MODULE - 4
Oscillations and Waves

Now check your progress by answering the following questions.

Intext Questions 13.1
1.

What is the difference between a periodic motion and an oscillatory motion?
..................................................................................................................................

2.

Notes

Which of the following examples represent a periodic motion?
(i) A bullet fired from a gun, (ii) An electron revolving round the nucleus in an atom,
(iii) A vehicle moving with a uniform speed on a road, (iv) A comet moving around the
Sun, and (v) Motion of an oscillating mercury column in a U-tube.
..................................................................................................................................

3.

Give an example of (i) an oscillatory periodic motion and (ii)Non-oscillatory periodic motion. ..................................................................................................................................

13.2 Simple Harmonic Motion : Circle of Reference
The oscillations of a harmonic oscillator can be represented by terms containing sine and cosine of an angle. If the displacement of an oscillatory particle from its mean position can be represented by an equation y = a sinθ or y = a cosθ or y = A sinθ + B cosθ, where a,
A and B are constants, the particle executes simple harmonic motion. We define simple harmonic motion as under :
A particle is said to execute simple harmonic motion if it moves to and fro about a fixed point periodically, under the action of a force F which is directly proportional to its displacement x from the fixed point and the direction of the force is opposite to that of the displacement. We shall restrict our discussion to linear oscillations.
Mathematically, we express it as
F = – kx where k is constant of proportionality.
Y (m)

Y
P
X

M

ωt ωt a

O

Y′

a

X

O

T/4 T/2

3T/4 T

t (s)

–a

Fig. 13.1 : Simple harmonic motion of P is along YOY′


3.293
293

MODULE - 4
Oscillations and Waves

Notes

Physics
To derive the equation of simple harmonic motion, let us consider a point M moving with a constant speed v in a circle of radius a (Fig. 13.1) with centre O. At t = 0, let the point be at X. The position vector OM specifies the position of the moving point at time t,. It is obvious that the position vector OM, also called the phaser, rotates with a constant angular velocity ω = v /a. The acceleration of the point M is v2/a = a ω2 towards the centre O. At time t, the component of this acceleration along OY = aω2 sin ωt. Let us draw MP perpendicular to YOY′. Then P can be regarded as a particle of mass m moving with an acceleration aω2 sin ωt. The force on the particle P towards O is therefore given by
F = maω2 sin ωt
But sin ωt = y/a. Therefore
(13.3)
F = mω2y
The displacement is measured from O towards P and force is directed towards O. Therefore,
F = – mω2y
Since this force is directed towards O, and is proportional to displacement ‘y’ of P from O. we can say that the particle P is executing simple harmonic motion.
Let us put mω2 = k, a constant. Then Eqn. (13.3) takes the form
F =–ky

(13.4)

The constant k, which is force per unit displacement, is called force constant. The angular frequency of oscillations is given by ω2 = k / m

(13.5)

In one complete rotation, OM describes an angle 2π and it takes time T to complete one rotation. Hence ω = 2π/T
(13.6)
On combining Eqns. (13.5) and (13.6), we get an expression for time period :
T = 2π k / m

(13.7)

This is the time taken by P to move from O to Y, then through O to Y′ and back to O.
During this time, the particle moves once on the circle and the foot of perpendicular from its position is said to make an oscillation about O as shown in Fig.13.1.
Let us now define the basic terms used to describe simple harmonic motion.

13.2.1 Basic Terms Associated with SHM
Displacement is the distance of the harmonic oscillator from its mean (or equilibrium) position at a given instant.
Amplitude is the maximum displacement of the oscillator on either side of its mean position.
Time period is the time taken by the oscillator to complete one oscillation. In Fig. 13.1,
OP, and OY respectively denote displacement and amplitude.
Frequency is the number of oscillations completed by an oscillator in one second. It is denoted by v. The SI unit of frequency is hertz (symbol Hz). Since v is the number of
294

Simple Harmonic Motion oscillations per second, the time taken to complete one oscillation is 1/v. Hence T =1/v or v = (1/T) s–1. As harmonic oscillations can be represented by expressions containing sinθ and or cosθ, we introduce two more important terms.

MODULE - 4
Oscillations and Waves

Phase φ is the angle whose sine or cosine at a given instant indicates the position and direction of motion of the oscillator. It is expressed in radians.
Angular Frequency ω describes the rate of change of phase angle. It is expressed in radian per second. Since phase angle φ changes from 0 to 2π radians in one complete oscillation, the rate of change of phase angle is ω = 2π/T = 2π v or ω = 2πv.

Notes

Example 13.1 : A tray of mass 9 kg is supported by a spring of force constant k as shown in Fig. 13.2. The tray is pressed slightly downward and then released. It begins to execute SHM of period 1.0s. When a block of mass M is placed on the tray, the period increases to 2.0s. Calculate the mass of the block.
Solution: The angular frequency of the system is given by ω = k / m , where m is the mass of the oscillatory system. Since ω = 2π/T, from Eqn. (13.7) we get
4π2/T2 =

k m M

kT 2 m =
4π2

or

When the tray is empty, m = 9kg and T = 1s.Therefore
9 =

k

k (1) 2
4π 2

Fig. 13.2

On placing the block, m = 9 + M and T = 2s. Therefore, 9 + M = k × (2)2/4π2
From the above two equations we get

(9 + M )
=4
9
Therefore, M = 27kg.
Example 13.2 : A spring of force constant 1600 N m–1 is mounted on a horizontal table as shown in Fig. 13.3. A mass m = 4.0 kg attached to the free end of the spring is pulled horizontally towards the right through a distance of 4.0 cm and then set free. Calculate (i) the frequency (ii) maximum acceleration and (iii) maximum speed of the mass.
Solution :

ω =

k / m = 1600 / 4
Fig. 13.3
–1

= 20rad s .
Therefore v = 20/2π = 3.18 Hz. Maximum acceleration = a ω2 = 0.04 × 400 = 16 m s–2, and vmax = a ω = 0.04 × 20 = 0.8 m s–1.
3.295
295

MODULE - 4
Oscillations and Waves

Physics

13.3 Examples of SHM
In order to clarify the concept of SHM, some very common examples are given below.

13.3.1 Horizontal Oscillations of a Spring-Mass System
Notes

Consider a elastic spring of force constant k placed on a smooth horizontal surface and attached to a block P of mass m. The other end of the spring is attached to a rigid wall (Fig.
13.4)). Suppose that the mass of the spring is negligible in comparison to the mass of the block. m
P

(i)

P

(ii) kx P

(iii)
(iv)

x
P
P

(v) kx Fig.13.4 : Oscillations of a spring-mass system

Let us suppose that there is no loss of energy due to air resistance and friction. We choose x–axis along the horizontal direction. Initially, that is, at t = 0, the block is at rest and the spring is in relaxed condition [Fig.13.4(i)]. It is then pulled horizontally through a small distance [Fig. 13.4 (ii)]. As the spring undergoes an extension x, it exerts a force kx on the block. The force is directed against the extension and tends to restore the block to its equilibrium position. As the block returns to its initial position
[Fig. 13.4 (iii)], it acquires a velocity v and hence a kinetic energy K = (1/2) m v2.
Owing to inertia of motion, the block overshoots the mean position and continues moving towards the left till it arrives at the position shown in Fig. 13.4 (iv). In this position, the block again experiences a force kx which tries to bring it back to the initial position [Fig. 13.4 v]. In this way, the block continues oscillating about the mean position. The time period of oscillation is 2π m / k , where k is the force per unit extension of the spring.

13.3.2 Vertical Oscillations of a Spring–
Mass System
Let us suspend a spring of force constant k from a rigid support [Fig.13.5(a)]. Then let us attach a block of mass m to the free end of the spring. As a result of this, the spring undergoes an extension, say l [Fig.13.5(b)].
Obviously, the force constant of the spring is k = mg/l. Let us now pull down the block through a small distance, y
(Fig.13.5 (c)]. A force ky acts on the block vertically

296

l

y

(a
)
(b) (c)
Fig.13.5: Vertical oscillations of a a spring–mass system Simple Harmonic Motion upwards. Therefore, on releasing the block, the force ky pulls it upwards. As the block returns to its initial position, it continues moving upwards on account of the velocity it has gained. It overshoots the equilibrium position by a distance y. The compressed spring now applies on it a restoring force downwards. The block moves downwards and again overshoots the equilibrium position by almost the same vertical distance y. Thus, the system continues to execute vertical oscillations. The angular frequency of vertical oscillations is ω =

Hence

MODULE - 4
Oscillations and Waves

Notes

2π k =
T
m

T = 2π

m k (13.8)

This result shows that acceleration due to gravity does not influence vertical oscillations of a spring–mass system.

Galileo Galilei
(1564-1642)
Son of Vincenzio Galilei, a wool merchant in Pisa, Italy, Galileo is credited for initiating the age of reason and experimentation in modern science. As a child, he was interested in music, art and toy making.
As a young man, he wanted to become a doctor. To pursue the study of medicine, he entered the University of Pisa. It was here that he made his first discovery - the isochronosity of a pendulum, which led Christian Huygen to construct first pendulum clock.
For lack of money, Galileo could not complete his studies, but through his efforts, he learnt and developed the subject of mechanics to a level that the Grand Duke of
Tuscany appointed him professor of mathematics at the University of Pisa.
Galileo constructed and used telescope to study celestial objects. Through his observations, he became convinced that Copernican theory of heliocentric universe was correct. He published his convincing arguments in the form of a book, “A Dialogue
On The Two Principal Systems of The World”, in the year 1632. The proposition being at variance with the Aristotelian theory of geocentric universe, supported by the Church, Galileo was prosecuted and had to apologize. But in 1636, he published another book “Dialogue On Two New Sciences” in which he again showed the fallacy in Aristotle’s laws of motion.
Because sophisticated measuring devices were not available in Galileo’s time, he had to apply his ingenuity to perform his experiments. He introduced the idea of thought-experiments, which is being used even by modern scientists, in spite of all their sophisticated devices.

3.297
297

MODULE - 4

Physics

Oscillations and Waves

13.3.3 Simple Pendulum
A simple pendulum is a small spherical bob suspended by a long cotton thread held between the two halves of a clamped split cork in a stand,as shown in Fig. 13.6. The bob is considered a point mass and the string is taken to be inextensible. The Pendulum can oscillate freely about the point of suspension. θ

Notes

T

When the pendulum is displaced through a small distance from its equilibrium position mg sinθ mg cosθ and then let free, it executes angular mg oscillations in a vertical plane about its equilibrium position. The distance between the
Fig.13.6 : Simple Pendulum point of suspension and the centre of gravity of the bob defines the length of the pendulum. The forces acting on the bob of the pendulum in the displaced position shown in Fig. 13.6 are : (i) the weight of the bob mg vertically downwards, and (ii) tension in the string T acting upwards along the string. θ The weight mg is resolved in two components : (a) mg cosθ along the string but opposite to T and (b) mg sinθ perpendicular to the string. The component mg cosθ balances the tension T and the component mg sinθ produces acceleration in the bob in the direction of the mean position. The restoring force, therefore, is mg sinθ. For small displacement x of the bob, the restoring force is F = mgθ = mg x/l. The force per unit displacement k = mg/l and hence ω =


=
T

or

Hence,

k
=
m

mg / l
=
m

g l g l T = 2π

l g (13.9)

Measuring Weight using a Spring
We use a spring balance to measure weight of a body. It is based on the assumption that within a certain limit of load, there is equal extension for equal load, i.e., load/ extension remains constant (force constant). Therefore, extension varies linearly with load. Thus you can attach a linear scale alongside the spring and calibrate it for known load values. The balance so prepared can be used to measure unknown weights. Will such a balance work in a gravity free space, as in a space-rocket or in a satellite?

298

Simple Harmonic Motion

MODULE - 4
Oscillations and Waves

Obviously not becuase in the absence of gravity, no extension occurs in the spring. Then how do they measure mass of astronauts during regular health check up? It is again a spring balance based on a
Fig. 13.7 : Spring balance for different principle. The astronaut sits on a special measuring the mass chair with a spring attached to each side (Fig.13.7). of an astronaut
The time period of oscillations of the chair with and without the astronaut is determined with the help of an electronic clock :
2
1

T

Notes

4π2m
=
k

where m is mass of the astronaut. If m0 is mass of the chair, we can write

T02 =

4 π 2 m0 k T1 is time period of ocillation of the chair with the astronaut and T0 without the astronaut. On subtracting one from another, we get
2
1

2
0

T –T


4π2
=
(m – mo) k m =

k
( T 2 – T02 ) + mo
4π2 1

Because the values of T0 and k are fixed and known, a measure of T1 itself shows the variation in mass.
Example 13.3 : Fig. 13.8 shows an oscillatory system comprising two blocks of masses m1 and m2 joined by a massless spring of spring constant k. The blocks are pulled apart, each with a force of magnitude F and then released. Calculate the angular frequency of each mass. Assume that the blocks move on a smooth horizontal plane. m1 m2
Solution : Let x1 and x2 be the displacements of the blocks when pulled apart. The extension produced in the spring is x1 + x2. Thus the acceleration of m 1 is k (x 1 + x 2)/m 1 and Fig. 13.8 : Oscillatory system of masses attached to a spring acceleration of m2 is k(x1 + x2)/m2. Since the same spring provides the restoring force to each mass, hence the net acceleration of the system comprising of the two masses and the massless spring equals the sum of the acceleration produced in the two masses. Thus the acceleration of the system is a= kx k ( x1 + x2 )
=
µ
⎛ 1
1 ⎞
+


⎝ m1 m2 ⎠

where x = x1 + x2 is the extension of the spring and µ is the reduced mass of the system.
The angular frequency of each mass of the system is therefore,

3.299
299

MODULE - 4

Physics

Oscillations and Waves ω =

k /µ

(13.10)

Such as analysis helps us to understand the vibrations of diatomic molecules like H2,
Cl2, HCl, etc.

Intext Questions 13.2

Notes
1.

A small spherical ball of mass m is placed in contact with the sunface on a smooth spherical bowl of radius r a little away from the bottom point. Calculate the time period of oscillations of the ball (Fig. 13.9).
..................................................................................................................................
C
R

r

mg sin θ

O

k

l

0

mg

m gc os θ k

Y

Fig. 13.9

2.

m

Fig.13.10

Fig. 13.11

A cylinder of mass m floats vertically in a liquid of density ρ. The length of the cylinder inside the liquid is l. Obtain an expression for the time period of its oscillations
(Fig. 13.10).
..................................................................................................................................

3.

Calculate the frequency of oscillation of the mass m connected to two rubber bands as shown in Fig. 13.11. The force constant of each band is k. (Fig. 13.11)
..................................................................................................................................

13.4 Energy of Simple Harmonic Oscillator
As you have seen, simple harmonic motion can be represented by the equation y = a sin ωt

(13.11)

When t changes to t + ∆ t, y changes to y + ∆y. Therefore, we can write y + ∆ y = a sinω (t + ∆t) = a sin (ωt + ω∆t)
= a [sinωt cos ω∆t + cosωt sin ω∆t]
As ∆t → 0, cos ω∆t → 1 and sin ω ∆t → ω ∆t. Then y + ∆y = a sin ωt + a ω∆t cos ωt.
Subtracting Eqn. (13.11) from Eqn. (13.12), we get
∆y = ∆t ωa cos ωt
300

(13.12)

Simple Harmonic Motion so that

v

Oscillations and Waves

∆y/∆t = ωa cos ωt

or

= ωa cost ωt

MODULE - 4

(13.13)

where v = ∆y/∆t is the velocity of the oscillator at time t. Hence, the kinetic energy of the oscillator at that instant of time is K = (1/2) mv2 = (1/2) ω2a2 cos2 ωt
(13.14)

Notes

F

Let us now calculate the potential energy of the oscillator at that time. When the displacement is y, the restoring force is ky, where k is the force
C
constant. For this purpose we shall plot a graph of restoring force ky versus the displacement y.
PQ
We get a straight line graph as shown in Fig. ky 13.12. Let us take two points P and Q and drop perpendiculars PM and QN on x–axis. As points
P and Q are close to each other, trapezium y O
B
MN
PQNM can be regarded as a rectangle. The area y of this rectangular strip is (ky ∆y). This area
Fig.13.12 : Graph between the equals the work done against the restoring force displacement y and the restoring force ky ky when the displacement changes by a small amount ∆y. The area of the triangle OBC is, therefore, equal to the work done in the time displacement changes from O to OB (= y) =

1 2 ky . This work done against the conservative force is the potential energy U of the
2
oscillator. Thus, the potential energy of the oscillator when the displacement is y is
U =

1 2 ky 2

But ω2 = k/m. Therefore, substituting k = mω2 in above expression we get
U =

1 mω2y2 2

Further as y = a sin ωt, we can write
U =

1 mω2a2sin2ωt 2

(13.15)

On combining this result with Eqn. (13.14), we find that total energy of the oscillator at any instant is given by
E =U+K
=
=

1 mω2a2 (sin2ωt + cos2ωt)
2

1 2 2 ma ω
2

(13.16)
3.301
301

MODULE - 4

Physics

Oscillations and Waves

E
E
K
U

Notes a O

a y Fig.13.13 : Variation of potential energy U, kinetic energy K, and total energy E with displacement from equilibrium position y

The graph of kinetic energy K, potential energy U and the total energy E versus displacement y is shown in Fig.13.13. From the graph it is evident that for y = 0, K = E and U = 0. As the displacement y from the mean position increases, the kinetic energy decreases but potential energy increases. At the mean position, the potential energy is zero but kinetic energy is maximum. At the extreme positions, the energy is wholly potential. However, the sum K + U = E is constant.

Intext Questions 13.3
1.

Is the kinetic energy of a harmonic oscillator maximum at its equilibrium position or at the maximum displacement position? Where is its acceleration maximum?
..................................................................................................................................

2.

Why does the amplitude of a simple pendulum decrease with time? What happens to the energy of the pendulum when its amplitude decreases?
..................................................................................................................................

13.5 Damped Harmonic Oscillations
Every oscillating system normally has a viscous medium surrounding it. As a result in each oscillation some of its energy is dissipated as heat. As the energy of oscillation decreases the amplitude of oscillation also decreases. The amplitude of oscillations of a pendulum in air decreases continuously. Such oscillations are called damped oscillations. To understand damped oscillations perform activity 13.2.
S

y (t)

G

B

(a)

t (s)

(b)

Fig. 13.14 : Damped vibrations : (a) experimental setup; (b) graphical representation

302

Simple Harmonic Motion

MODULE - 4
Oscillations and Waves

Activity 13.2
Take a simple harmonic oscillator comprising a metal block B suspended from a fixed support S by a spring G. (Fig. 13.14(a). Place a tall glass cylinder filled two thirds with water, so that the block is about 6 cm below the surface of water and about the same distance above the bottom of the beaker. Paste a millimetre scale (vertically) on the side of the cylinder just opposite the pointer attached to the block. Push the block a few centimetres downwards and then release it. After each oscillation, note down the uppermost position of the pointer on the millimetre scale and the time. Then plot a graph between time and the amplitude of oscillations. Does the graph [Fig. 13.14 (b)] show that the amplitude decreases with time. Such oscillations are said to be damped oscillations.

Notes

13.6 Free and Forced Vibrations : Resonance
To understand the difference between these phenomena, let us perform the following activity :

Activity 13.3
Take a rigid horizontal rod fixed at both ends.
Tie a loose but strong thread and hang the four pendulums A,B,C,D, as shown in Fig. 13.15.
The pendulums A and B are of equal lengths,
C
whereas C has a shorter and D has a longer
B
A length than A and B. The pendulum B has a
D
Fig. 13.15: Vibrations and resonance. heavy bob. Set pendulum B into oscillations.
You will observe that after a few minutes, the other three pendulums also begin to oscillate. (It means that if a no. of oscillators are coupled, they transfer their energy. This has an extremely important implication for wave propagation.) You will note that the amplitude of A is larger. Why? Each pendulum is an oscillatory system with natural frequency of its own. The pendulum B, which has a heavy bob, transmits its vibrations to each of the pendulums A, C and D. As a consequence, the pendulums C and D are forced to oscillate not with their respective natural frequency but with the frequency of the pendulum B. The phenomenon is called forced oscillation.
By holding the bob of any one of these pendulums, you can force it to oscillate with the frequency of C or of D. Both C and D are forced to oscillate with the frequency of B.
However, pendulum A on which too the oscillations of the pendulums B are impressed, oscillates with a relatively large amplitude with its natural frequency. This phenomenon is known as resonance.
When the moving part of an oscillatory system is displaced from its equilibrium position and then set free, it oscillates to and fro about its equilibrium position with a frequency that depends on certain parameters of the system only. Such oscillations are known as free vibrations. The frequency with which the system oscillates is known as natural frequency.
When a body oscillates under the influence of an external periodic force, the oscillations are called forced oscillations. In forced oscillations, the body ultimately oscillates
3.303
303

MODULE - 4
Oscillations and Waves

Physics with the frequency of the external force. The oscillatory system on which the oscillations are impressed is called driven and the system which applies the oscillating force is known as the driver. The particular case of forced oscillations in which natural frequencies of the driver and the driven are equal is known as resonance. In resonant oscillations, the driver and the driven reinforce each other’s oscillations and hence their amplitudes are maximum.

Notes

Intext Questions 13.4
1.

When the stem of a vibrating tuning fork is pressed against the top of a table, a loud sound is heard. Does this observation demonstrate the phenomenon of resonance or forced vibrations? Give reasons for your answer. What is the cause of the loud sound produced? ..................................................................................................................................

2.

Why are certain musical instruments provided with hollow sound boards or sound boxes? ..................................................................................................................................

Mysterious happenings and resonance
1.Tacoma Narrows Suspension Bridge, Washington, USA collapsed during a storm within six months of its opening in 1940. The wind blowing in gusts had frequency equal to the natural frequency of the bridge. So it swayed the bridge with increasing amplitude. Ultimately a stage was reached where the structure was over stressed and it collapsed.
The events of suspension bridge collapse also happened when groups of marching soldiers crossed them. That is why, now, the soldiers are ordered to break steps while crossing a bridge.
The factory chimneys and cooling towers set into oscillations by the wind and sometimes get collapsed.
2.You might have heard about some singers with mysterious powers. Actually, no such power exists. When they sing, the glasses of the window panes in the auditorium are broken. They just sing the note which matches the natural frequency of the window panes.
3.You might have wondered how you catch a particular station you are interested in by operating the tuner of your radio or TV? The tuner in fact, is an electronic oscillator with a provision of changing its frequency. When the frequency of the tuner matches the frequency transmitted by the specific station, resonance occurs and the antenna catches the programme broadcasted by that station.

304

Simple Harmonic Motion

MODULE - 4
Oscillations and Waves

What You Have Learnt
Periodic motion is a motion which repeats itself after equal intervals of time.
Oscillatory motion is to and fro motion about a mean position. An oscillatory motion is normally periodic but a periodic motion may not necessarily be oscillatory.

Notes

Simple harmonic motion is to and fro motion under the action of a restoring force, which is proportional to the displacement of the particle from its equilibrium position and is always directed towards the mean position.
Time period is the time taken by a particle to complete one oscillation.
Frequency is the number of vibrations completed by the oscillator in one second.
Phase angle is the angle whose sine or cosine at the given instant indicates the position and direction of motion of the particle.
Angular frequency is the rate of change of phase angle. Note that ω = 2π/T = 2πv where ω is the angular frequency in rads–1, v is the frequency in hertz (symbol : Hz) and T is the time period in seconds.
Equation of simple harmonic motion is y = a sin (ωt + φ0) y = a cos (ωt + φ0)

or

where y is the displacement from the mean position at a time, φ0 is the initial phase angle (at t = 0).
When an oscillatroy system vibrates on its own, its vibrations are said to be free. If, however, an oscillatory system is driven by an external system, its vibrations are said to be forced vibrations. And if the frequency of the driver equals to the natural frequency of the driven, the phenomenon of resonance is said to occur.

Terminal Exercise
1. Distinguish between a periodic and an oscillatory motion.
2. What is simple harmonic motion?
3. Which of the following functions represent (i) a simple harmonic motion (ii) a periodic but not simple harmonic (iii) a non periodic motion? Give the period of each periodic motion. (1) sin ωt + cos ωt
(3) 3 cos (ωt –

(2) 1 + ω2 + ωt

π
)
4

4. The time period of oscillations of mass 0.1 kg suspended from a Hooke’s spring is 1s.
Calculate the time period of oscillation of mass 0.9 kg when suspended from the same spring. 3.305
305

MODULE - 4
Oscillations and Waves

Physics
5. What is phase angle? How is it related to angular frequency?
6. Why is the time period of a simple pendulum independent of the mass of the bob, when the period of a simple harmonic oscillator is T = 2π m / k ?

Notes

7. When is the magnitude of acceleration of a particle executing simple harmonic motion maximum? When is the restoring force maximum?
8. Show that simple harmonic motion is the projection of a uniform circular motion on a diameter of the circle. Obtain an expression for the time period of a simple harmonic oscillator in terms of mass and force constant.
9. Obtain expressions for the instantaneous kinetic energy potential energy and the total energy of a simple harmonic oscillator.
10. Show graphically how the potential energy U, the kinetic energy K and the total energy
E of a simple harmonic oscillator vary with the displacement from equilibrium position.
11. The displacement of a moving particle from a fixed point at any instant is given by x = a cos ωt + b sin ωt. Is the motion of the particle simple harmonic? If your answer is no, explain why? If your answer is yes, calculate the amplitude of vibration and the phase angle.
12. A simple pendulum oscillates with amplitude 0.04m. If its time period is 10s, calculate the maximum velocity.
13. Imagine a ball dropped in a frictionless tunnel cut across the earth through its centre.
Obtain an expression for its time period in terms of radius of the earth and the acceleration due to gravity.
14. Fig. 13.16 shows a block of mass m = 2kg connected to two springs, each of force constant k = 400Nm–1.
The block is displaced by 0.05m from equilibrium position and then released. Calculate (a) The angular
Fig.13.16
frequency ω of the block, (b) its maximum speed;
(c) its maximum acceleration; and total energy dissipated against damping when it comes to rest.

Answers to Intext Questions
13.1
1. A motion which repeats itself after some fixed interval of time is a periodic motion. A to and fro motion on the same path is an oscillatory motion. A periodic motion may or may not be oscillatory but oscillation motion is perodic.
2. (ii), (iv), (v);
3. (i) To and fro motion of a pendulum.
(ii) Motion of a planet in its orbit.

306

Simple Harmonic Motion

13.2eck

MODULE - 4
Oscillations and Waves

Your Progress 13.2

1. Return force on the ball when displaced a distance x from the equilibrium position is mg sin θ = mg θ = mg x/r. ∴ ω =

g/r .

2. On being pushed down through a distance y, the cylinder experiences an upthrust
2
yαρg. Therefore ω =

αρg and m = αpρ. From the law of flotation m = mass of m black. Hence, ω2 = g/l or T = 2π

Notes

l/g .

3. ω2 = k/m and hence v = 1/2π k / m . Note that when the mass is displaced, only one of the bands exerts the restoring force.

13.3
1. K.E is maximum at mean position or equilibrium position; acceleration is maximum when displacement is maximum.
2. As the pendulum oscillates it does work against the viscous resistance of air and friction at the support from which it is suspended. This work done is dissipated as heat. As a consequence the amplitude decreases.

13.4
1. When an oscillatory system called the driver applies is periodic of force on another oscillatory system called the driven and the second system is forced to oscillate with the frequency of the first, the phenomenon is known as forced vibrations. In the particular case of forced vibrations in which the frequency of the driver equals the frequency of the driven system, the phenomenon is known as resonance.
2. The table top is forced to vibrate not with its natural frequency but with the frequency of the tuning fork. Therefore, this observation demonstrates forced vibrations. Since a large area is set into vibrations, the intensity of the sound increases.
3. The sound board or box is forced to vibrate with the frequency of the note produced by the instrument. Since a large area is set into vibrations, the intensity of the note produced increases and its duration decreases.

Answers to Terminal Problems
4. 3s
11. A =

⎛a⎞ a 2 + b2 , θ = tan –1 ⎜ ⎟
⎝b⎠

2
–3
–1
12. × 10 ms π 14. (a) 14.14 s– 1 (b) 0.6 ms–1 (c) 0.3 ms– 2 (d) 0.5J
3.307
307

MODULE - 4

Physics

Oscillations and Waves

14
Notes

WAVE PHENOMENA

a stone is dropped concentric You would have noticed that whendepressions emergeinto still water in a pond,impact and rings of alternate elevations and out from the point of spread out on the surface of water. If you put a straw piece on the surface of water, you will observe that it moves up and down at its place. Here the particles of water are moving up and down at their places. But still there is something which moves outwards. We call it a wave. Waves are of different types : Progressive and stationary, mechanical and electro-magnetic. These can also be classified as longitudinal and trnsverse depending on the direction of motion of the material particles with respect to the direction of propagation of wave in case of mechnical waves and electric and magnetic vectors in case of e.m. waves. Waves are so intimate to our existance.
Sound waves travelling through air make it possible for us to listen. Light waves, which can travel even through vacuum make us see things and radio waves carrying different signals at the speed of light connect us to our dear ones through differents forms of communication. In fact, wave phenomena is universal.
The working of our musical instruments, radio, T.V require us to understand wave phenomena. Can you imagine the quality of life without waves? In this lesson you will study the basics of waves and wave phenomena.

Objectives
After studying this lesson, you should be able to : explain propagation of transverse and longitudinal waves and establish the relation v = vλ ; write Newton’s formula for velocity of longitudinal waves in a gas and explain
Laplace’s correction; discuss the factors on which velocity of longitudional waves in a gas depends; explain formation of transverse waves on stretched strings; derive the equation of a simple harmonic wave;

308

Wave Phenomena explain the phenomena of beats, interference and phase change of waves on the basis of principle of superposition

MODULE - 4
Oscillations and Waves

explain formation of stationary waves and discuss harmonics of organ pipes and stretched strings; discuss Doppler effect and apply it to mechanical and optical systems;

Notes explain the properties of em waves, and state wavelength range of different parts of em spectrum and their applications.

14.1 Wave Propagation
From the motion of a piece of straw, you may think that waves carry energy; these do not transport mass. A vivid demonstration of this aspect is seen in tidel waves. Do you recall the devastation caused by Tsunami, waves which hit Indonesia, Thailand, Sri lanka and
India caused by a deep sea quake waves of, 20m height were generated and were responsible for huge loss of life.
To understand how waves travel in a medium let us perform an activity.

Activity 14.1
Take a long coil spring, called slinky, and stretch it along a smooth floor or bench, keeping one end fixed
(a)
and the other end free to be given movements . Hold the free end in your hand and give it a jerk side– ways.[Fig 14.1(a)]. You will observe that a kink is produced which travels towards the fixed end with definite speed . This kink is a wave of short duration.
(b)
Keep moving the free end continuously left and right.
You will observe a train of pulses ravelling towards
(c)
the fixed end. This is a transverse wave moving
Fig. 14.1 : Wave motion on a slinky through the spring [Fig. 14.1 (b)].
(a) pulse on a slinky,
(b) transverse wave, and
(c) longitudinal Wave

There is another type of wave that you can generate in the slinky . For this keep the slinky straight and give it a push along its length . A pulse of compression thus moves on the spring. By moving the hand backwards and forwards at a constant rate you can see ulternate compressions and rarefactions travelling along its length . These are called longitudinal waves [Fig. 14.1(c)].

14.1.1 Propagation of Transverse Waves
Refer to Fig 14.2. It shows a mechanical model for wave propapation. It comprises a row of spherical balls of equal masses, evenly spaced and connected together by identical springs. Let us imagine that by means of suitable device, ball-1, from left, is made to execute S.H.M. in a direction perpendicular to the row of balls with a period T. All the balls, owing to inertia of rest will not begin to oscillate at the same time. The motion is
3.309
309

MODULE - 4

Physics

Oscillations and Waves

Notes

Fig. 14.2 : Instantaneous profiles at intervals of T/8 when a transverse wave is generated on a string.

passed on from one ball to the next one by one. Let us suppose that the time taken by the disturbance to travel from one ball to the next is T/8s. This means that in the interval T/8s, the disturbance propagates from the particle at mark 1 to the particale at mark 2. Similarly, in the next T/8 interval, the disturbance travels from the particle at mark 2 to the particle at mark 3 and so on. In parts (a)—(i) in Fig. 14.2 we have shown the instantaneous positions of particles at all nine marked positions at intervals of T/8. (The arrows indicate the directions of motion along which particles at various marks are about to move.) You will observe that
(i) At t = 0, all the particles are at their respective mean positions.
(ii) At t = T, the first, fifth and ninth particles are at their respective mean positions. The first and ninth particles are about to move upward whereas the fifth particle is about to move downward. The third and seventh particles are at position of maximum displacement but on opposite sides of the horizontal axis. The envelop joining the instantaneous positions of all the particles at marked positions in Fig. 14.2(a) are similar to those in Fig. 14.2(i) and
310

Wave Phenomena represents a transverse wave. The positions of third and seventh particles denote a trough and a crest, respectively.
The important point to note here is that while the wave moves along the string, all particles of the string are oscillating up and down about their respective equilibrium positions with the same period (T) and amplitude (A). This wave remains progressive till it reaches the fixed end.

MODULE - 4
Oscillations and Waves

Notes

In a wave motion, the distance between the two nearest particles vibrating in the same phase is called a wavelength. It is denoted by λ.
It is evident that time taken by the wave to travel a distance λ is T. (See Fig. 14.2).
Therefore, the velocity of the wave is v =

λ
Distance
=
T
Time

(14.1)

But, 1/T= v, the frequency of the wave. Therefore, v = vλ

(14.2)

Further, if two consecutive particles in same state of motion are separated by a distance λ, the phase difference between them is 2π. Therefore, the phase change per unit distance k =

2π λ (14.3)


= 2πv
Τ

(14.4)

We call k the propagation constant. You may recall that ω denotes phase change per unit time. But the phase change in time T is 2π hence ω= Dividing Eqn. (14.3) by Eqn. (14.4), we get an expression for the wave velocity : v =

ω
2πv
= k 2π/λ

or v = vλ
Let us now explain how the logitudinal waves propagate.

(14.5)

14.1.2 Propagation of a Longitudinal Wave

(a)
Fig. 14.3 : Graphical representation of a longtudinal wave.

3.311
311

MODULE - 4
Oscillations and Waves

Notes

Physics
In longitudinal waves, the displacement of particles is along the
(b)
direction of wave propagation In Fig. 14.3, the hollow circles represent the mean
(c)
positions of equidistant
Fig. 14.4 : Longitudinal waves on a spring are analogous particles in a medium. to sound waves.
The arrows show their
(rather magnified) longitudinal displacements at a given time. You will observe that the arrows are neither equal in length nor in the same direction. This is clear from the position of solid circles, which describe instantaneous positions of the particles corresponding to the heads of the arrows. The displacements to the right are shown in the graph towards + y-axis and displacements to the left towards the –y-axis.
For every arrow directed to the right, we draw a proportionate line upward. Similarly, for every arrow directed to the left, a proportionate line is drawn downward. On drawing a smooth curve through the heads of these lines, we find that the graph resembles the displacement-time curve for a transverse wave. If we look at the solid circles, we note that around the positions A and B, the particles have crowded together while around the position C, they have separated farther. These represent regions of compression and rarefaction. That is, there are alternate regions where density (pressure) are higher and lower than average.A sound wave propagating in air is very similar to the longitudinal waves that you can generate on your spring (Fig. 14.4).
Let us now derive equation of a simple harmonic wave.

14.1.3 Equation of a Simple Harmonic Wave in One Dimension
Y

O

–A
Y′

x

X

P

λ

Fig. 14.5 : Simple harmonic wave travelling along x-direction

Let us consider a simple harmonic wave propagating along OX (Fig. 14.5). We assume that the wave is transverse and the vibrations of the particle are along YOY′. Let us represent the displacement at t = 0 by the equation y = a sin ωt

(14.6)

Then the phase of vibrations at that time at the point P lags behind by a phase, say φ. Then y = a sin (ωt – φ)

(14.7)

Let us put OP = x. Since phase change per unit distance is k, we can write φ = kx. Hence,
Eqn. (14.7) take the form

312

y(x, t) = a sin (ωt – kx)

(14.8)

Wave Phenomena

Oscillations and Waves

Further as ω = 2π/t and k = 2π/λ, we can rewrite Eqn (14.8) as

⎛ t x⎞
– ⎟
⎝T λ⎠

y (x, t) = a sin 2π ⎜

MODULE - 4

(14.9)

In terms of wave velocity (v = λ/T), this equation can be expressed as


(v t – x) y = a sin λ Notes
(14.10)

In deriving Eqn. (14.8) we have taken initial phase of the wave at O as zero. However, if the initial phase angle at O is φ0 , the equation of the wave would be y (x,t) = a sin [(ωt – kx) + φ0]

(14.11)

Phase difference between two points on a wave
Let us consider two simple harmonic waves travelling along OX and represented by the equations y = a sin (ωt – kx) y = a sin [ωt – k (x + ∆x)]

and

(14.8)
(14.12)

The phase difference between them is
∆φ = k∆x =



.∆x = –
(x – x ) λ λ 2 1

(14.13)

where ∆x is called the path difference between these two points. Here the negative sign indicates that a point positioned later will acquire the same phase at a later time.
Phase difference at the same position over a time interval ∆t :
We consider two waves at the same position at a time interval ∆t. For the first wave, phase φ , is given by φ1 =



t1 – x
T
λ

φ2 =



t2 –
x.
T π and for the another wave phase

The phase difference between them
∆φ = φ2 – φ1 =


(t2 – t1)
T

= 2πv (t2 – t1)

[14.13(a)]

= 2π v ( ∆t)
3.313
313

MODULE - 4
Oscillations and Waves

Physics
Example 14.1 : A progressive harmonic wave is given by y = 10–4 sin (100πt – 0.1πx).
Calculate its (i) frequency, (ii) wavelength and (iii) velocity y and x are in metre.
Solution: comparing with the standard equation of progressive wave

Notes

⎛ 2πt 2πx ⎞

y = A sin ⎜

λ ⎠
⎝ T

we get (i) 2πv = 100 π ⇒ v = 50 Hz
(ii)


= 0.1 π ⇒ λ = 20 m λ (iii) v = vλ = 1000 ms–1

14.1.4 Transverse and Longitudinal Waves
We now consider transverse and longitudinal waves and summerise the difference between them. Transverse waves

Longitudinal waves

(i)

Displacements of the particles are perpendicular to the direction of propagation of the wave.

(i)

Displacements of the particles are along the direction of propagation of the wave.

(ii)

Transverse waves look as crests and troughs propagating in the medium. Transverse waves can only be transmitted in solids or on the surface of the liquids.
In case of a transverse wave, the displacement - distance graph gives the actual picture of the wave itself. (ii)

Longitudinal waves give the appearance of alternate compressions and rarefaction moving forward.
Longitudinal waves can travel in solids, liquids and gases.

(iii)

(iv)

(iii)

(iv)

In case of longitudinal waves, the graph only represents the displacement of the particles at different points at a given time.

Essential properties of the medium for propagation of longitudinal and transverse mechanical waves are: (i) the particles of the medium must possess mass, (ii) the medium must possess elasticity. Longitudinal waves for propagation in a medium require volume elasticity but transverse waves need modulus of rigidity. However, light waves and other electromagnetic waves, which are transverse, do not need any material medium for their propagation. Intext Questions 14.1
1.

State the differences between longitudinal and transverse waves?
.................................................................................................................................

2.

Write the relation between phase difference and path difference.
.................................................................................................................................

3.

314

Two simple harmonic waves are represented by equations y1 = a sin (ωt – kx) and

Wave Phenomena y2 = a sin [(ωt – kx) + φ]. What is the phase difference between these two waves?

MODULE - 4
Oscillations and Waves

.................................................................................................................................

14.2 Velocity of Longitudinal and Transverse Waves in an Elastic Medium

Notes

14.2.1 Newton’s Formula for Velocity of Sound in a Gas
Newton to derive a relation for the velocity of sound in a gaseous medium, assumed that compression and rarefaction caused by the sound waves during their passage through the gas take place under isothermal condition. This means that the changes in volume and pressure take place at constant temperature. Under such conditions, Newton agreed that the velocity of sound wave in a gas is given by v =

P ρ (14.15)

For air, at standard temperature and pressure P = 1.01 × 105 Nm–2 and ρ = 1.29 kg m–3.
On substituting these values in Eqn.(14.15) we get v = 1.01×105 /1.29 = 280 ms–1
Clouds collide producing thunder and lightening, we hear sound of thunder after the lightening.
This is because the velocity of light is very much greater than the velocity of sound in air.
By measuring the time interval between observing the lightening and hearing the sound, the velocity of sound in air can be determined. Using an improved technique, the velocity of sound in air has been determined as 333 ms–1 at 00C. The percent error in the value predicted by Newton’s formula and that determined experimentally is

333 – 280
× 100%
333

= 16%. This error is too high to be regarded as an experimental error. Obviously there is something wrong with Newton’s assumption that during the passage of sound, the compression and the rarefaction of air take place isothermally.

14.2.2 Laplace’s Correction
Laplace pointed out that the changes in pressure of air layers caused by passage of sound take place under adiabatic condition owing to the following reasons.
(i)

Air is bad conductor of heat and

(ii)

Compression and rarefactions caused by the sound are too rapid to permit heat to flow out during compression and flow in during rarefaction.

Under adiabatic conditions
E = γP,
Where

Cp

γ = C v 3.315
315

MODULE - 4

Physics

Oscillations and Waves v =

Hence,

γP ρ (14.16)

For air, γ = 1.4. Therefore, at STP, speed of sound is given by v =

Notes

1.4 ×1.01×105 /1.29

= 333ms–1
This value is very close to the experimentally observed value.

14.2.3 Factors affecting velocity of sound in a gas
(i) Effect of Temperature
From Laplace’s formula v =

γP ρ Since density is ratio of mass perumit volume, this expression takes the form
=

γPV
M

Using the equation of state PV = nRT, where n is number of moles in mass m of the gas

v=

γRT
M
n

γRT m Where m denotes the gram molecular mass. This result shows that v α T
=



(14.17 a)

t ⎞

v = vo ⎜ 1 +
⎟ +................
⎝ 2 × 273 ⎠
~ 333 +

333 t 546

~ 333 + 0.61t

(14.17b)

Note that for small temperature variations, velocity of sound in air increases by
0.61 ms–1 with every degree celsius rise in temperature.
(ii) Effect of pressure
When we increase pressure on a gas, it gets compressed but its density increases in the same proportion as the pressure i.e. P/ρ remains constant. It means that, pressure has no effect on the velocity of sound in a gas.
316

Wave Phenomena

MODULE - 4
Oscillations and Waves

(iii) Effect of density
If we consider two gases under identical conditions of temperature and pressure, then v α

1 ρ If we, compare the velocities of sound in oxygen and hydrogen, we get

ρhydrogen

voxygen v hydrogen

=

ρoxygen

=

M hydrogen
M oxygen

=

Notes

2
1
=
4
32

This shows that velocity of sound in hydrogen is 4 times the velocity of sound in oxygen under identical conditions of temperature and pressure. Is this result valid for liquids and solids as well. You will discover answer to this question in the next sub–section.
(iv) Effect of humidity on velocity of sound in air
As humidity in air increases (keeping conditions of temperature and pressure constant), its density decreases and hence velocity of sound in air increases.
Example 14.2 : At what temperature is the speed of sound in air double of its value at
S.T.P.
Solution : We know that

v
=
v0

T
=2=
m

T
273

On squaring both sides and rearranging terms, we get

T = 273 × 4 = 1092k

14.2.4 Velocity of Waves in Stretched Strings
The velocity of a transverse wave in a stretched string is given by

v=

F m (14.18 a)

Where F is tension in the string and m is mass per unit length of the wire. The velocity of longtudinal waves in an elastic medium is given by v= E/ρ

(14.18b)

where E is elasticity. It may be pointed out here that since the value of elasticity is more in solids, the velocity of longitudinal waves in solids is greater than that in gases and liquids.
In fact, vg < vl < vs.

Intext Questions 14.2
1.

What was the assumption made by Newton in deriving his formula?
.................................................................................................................................

2.

What was wrong with Newton’s formula?
.................................................................................................................................
3.317
317

MODULE - 4
Oscillations and Waves

Physics
3.

Show that for every 10C rise in temperature, the velocity of sound in air increases by
0.61 ms–1.
.................................................................................................................................

4.

Calculate the temperature at which the velocity in air is (3/2) times the velocity of sound at 70C?
.................................................................................................................................

Notes
5.

Write the formula for the velocity of a wave on stretched string?
.................................................................................................................................

6.

Let λ be the wavelength of a wave on a stretched string of mass per unit length m and n be its frequency. Write the relation between n, λ, F and m? Further if λ = 2l, what would be the relation between n, l, F and m?
.................................................................................................................................

14.3 Superposition of Waves
Suppose two wave pulses travel in opposite directions on a slinky. What happens when they meet? Do they knock each other out? To answer these questions, let us perform an activity. Activity 14.2
Produce two wavecrests of different amptitudes on a stretched slinky, as shown in Fig.
14.6 and watch carefully. The crests are moving in the opposite directions. They meet and overlap at the point midway between them [Fig. 14.6(b)] and then separate out. Thereafter, they continue to move in the same direction in which they were moving before crossing each other. Moreover, their shape also does not change
[Fig. 14.6(c)].
Now produce one crest and one trough on the slinky as shown in Fig. 14.6(d). The two are moving in the opposite direction. They meet [Fig. 14.6(e)], overlap and then separate out. Each one moves in the same direction in which it was moving before crossing and each one has the same shape as it was having before crossing. Repeat the experiment again and observe carefully what happens at the spot of overlapping of the two pulses [(Fig. 14.6(b) and (e)]. You will note that when crests overlap, the resultant is more and when crest overlaps the through, the resultant is on the side of crest but smaller size.We may summarize this result as : At the points where the two pulses overlap, the resultant displacement is the vector sum of the displacements due to each of the two wave pulses. This is called the principle of superposition. This activity demonstrates not only the principle of superposition but also shows that two or more waves
318

(a)

(b)
(c)
(d)

(e)

(f)
Fig. 14.6 : Illustrating principle of superpositionof waves Wave Phenomena can traverse the same space independent of each other. Each one travels as if the other were not present. This important property of the waves enable us to tune to a particular radio station even though the waves broadcast by a number of radio stations exist in space at the same time. We make use of this principle to explain the phenomena of interference of waves, formation of beats and stationary or standing waves.

14.3.1 Reflection and Transmission of Waves

MODULE - 4
Oscillations and Waves

Notes

We shall confine our discussion in respect of mechanical waves produced on strings and springs. What happens and why does it happen when a transverse wave crest propagates towards the fixed end of a string? Let us perform the following activity to understand it.

Activity 14.3
Fasten one end of a slinky to a fixed support as shown in (Fig. 14.7 (a). Keeping the slinky horizontal, give a jerk to its free end so as to produce a transverse wave pulse which travells towards the fixed end of the slinky (Fig. 14.7(a)). You will observe that the pulse bounces back from the fixed end. As it bounces back, the crest becomes a trough travels back in the opposite direction. Do you know the reason? As the pulse meets the fixed end, it exerts a force on the support. The equal and opposite reaction not only reverses the direction of propagation of the wave pulse but also reverses the direction of the displacement of the wave pulse (Fig. 14.7(b)). The support being much heavier than the slinky, it can be regarded as a denser medium. The wave pulse moving in the opposite direction is called the reflected wave pulse. So, we can say that when reflection takes place from a denser medium, the wave undergoes a phase change of π, that is, it suffers a phase reversal. Fig. 14.7 :

Reflection from a denser medium : a phase reversal.

Fig.14.8(a) : A pulse travelling down towards the free end, (b) on reflection from the free end direction of its displacement remains unchanged

Let us now see what happens on reflection from a rarer medium. For this we perform another activity.

Activity 14.4
Suspend a fixed rubber tube from a rigid support
(Fig. 14.8 a). Then generate a wave pulse
E
travelling down the tube. On reflection from the
Fig. 14.9 : Longitudinal waves are free end, the wave pulse travels upward but reflected from a denser without any change in the direction of its medium without change of displacements i.e. crest returns as crest. Why? type but with change of sign
As the wave pulse reaches the free end of the tube, it gets reflected from a rarer boundary.
(Note that air is rarer than the rubber tube.) Hence there is no change in the direction of

B1

B2

B3

D

3.319
319

MODULE - 4
Oscillations and Waves

Notes

Physics displacement of the wave pulse. Thus on reflection from a rarer medium, no phase change takes place.
You may now raise the question : Do longitudinal waves also behave similarly? Refer to
Fig. 14.9, which shows a row of bogies. Now suppose that the engine E moves a bit towards the right. The buffer spring between the engine E and the first bogie gets compressed and pushes bogie B1 towards the right. It then tries to go back to its original shape. As this compressed spring expands, the spring between the 1st and the 2nd bogie gets compressed. As the second compressed spring expands, it moves a bit towards the
3rd bogie. In this manner the compression arrives at the last buffer spring in contact with the fixed stand D. As the spring between the fixed stand and the last bogie expands, only the last bogie moves towards the left. As a result of this, the buffer spring between the next two bogies on left is compressed. This process continues, till the compression reaches between the engine and the first bogie on its right. Thus, a compression returns as a compression. But the bogies then move towards the left. In this mechanical model, the buffer spring and the bogies form a medium. The bogies are the particles of the medium and the spring between them shows the forces of elasticity.
Thus, when reflection takes place from a denser medium, the longitudinal waves are reflected without change of type but with change in sign. And on reflection from a rare medium, a longitudinal wave is reflected back without change of sign but with change of type. By ‘change of type’ we mean that rarefaction is reflected back as compression and a compression is reflected back as rarefaction.

Intext Questions 14.3
1.

What happens when two waves travelling in the opposite directions meet?
.................................................................................................................................

2.

What happens when two marbles each of the same mass travelling with the same velocity along the same line meet?
.................................................................................................................................

3.

Two similar wave pulses travelling in the opposite directions on a string meet. What happens (i) when the waves are in the same phase? (ii) the waves are in the opposite phases? .................................................................................................................................

4.

What happens when a transverse wave pulse travelling along a string meets the fixed end of the string?
.................................................................................................................................

5.

What happens when a wave pulse travelling along a string meets the free end of the string? .................................................................................................................................

6.

What happens when a wave of compression is reflected from (i) a rarer medium (ii) a denser medium?
.................................................................................................................................

320

Wave Phenomena

MODULE - 4
Oscillations and Waves

14.4 Superposition of Waves Travelling in the Same Direction
Superposition of waves travelling in the same direction gives rise to two different phenomena
(i) interference and (ii) beats depending on their phases and frequencies. Let us discuss these phenomena now.

14.4.1 Interference of waves

Notes

Let us compute the ratio of maximum and minimum intensities in an interference pattern obtained due to superposition of waves. Consider two simple harmonic waves of amplitudes a1 and a2 each of angular frequency ω, both propagating along x – axis, with the same velocity v = ω/k but differing in phase by a constant phase angle φ. These waves are represented by the equations y 1 = a1 sin (ωt – kx) y 2 = a2 sin [(ωt – kx) + φ]

and

where ω= 2π/T is angular frequency and k =

2π is wave number. λ Since, the two waves are travelling in the same direction with the same velocity along the same line, they overlap. According to the principle of superposition, the resultant displacement at the given location at the given time is y = y1 + y2 = a1 sin (ωt – kx) + a2 sin [(ωt – kx) + φ]
If we put (ωt – kx) = θ, then y = a1 sinθ + a2 sin (θ + φ)
= a1 sinθ + a2 sinθ cosφ + a2 sinφ cosθ
Let us put

a2 sinφ = A sinα a1 + a2 cosφ = A cos α

and
Then

y = A cosα sinθ + A sin αcosθ
= A sin (θ + α)
Substituting for θ we get y = A sin [(ωt – kx) + α]

Fig. 14.10 : Calculating resultant amplitude A

Thus, the resultant wave is of angular frequency ω and has an amplitude A given by
A 2 = (a1 + a2 cosφ)2 + (a2 sinφ)2
2
2
= a12 + a2 cos2φ + 2a1a2 cosφ + a2 sin2φ
2
A 2 = a12 + a2 + 2 a1a2cosφ

(14.18)

In Eqn. (14.18), φ is the phase difference between the two superposed waves. If path difference, between the two waves corresponds to phase difference φ , then φ= 2πp

, where is the phase change per unit distance. λ λ
3.321
321

MODULE - 4

Physics

Oscillations and Waves
When the path difference is an even multiple of

λ λ , i.e., p = 2m , then phase difference
2
2

is given by φ = (2π/λ) × (2m λ/2) = 2mπ. Since cos2π = +1, from Eqn. (14.18) we get
2
A 2 = a12 + a2 + 2a1a2 = ( a1 + a2)2

Notes

That is, when the collinear waves travelling in the same directions are in phase, the amplitude of the resultant wave on superposition is equal to sum of individual amplitudes.
As intensity of wave at a given position is directly proportional to the square of its amplitude, we have
Imax α ( a1 + a2)2
When p = (2m + 1) λ/2, then φ = (2m + 1) π and cosφ = –1. Then from Eqn. (14.18),
2
A 2 = a12 + a2 – 2a1a2 = ( a1 – a2)2

we get

This shows that when phases of two collinear waves travelling in the same direction differ by an odd integral multiple of π , the amplitude of resultant wave generated by their superposition is equal to the difference of their individual amplituds.
Then Imin α ( a1 – a2)2

Imax
(a1 + a2 )2
Imin = (a1 − a2 )2

Thus

(14.19)

If a1 = a2, the intensity of resultant wave is zero. These results show that interference is essentially redistribution of energy in space due to superposition of waves.

14.4.2 Beats
We have seen that superposition of waves of same frequency propagating in the same direction produces interference. Let us now investigate what would be the outcome of superposition of waves of nearly the same frequency. First let us perform an activity.

Activity 14.5
Take two tuning forks of same frequency 512 Hz. Let us name them as A and B. Load the prong of the tuning fork B with a little wax. Now sound them together by a rubber hammer.
Press their stems against a table top and note what you observe. You will observe that the intensity of sound alternately becomes maximum and minimum. These alternations of maxima and minima of intensity are called beats. One alternation of a maximum and a minimum is one beat. On loading the prong of B with a little more wax, you will find that no. of beats increase. On further loading the prongs of B, no beats may be heard. The reason is that our ear is unable to hear two sounds as separate produced in an interval less than one tenths of a second. Let us now explain how beats are produced.
(a) Production of beats : Suppose we have two tuning forks A and B of frequencies N and N + n respectively; n is smaller than 10. In one second, A completes N vibrations but
B completes N + n vibrations. That is, B completes n more vibrations in one second than the tuning fork A. In other words, B gains n vibrations over A in 1s and hence it gains 1 vib. in (1/n) s. and half vibration over A in (1/2n) s. Suppose at t = 0, i.e. initially, both the tuning
322

Wave Phenomena forks were vibrating in the same phase. Then after (1/2n)s, B will gain half vibration over

1 s it will vibrate in oposite phase. If A sends a wave of compression then
2n
B sends a wave of rarefaction to the observer. And, the resultant intensity received by the ear would be zero. After (1/n)s, B would gain one complete vibration. If now A sends a wave of compression, B too would send a wave of compression to the observer. The intensity observed would become maximum. After (3/2n)s, the two forks again vibrate in the opposite phase and hence the intensity would again become minimum. This process would continue. The observer would hear 1 beat in (1/n)s, and hence n beats in one second. Thus, the number of beats heard in one second equals the difference in the frequencies of the two tuning forks. If more than 10 beats are produced in one second, the beats are not heard as separate. The beat frequency is n and beat period is 1/n.

MODULE - 4
Oscillations and Waves

A. Thus after

(a)

Notes

v1 = 12Hz

(b)

v2 = 10Hz

(c)

Beats

Fig.14.11 : (a) Displacement time graph of frequency 12 Hz. (b) displacement time graph of frequency 10 Hz. Superposition of the two waves produces 2 beats per second.

(b) Graphic method : Draw a 12 cm long line. Divide it into 12 equal parts of 1 cm. On this line draw 12 wavelengths each 1 cm long and height 0.5 cm. This represents a wave of frequency 12 Hz. On the line (b) draw 10 wavelengths each of length 1.2 cm and height
0.5 cm. This represents a wave of frequency 10Hz. (c) represents the resultant wave.
Fig, 14.11 is not actual waves but the displacement time graphs. Thus, the resultant intensity alternately becomes maximum and minimum. The number of beats produced in one second is ∆v. Hence, the beat frequency equals the difference between the frequencies of the waves superposed.
Example 14.3 : A tuning fork of unknown frequency gives 5 beats per second with another tuning of 500 Hz. Determine frequency of the unknown fork.
Solution : v′ = v ± n = 500 ± 5
⇒ The frequency of unknown tuning fork is either 495 Hz or 505 Hz.
Example 14.4 : In an interference pattern, the ratio of maximum and minimum intensities is 9. What is the amplitude ratio of the superposing waves?

Solution :

Imax ⎛ a1 + a2 ⎞
=
Imin ⎜ a1 − a2 ⎟



2

2 a2 ⎛1+ r ⎞
⇒ 9=⎜
⎟ , where r = a1 .
⎝1– r ⎠

Hence, are can write

1+ r
=3
1− r
3.323
323

MODULE - 4

Physics

Oscillations and Waves
You can easily solve it to get r =

1
, i.e., amplitude of one wave is twice that of the other.
2

Intext Questions 14.4
Notes

1.

If the intensity ratio of two waves is 1:16, and they produce interference, calculate the ratio Imax/Imin?
.................................................................................................................................

2.

Waves of frequencies v and v + 4 emanating from two sources of sound are superposed. What will you observe?
.................................................................................................................................

3.

Two waves of frequencies v and v + ∆v are supperposed, what would be the frequency of beats?
.................................................................................................................................

4.

Two tuning forks A and B produce 5 beats per second. On loading one prong of A with a small ring, again 5 beats per second are produced. What was the frequency of
A before loading if that of B is 512 Hz. Give reason for your answer.
.................................................................................................................................

14.5 Superposition of Waves of Same Frequency Travelling in the Opposite Directions
So far we have discussed superposition of collinear waves travelling in the same direction.
In such waves, crests, and troughs or rarefactions and compressions in a medium travel forward with a velocity depending upon the properties of the medium. Superposition of progressive waves of same wavelength and same amplitude travelling with the same speed along the same line in a medium in opposite direction gives rise to stationary or standing waves. In these waves crests and troughs or compressions and rarefactions remain stationary relative to the observer.

14.5.1 Formation of Stationary (Standing) Waves
To understand the formation of stationary waves, refer to Fig. 14.12 where we have shown the positions of the incident, reflected and resultant waves, each after T/4s, that is, after quarter of a period of vibration.
(i)

(ii)

324

Initially, at t = 0, [Fig. 14.12(i)], the incident wave, shown by dotted curve, and the reflected wave, shown by dashed curve, are in the opposite phases. Hence the resultant displacement at each point is zero. All the particles are in their respective mean positions.
At t = T/4s [Fig. 14.12(ii)], the incident wave has advanced to the right by λ/4, as shown by the shift of the point P and the reflected wave has advanced to the left by λ/4 as shown by the shift of the point P′. The resultant wave form has been shown

Wave Phenomena

(iv) At t = 3T/4s [Fig. 14.12(iv)], the two waves are again in the same phase. The resultant displacement at each point is maximum. The particle velocity is zero but the strain is maximum possible.
(v)

N2

N3

A2

Oscillations and Waves

A3

N4

x (i)
P

P′ x (ii)

Notes

(3) t=T/2P

(2) t=T/4 (1) t = 0

A1

P

P′ x (iii)

(4) t=3T/4

(iii) At t = T/2s [Fig. 14.12(iii)], the incident wave advances a distance λ/2 to the right as shown by the shift of the point P and the reflected wave advances a distance λ/2 to the left as shown by the shift of the point P′. At each point, the displacements being in the opposite directions, have a zero resultant shown by a thick line.

N1

P′

P

x (iv)
P P′

(5) t=4T/4

by the thick continuous curve. It can be seen that the resultant displacement at each point is maximum. Hence the particle velocity at each point is zero and the strain is maximum

MODULE - 4

x (v) λ/4 N1

λ/4 P′ λ/4
A1

N2

λ/4 P λ/4
A2

N3

λ/4
A3

N4

Fig. 14.12 : Showing formation of stationary waves due to superposition of two waves of same wave length, same amplitude travelling in opposite direction along the same line.

At t = 4T/4s [Fig. 14.12(v)], the incident and reflected waves at each point are in the opposite phases. The resultant is a straight line (shown by an unbroken thick line). The strain ∆y/∆x at each point is zero.

Note that at points N1, N2, N3 and N4, the amplitude is zero but the strain is maximum. Such points are called nodes; at points A1, A2 and A3, the amplitude is maximum but the strain is minimum. These points are called antinodes; the distance between two successive nodes or between two, successive antinode is λ/2; the distance between a node and next antinode is λ/4; the time period of oscillation of a stationary wave equals the time period of the two travelling waves whose superposition has resulted in the formation of the stationary wave; and the energy alternately surges back and forth about a point but on an average, the energy flow past a point is zero.
Superposition of two identical collinear waves travelling with the same speed in opposite directions leads to formation of stationary waves. They are called stationary waves, because the wave form does not move forward, but alternately shrinks and
3.325
325

MODULE - 4
Oscillations and Waves

Physics dilates. The energy merely surges back and forth and on an average, there is no net flow of energy past a point.

14.5.2 Equation of Stationary Wave
The equation of a simple harmonic wave travelling with velocity v = ω/k in a medium is

Notes

y 1 = – a sin (ωt – kx)
On reflection from a denser medium, suppose the wave travels along the same line along
X–axis in the opposite direction with phase change of π. The equation of the reflected wave is therefore, y 2 = a sin (ωt – kx)
Thus, owing to the superposition of the two waves, the resultant displacement at a given point and time is y = y1 + y2
= a sin (ωt – kx) – a sin (ωt – kx)
Using the trigonometric identity. sin A – sin B = 2 Sin (A – B)/2, cos (A + B)/2, above expression simplifies to y = –2a sin kx cos ωt

(14.20)

Let us put –2a sin kx = A. Then we can write y = A cos ωt
Eqn. (14.20) represents a resultant wave of angular frequency ω and amplitude 2a sin kx
This is the equation of stationary wave. The amplitude of the resultant wave, oscillates in space with an angular frequency ω, which is the phase change per metre. At such points where kx = m π = mλ/2, sin kx= sin mπ = 0. Hence A = 0,
The points where the amplitude is zero are referred to as nodes. At these points ∆y/∆x = maximum, that is strain is maximum. Obviously the spacing between two nearest points is λ/2. At those points where kx = (2m + 1) π/2 or x = (2m + 1) λ/2 × λ/2π = (2m + 1) λ/4
Sin kx = sin (2m + 1) π/2 = ±1.
Hence A is maximum. At these points the strain ∆y/∆x is zero. Obviously the spacing between two such neighbouring points is λ/2. These points where the amplitude is maximum but strain is zero are referred to as antinodes.
It may be pointed out here that at nodes, the particle velocity is zero and at antinodes, particle velocity ∆y/∆t is maximum. Therefore, it follows that the average flow of energy across any point is zero. The energy merely surges back and forth. That is why, these waves have been named stationary or standing waves.
326

Wave Phenomena

14.5.3 Distinction between Travelling and Standing Waves

MODULE - 4
Oscillations and Waves

Let us summarise the main differences between travelling and standing waves.
Travelling Waves

Standing Waves

1. Particular conditions of the medium namely crests and troughs or compressions and rarefactions appear to travel with a definite spped depending on density and elasticity (or tension) of the medium.

Segments of the medium between two points called nodes appear to contract and dialate. Each particule or element of the medium vibrates to and fro like a pendulum.

2. The amplitude of vibration of all the particles is the same.

At nodes the amplitude is zero but at antinodes the amplitude is maximum.

3. All the particles pass through their mean positions with maximum velocity one after the other.

At nodes the particle velocity is zero and at antinodes it is maximum.

4. Energy is transferred from particle to particle with a definite speed.

The energy surges back and forth in a segment but does not move past a point.

5. In a travelling wave the particles attain their maximum velocity one after the other. In a stationary wave the maximum velocity is different at different points.
It is zero at nodes but maximum at antinodes. But all the particles attain their respective maximum velocity simultaneously. In case of standing waves strain is maximum at nodes and zero at antinodes.

6. In a travelling wave each region is subjected to equal strains one after the other.
7. There is no point where there is no change of density.

Notes

Antinodes are points of no change of density but at nodes there is maximum change of density.

Intext Questions 14.5
1.

Does energy flow across a point in case of stationary waves? Justify your answer.
.................................................................................................................................

2.

What is the distance between two successive nodes, and between a node and next antinode? .................................................................................................................................

3.

Pressure nodes are displacement antinodes and pressure antinodes are displacement nodes. Explain.
.................................................................................................................................

4.

Stationary waves of frequency 170Hz are formed in air. If the velocity of the waves is 340 ms–1, what is the shortest distance between (i) two nearest nodes (ii) two nearest antinode (iii) nearest node and antinode?
.................................................................................................................................
3.327
327

MODULE - 4

Physics

Oscillations and Waves

14.6 Characteristics of Musical Sound
The characteristics of musical sounds help us to distinguish one musical sound from another.
These are pitch, londness and quality. We will now discuss these briefly.

14.6.1 Pitch
Notes

The term pitch is the characteristic of musical notes that enables us to classify a note as ‘high’ or ‘low’. It is a subjective quantity which cannot be measured by an instrument.
It depends on frequency. However, there does not exist any one-to-one correspondence between the two. A shrill, sharp or acute sound is said to be of high pitch. But a dull, grave and flat note is said to be of low pitch. Roaring of lion, though of high intensity, is of low pitch. On the other hand, the buzzing of mosquito, though of low intensity, is of high pitch.

14.6.2 Loudness
The loudness of sound is a subjective effect of intensity of sound received by listeners ear.
The intensity of waves is the average amount of energy transported by the wave per unit area per second normally across a surface at a given point. There is a large range of intensities over which the ear is sensitive. As such, logarithmic scale rather than arithmetic intensity scale is more convenient.

Threshold of hearing and Intensity of Sound
The intensity level β of a sound wave is defined by the equation. β = 10 log I/I0

(14.21)

where I0 is arbitrarily chosen reference intensity, taken as 10–12 Wm–2. This value corresponds to the faintest sound that can be heard. Intensity level is expressed in decibels, abbreviated db. If the intensity of a sound wave equals I0 or 10–12 Wm–2, its intensity level is then I0 = 0 db. Within the range of audibility, sensitivity of human ear varies with frequency. The threshold audibility at any frequency is the minimum intensity of sound at that frequency, which can be detected.
The standard of perceived loudness is the sone. A sone is the loudness experienced by a listener with normal hearing when 1kilo hertz tone of intensity 40db is presented to both ears.
The range of frequencies and intensities to which ear is sensitive have been represented in a diagram in Fig. 14.13, which is in fact a graph between frequency in hertz versus intensity level
1 in decibels. This is a graph of auditory area of good hearing. The following points may be noted.



328

The lower part of the curve shows that the ear is most sensitive for frequencies between 2000 Hz to 3000 Hz, where the threshold of hearing is about 5db. Threshold Fig. 14.13 : Auditory area between threshold of hearing of hearing in general, is zero decibel.
At intensities above those corresponding to

and threshold of feeling

Wave Phenomena

MODULE - 4
Oscillations and Waves

the upper part of the curve, the sensation changes from one of hearing to discomfort and even pain. This curve represents the threshold of feeling.


Loudness increases with intensity, but there is no definite relation between the two. •

Pure tones of same intensity but different frequencies do not necessarily produce equal loudness.



The height of the upper curve is constant at a level of 120 db for all frequencies.

Notes

The intensity of sound waves depends on the following factors :


Amplitude of vibration : I α a2 where a is amplitude of the wave.



Distance between the observer and the Source : I α 1/r2 where r is the distance of the observer from the source (provided it is a point source).

3.

Intensity is directly proportional to the square of frequency of the wave (I α v2).

4.

Intensity is directly proportional to the density of the medium (I α ρ).

14.6.3 Quality
It is the characteristic of sound waves which enables us to distinguish between two notes of the same pitch and intensity but sounded by two different instruments. No instrument, except a tuning fork, can emit a pure note; a note of one particular frequency.
In general, when a note of frequency n is sounded, in addition to it, notes of higher frequencies 2n, 3n, 4n ... may also be produced. These notes, have different amplitudes and phase relations. The resultant wave form of the emitted waves determines the quality of the note emitted. Quality, like loudness and pitch is a subjective quantity. It depend on the resultant wave form.

14.6.4 Organ Pipes
It is the simplest form of a wind instrument. A wooden or metal pipe producing musical sound is known as organ pipe. Flute is an example of organ pipe. If both the ends of the pipe are open, we call it an open pipe. However, if one end is closed, we call it a closed pipe. When we blow in gently, almost a pure tone is heard. This pure tone is called a fundamental note. But, when we blow hard, we also hear notes of frequencies which are integral multiple of the frequency of the fundamental note. You can differentiate between the sounds produced by water from a tap into a bucket. These frequencies are called overtones. Note that


At the closed end of a pipe, there can be no motion of the air particles and the closed end must be node.



At the open end of the pipe, the change in density must be zero since this end is in communication with atmosphere. Further, since the strain is zero, hence this end must be an antinode.

(a) Open pipe : The simplest mode of vibrations of the air column called fundamental
3.329
329

MODULE - 4
Oscillations and Waves

Physics mode is shown in Fig.14.14 (a). At each end, there is an antinode and between two antinodes, there is a node. Since the distance between a node and next antinode is λ/4, the length l of the pipe is

A λ/4 L λ/4 The frequency of the note produced is
A
(a)

n1 = v /λ = v /2l

λ = (λ/4) + (λ/4) + (λ/4) + (λ/4) = l

A
A

N

The next mode of vibration of the air column is shown in Fig.14.14 (b). One more node and one more antinode has been produced. In this case

A λ/4 l = ( λ/4) + (λ/4) = λ/2 or λ = 2l.

Notes

A

λ/2

N

A

N

λ/4
A
(b)

N

A
(c)

Fig. 14.14 : Harmoniscs of an open
Organ pipe. The curves represent the wave of the longitudinal standing waves The frequency of the note is n2 = v /λ = v /l = 2v /2l n2 = 2v /2l
That is n2 = 2n1
The note produced is called second harmonic or 1st overtone. To get the second harmonic you have to blow harder. But if you blow still harder one more node and one more antinode is produced [Fig.14.14{c)]. Thus, in this case l =

λ λ λ λ
+
+
+
2
4
2
4

λ=
A

2l
3

A

A
N

λ/4

λ/4 λ/2 L λ/2 A

N
A

N

N

N

(a)

(b)

λ/2

(c)

Fig. 14.15 : Harmonics of a closed organ pipe. The curves represented wave form of the longitudinal standing waves.

Therefore, the frequency of the note emitted is n3 =
330

v

λ

=

3v
= 3n1
2l

Wave Phenomena
The note produced is called the 3rd harmonic or 2nd overtone.

MODULE - 4
Oscillations and Waves

(b) Closed pipe : The simplest manner in which the air column can vibrate in a closed pipe is shown in Fig. 14.15(a). There is an antinode at the open end and a node at the closed end. The wave length of the wave produced is given by l = λ/4 or λ = 4l

Notes

Therefore, the frequency of the note emitted is n 1 = v /λ = v /41
The note produced is called fundamental note. On blowing harder one more node and antinode will be produced (Fig. 14.15(b)). The wavelength of the note produced is given by l =

4l λ λ 3λ
+
= or λ =
3
2
4
4

The frequency of the note emitted will be n3 =

v

λ

=

3v
= 3n1
4l

The note produced is called the first overtone or the 3rd harmonic of the fundamental, blowing still harder one more node and one more antinode will be produced Fig. 14.15(C).
The wavelength of the note produced is then given by l =

λ λ λ 5λ
4l
+
+
+ or λ =
2
2
4
4
5

The frequency of the note emitted then will be n3 =

v

λ

=

5v
= 5n1
4l

The note produced is called the second overtone or the 5th harmonic of the fundamental.
On comparison with the notes emitted by the open and closed pipe, you will find that the open pipe is richer in overtones. In closed pipe, the even order harmonics are missing.
Example 14.5 : Two organ pipes – one open and the other closed – are of the same length. Calculate the ratio of their fundamental frequencies.

Frequency of open pipe v / 2l
Solution : Frequency of closed pipe = v /4l = 2
∴ Frequency of note produced by open pipe = 2 × frequency of fundamental note produced by closed pipe.

Intext Questions 14.6
1.

How pitch is related to frequency?
..................................................................................................................................
3.331
331

MODULE - 4
Oscillations and Waves

Physics
2.

What is that characteristic of musical sounds which enables you distinguis between two notes of the same frequency, and same intensity but sounded by two different instruments? ..................................................................................................................................

3.

Notes

Name the characteristic of sound which helps you identify the voice of your friend.
..................................................................................................................................

4.

Out of open and closed organ pipes, which one is richer in overtones?
..................................................................................................................................

5.

What is the ratio of the frequencies of the notes emitted (1) by an open pipe and (ii) by a closed pipe of the same length.
..................................................................................................................................

6.

What will be the effect of temperature, if any, on the frequency of the fundamental note of an open pipe?
..................................................................................................................................

Noise Pollution
When the sensation of sound changes from one of hearing to discomfort, it causes noise pollution and if it persits for a long time, it has harmful effects on certain organ of human beings. Noise is also one of the by-products of industrialisation and misuse of modern amentities provided by science to human beings. We summarise here under the sources or description of noises and their effects as perceived by the human beings.
Table 14.1 : Sources of Noise and their Effects
Source

Intensity Level in decibels

Perceived Effect by human being

Threshold of hearing

0 (=10–12 Wm–2)

Just audible

Rustle of leaves

10

Quiet

Average whisper

20

Quiet

Radio at low volume

40

Quiet

Quiet automobile

50

moderately loud

Ordinary conversation

65

do

70 to 80

loud

Motor bike and heavy vehicles

90

very loud

Jet engine

105

Uncomfortable

120 (=1 Wm–2)

do

150

Painful sound

Busy street traffic

about 35m away
Lightening
Jet plane at take off

332

Wave Phenomena
(a) Effect of Noise Pollution
1.

It increases the rate of heart beat and causes dilation of the pupil of eye.

3.

It causes emotional disturbance, anxiety and nervousness.

4.

Oscillations and Waves

It causes impairment of hearing. Prolonged exposure of noise at 85 or more than
85db causes severe damage to the inner part of the ear.

2.

MODULE - 4

It causes severe headache leading to vomiting.

Notes

(b) Methods of Reducing Noise Pollution
1.

Shifting of old industries and setting new ones away from the dwellings.

2.

Better maintenance of machinery, regular oiling and lubrication of moving parts.

3.

Better design of engines and machines.

4.

Restriction on use of loudspeakers and amplifiers.

5.

Restricting the use of fire crackers, bands and loud speakers during religious, political and marriage processions.

6.

Planting trees on roads for intercepting the path of sound.

7.

Intercepting the path of sound by sound absorbing materials.

8.

Using muffs and cotton plugs.

Shock Waves
When a source of waves is travelling faster than the sound waves, shock waves are produced. The familiar example is the explosive sound heared by an observer when a supersonic plane flies past over the head of the observer. It may be pointed out that the object which moves with a speed greater than the speed of sound is itself a source of sound.

14.7 Electromagnetic Waves
You know that light is an e.m. wave. It has wavelength in the range 4000ºA to 7500ºA. A brief description of em waves is given below.

14.7.1 Properties of e.m. waves
The following properties of e.m. waves may be carefully noted.
(i)

e.m. waves are transverse in nature

(ii) They consist of electric (E) and magnetic fields (B) oscillating at right angles to each other and perpendicular to the direction of propagation (k). Also E = cB. [see figures
14.16]

3.333
333

MODULE - 4

Physics

Oscillations and Waves

Notes

Fig. 14.16 : Electrical and Magnetic fields in em waves

(iii) They propagate through free space (in vacuum) with a uniform velocity =

1 µ0 ε0

= 3 × 108 ms–1 = c (velocity of light). For a medium of permeability µ (= µ0.µr) and permittivity ε (= ε0 . εr) the velocity becomes v= 1 µε =

1 µ0 ε0

µ r εr

=

c µr εr

<c

(iv) The nature and action of these waves depends on their frequency (or wavelength).
Maxwell’s theory placed no restriction on possible wavelengths for e.m. waves and hence e.m. waves of wavelengths ranging from 6 × 10–13 m have been successfully produced. There is no limit to very long wavelengths which correspond to radio broadcast waves. The whole range of e.m. waves from very long to very short wavelengths constitutes the electromagnetic spectrum.

James Clark Maxwell
(1831 – 1879)
Scottish Mathematician and physicist Maxwell is famous for his theories of electromagnetic fields. Through his equations of electromagnetic principles he showed that they implicitly indicated the existence of em waves which travelled with the speed of light, thus relating light and electromagnetism.
With clausius he developed the kinetic theory of gases. He developed a statistical theory of heat. A man of varied interests, he derived the theorem of equipartition of energy, showed that viscosity varies directly with temperature and tried to explain the rings of saturn.

14.7.2 Electromagnetic Spectrum
Maxwell gave the idea of e.m. waves while Hertz, J.C. Bose, Marconi and others successfully produced such waves of different wavelengths experimentally. However, in all the methods, the source of e.m. waves is the accelerated charge.
334

Wave Phenomena
Electromagnetic waves are classified according to the method of their generation and are named accordingly. Overlapping in certain parts of the spectrum by different classes of
e.m waves is also observed. This tells that the e.m. waves of wavelenths in the overlapping region can be produced by two different methods. It is important to remember that the physical properties of e.m. waves are determined by the frequencies or wavelengths and not by the method of their generation. A suitable classification of e.m. waves is called the electromagnetic spectrum.

MODULE - 4
Oscillations and Waves

Notes

There is no sharp dividing point between one class of e.m. waves and the next. The different parts are as follows :
(i)

(ii)

⎧v = 60Hz to 50Hz

⎬ : generated from a.c.
The low frequency radiations ⎨
6
6
⎩λ = 5 × 10 m to 6 × 10 m ⎭ circuits are classified as power frequencies or power waves or electric power utility
e.m. waves. These weaves have the lowest frequency.
⎧λ = 0.3m to 106 m ⎫


⎬ : Radio waves are generated when charges
Radio Waves ⎨
9
⎪v = 10 Hz to 300Hz ⎭

⎩ are accelerated through conducting wires. They are generated in such electronic devices as LC oscillators and are used extensively in radio and television communications. ⎧λ = 10 –3 m to 0.3m ⎪


⎬ : These are generated by oscillating currents
(iii) Microwaves ⎨
11
9
⎪v = 10 Hz to 10 Hz ⎪

⎭ in special vacuum tubes. Because of their short wavelengths, they are well suited for the radar system used in aircraft navigation, T.V. communication and for studying the atomic and molecular properties of matter. Microwave ovens use these radiations as heat waves. It is suggested that solar energy could be harnessed by beaming microwaves to Earth from a solar collector in space.
⎧λ = 7 × 10 –7 m to 10 –3 m



⎬ : Infra-red waves, also called heat
(iv) Infra-red waves ⎨
14
11
⎪v = 4.3 × 10 Hz to 3 × 10 Hz ⎪

⎭ waves, are produced by hot bodies and molecules. These are readily absorbed by most materials. The temperature of the body, which absorbs these radiations, rises.
Infrared radiations have many practical and scientific applications including physical therapy infrared photography etc. These are detected by a thermopile.

(v)

⎧λ = 4 × 10 –7 m to 7 × 10 –7 m



⎬ : These are the e.m. waves that
Visible light ⎨
14
14
⎪v = 7.5 × 10 Hz to 4.3 × 10 Hz ⎪



human eye can detect or to which the human retina is sensitive. It forms a very small portion of the whole electromagnetic spectrum. These waves are produced by the rearrangement of electrons in atoms and molecules. When an electron-jumps from outer orbit to inner orbit of lower energy, the balance of energy is radiated in the form of visible radiation. The various wavelengths of visible lights are classified with colours, ranging from violet (λ = 4 × 10–7m) to red (λ = 7 × 10–7). Human eye is most sensitive
3.335
335

MODULE - 4
Oscillations and Waves

Physics to yellow-green light (λ = 5 × 10–7m). Light is the basis of our communitation with the world around us.
⎧λ = 3 × 10 –9 m to 4 × 10 –7 m ⎫


⎬ : Sun is the important source of ultraviolet
(vi) Ultraviolet ⎨
–17
14
⎪v = 10 Hz to 7.5 × 10 Hz ⎭



Notes

radiations, which is the main cause of suntans. Most of the ultraviolet light from Sun is absorbed by atoms in the upper atmosphere i.e. stratosphere, which contains ozone gas. This ozone layer then radiates out the absorbed energy as heat radiations. Thus, the lethal (harmful to living beings) radiations get converted into useful heat radiations by the ozone gas, which warms the stratosphere. These ultraviolet rays are used in killing the bacteria in drinking water, in sterilisation of operation theatres and also in checking the forgery of documents.
⎧λ = 4 × 10 –13 m to 4 × 10 –8 m



⎬ : These are produced when high energy
(vii) X-rays ⎨
20
15
⎪v = 7.5 × 10 Hz to 7.5 × 10 Hz ⎪



electrons bombard a metal target (with high melting point) such as tungsten. X-rays find their important applications in medical diagnostics and as a treatment for certain forms of cancer. Because, they destroy living tissues, care must be taken to avoid over-exposure of body parts. X-rays are also used in study of crystal-structure.
They are detected by photographic plates.
⎧λ = 6 × 10 –17 m to 10 –10 m ⎪


⎬ : These are emitted by radioactive
(viii) Gamma rays ⎨
24
18
⎪v = 5 × 10 Hz to 3 × 10 Hz ⎪



nuclei such as cobalt (60) and ceasium (137) and also during certain nuclear reactions in nuclear reactors. These are highly penetrating and cause serious damage when absorbed by living tissues. Thick sheets of lead are used to shield the objects from the lethal effects of gamma rays.
The energy (E) of e.m. waves is directly proportional to their frequency v

hc ⎞

⎜ E = hv = ⎟ and inversely proportional to their wave-length (λ). Thus gamma λ ⎠

rays are the most energetic and penetrating e.m. waves, while the power frequencies, and the A.M. radio waves are the weakest radiations. Gamma rays are used to detect metal flaws in metal castings. They are detected by Geiger tube or scintillation counter. Depending on the medium, various types of radiations in the spectrum will show different characteristic behaviours. For example, while whole of the human body is opaque to visible light, human tissues are transparent to X-rays but the bones are relatively opaque. Similarly
Earth’s atmosphere behaves differently for different types of radiations.

336

Wave Phenomena

MODULE - 4
Oscillations and Waves

Notes

Fig. 14.17 : Electromagnetic spectrum

Intext Questions 14.7
1.

Fill in the blanks:
(i)...............................are generated by oscillating currents in special vacuum tubes.
(ii) Human eye is most sensitive to......................................color light.
(iii)..............................is the important source of ultraviolet radiation.
(iv).............................are used as the diagnostic tool in medical,
(v) Infrared radiations can be detected by a.....................................
..................................................................................................................................

2.

Which of the e.m. waves are more energetic?
(i) Ultraviolet or infrared.
(ii) x-rays or γ-rays
..................................................................................................................................

3.

Which of the e.m. waves are used in aircraft navigation by radar?
..................................................................................................................................

4.

Which gas in the atmosphere absorbs ultraviolet radiations from the Sun before reaching the earth’s surface?
..................................................................................................................................

5.

How are the electric field and magnetic field oriented with respect to each other in an
e.m. wave?
..................................................................................................................................

14.8 Doppler Effect
While waiting on a railway platform for the arrival of a train, you might have observed that the pitch of the whistle when the engine approaches you and when the engine moves away from you are different. You will note that the pitch is higher when the engine approaches but is lower when the engine moves away from you. Similarly, the pitch of the horn of a bus going up a hill changes constantly.
3.337
337

MODULE - 4
Oscillations and Waves

Physics
Apparent change of frequency observed due to the relative motion of the observer and the source is known as Doppler effect.
Let v be velocity of the sound waves relative to the medium, (air), vs velocity of the source; and vo velocity of the observer.

Christian Doppler

Notes

(1803 – 1853)
C.J. Doppler, an Austrian physicist and mathematician, was born on Nov., 29, 1803 in a family of stone mesons. A pale and frail person, he was not considered good enough for his family business. So on recommendation of the professor of mathematics at Salzburg Lycousin, he was sent to Vienna
Polytechnic from where he graduated in 1825.
A struggler through out his life, Doppler had to work for 18 months as a book-keeper at a cotton spinning factory. He could think of marrying in 1836 only when he got a permanent post at the technical secondary school at prague. He was once reprimanded for setting too harsh papers in maths for polytechnique students. But he pushed his way through all odds and finally got succes in getting the position of the first director of the new Institute of Physics at Vienna University.
The Doppler effect discovered by him made him famous overnight, because the effect had far reaching impact on acoustics and optics. The RADAR, the SONAR, the idea of expanding universe there are so many developments in science and technology which owe a lot to Doppler effect. He died on March 17, 1853 in Venice, Italy.
It is important to note that the wave originated at a moving source does not affect the speed of the sound. The speed v is the property of the medium. The wave forgets the source as it leaves the source. Let us suppose that the source, the observer and the sound waves travel from left to right. Let us first consider the effect of motion of the source. A particular note which leaves the sources at a given time after one second arrives at the point A such that SA = v. In this time, the source moves a distance vs. Hence all the n waves that the source had emitted in one second are contained in the space x = v – vs.
Thus length of each wave decreased to

v – vs n λ′ =

...(14.22)

S

A v (a) vs S

A
(v – vs)
(b)

Fig. 14.18 : Crowding of waves when source is moving

338

Wave Phenomena
Now let us consider the effect of motion of the observer. A particular wave which arrives at O at a particular time after one second will be at B such that OB = v. But in the mean time, the observer moves from O to O′. Hence only the waves contained in the space O′B have passed across the observer in one second. The number of the waves passing across the observer in one second is therefore, n′ = (v – v0)/λ′

(14.23)

MODULE - 4
Oscillations and Waves

Notes

v
S
B

O v0 B
O′
(v – v0)
Fig. 14.19 : Waves received by a moving listner

Substituting for λ′ from Eqn. (14.22) we get n′ =

v – v0 n v – vs

(14.24)

where n′ is the observed frequency when both observer and source are moving in the direction from the source to the observer.
In using Eqn.(14.24) the velocity of sound is taken positive in the direction from the source to the observer. Similarly , v0 and vs are taken positive if these are in the direction of v and vice versa.
The utility of Doppler’s effect arises from the fact that it is applicable to light waves as much as to sound waves. In particular, it led us to the concept of expansion of the universe.
The following examples will help you to understand this application of Doppler’s effect.
Example 14.6 : The light from a star, on spectroscopic analysis, shows a shift towards the red end of the spectrum of a spectral line. If this shift, called the red shift, is 0.032%, calculate the velocity of recession of the star.
Solution : In this case, the source of waves is the star. The observer is at rest on the
Earth. We have shown that in such a case λ′ =
But n = v /λ Therefore, λ′

=

v – vs n v – vs v/λ =λ

(v – v s ) v ⎛

= λ ⎜1 –


vs ⎞

v⎠

On rearranging terms, we can write
3.339
339

MODULE - 4

Physics

Oscillations and Waves

λ′ – λ vs =– λ v vs ∆λ
=
v λ or

Notes

we are told that vs = v

∆λ
= 0.032/100. And since v = c = 3 × 108 ms–1, we get λ ∆λ
= – (3 × 108 ms–1 × 0.032/100) = – 9.6 × 104 ms–1. λ The negative sign shows that the star is receding away. This made the astrophysists to conclude that the world is in a state of expansion

Intext Questions 14.8
1.

A SONAR system fixed in a submarine operates at frequency 40.0kHz. An enemy submarine moves towards it with a speed of 100ms–1. Calculate the frequency of the sound reflected by the sonar. Take the speed of sound in water to be 1450 ms–1.
..................................................................................................................................

2.

An engine, blowing a whistle of frequency 200Hz moves with a velocity 16ms–1 towards a hill from which a well defined echo is heard. Calculate the frequency of the echo as heard by the driver. Velocity of sound in air is 340ms–1.
..................................................................................................................................

Constancy of Speed of Light
Aristotle, believed that light travels with infinite velocity. It was for the first time in
September, 1876 that the Danish astronomer, Roemer, indicated in a meeting of Paris
Academy of Sciences that the anomalous behaviour of the eclipse, times of Jupiter’s inner satellite, Io, may be due to the finite speed of light. Feazeu, Focult, Michelson and many other scientists carried out experiments to determine the speed of light in air with more and more precision.
Albert Einstein, in his 1905 paper, on special theory of relativity, based his arguments on two postulates. One of the postulates was the constancy of speed of light in vacuum, irrespective of the wavelength of light, the velocity of the source or the observer. In 1983, the velocity of light in vacuum, was declared a universal constant with a value 299792458 ms–1.
However, the Autralian researcher Barry Setterfield and Trevn Norwah have studied, the data of 16 different experiments on the speed of light in vacuum, carried out over the last 300 years, by different scientists at different places. According to them, the speed of light in vacuum is decreasing with time. If this hypothesis is sustained and coroborated by experiements, it will bring in thorough change in our world view.
Major areas in which this change will be enormous are : Maxwell’s laws, atomic structure, radioactive decay, gravitation, concepts of space, time and mass etc.
340

Wave Phenomena

MODULE - 4
Oscillations and Waves

What You Have Learnt
The distance between two nearest points in a wave motion which are in the same phase is called wavelength.
The equation of a simple harmonic wave propagating along x–axis is y = a sin
(vt – kx).

Notes

The energy transmitted per second across a unit area normal to it is called intensity..
If the vibrations of medium particle are perpendicular to the direction of propagation, the wave is said to be transverse but when the vibrations are along the direction of propagation the wave is said to be longitudinal. Velocities of transverse wave and longitudinal waves is given by v =

T / m and v = E / ρ respectively.

On reflection from a denser medium, phase is reversed by π. But there is no phase reversal on reflection from a rarer medium.
When two waves are superposed, the resultant displacement at any point is vector sum of individual displacements at that point. Superposition of two colliner waves of same frequency but differing phases, when moving in the same direction results in redistribution of energy giving rise to interference pattern.
Superposition of two collinear waves of the same frequency and same amplitude travelling in the opposite directions with the same speed results in the formation of stationary waves. In such waves, waveform does not move.
In a stationary wave, the distance between two successive nodes or successive antinodes is λ/2. It is, therefore, obvious that between two nodes, there is an antinode and between two antinodes there is a node.
The displacement is maximum at antinodes and minimum at nodes.
Intensity level is defined by the equation β = 10log (I/I0), where I0 is an arbitrarily chosen reference intensity of 10–12 W m–2. Intensity level is expressed in decibels
(Symbol. db)
Quality of a note is the characteristic of musical sounds which enable us to distinguish two notes of the same pitch and same loudness but sounded by two different instruments. Electromagnetic waves are transverse in nature, and do not require any medium for their propagation.
Light is an e.m. wave with wavelength in the range 4000 Å – 7500 Å.
The frequency of e.m. waves does not change with the change in the medium.
e.m. waves are used for wireless radio communication, TV transmission, satellite communication etc.

Terminal Exercises
1.

How will you define a wave in the most general form?

2.

Explain using a suitable mechanical model, the propagation of (i) transverse waves
3.341
341

MODULE - 4

Physics

Oscillations and Waves

(ii) longitudinal wave. Define the term wavelength and frequency.
3.
4.

Derive the equation of a simple harmonic wave of angular frequency of (i) transverse
(ii) longitudinal waves.

5.

What are the essential properties of the medium for propagation of (i) transverse waves (ii) longitudinal waves.

6.

Derive an expression for the intensity of the wave in terms of density of the medium, velocity of the wave, the amplitude of the wave and the frequency of the wave.

7.

Write Newton’s formula for the velocity of sound in a gas and explain Laplace’s correction. 8.

When do two waves interfere (i) constructively (ii) destructively?

9.

Notes

Define angular frequency ω and propagation constant k and hence show that the velocity of the wave propagation is v = ω/k = nλ.

Show using trigonometry that when two simple harmonic waves of the same angular frequency ω and same wavelenght λ but of amplitudes a1 and a2 are superposed, the resultant amplitude is A =

2
2
a2 + a2 + 2a1 a2 cos θ , where θ is the phase difference

between them. What would be the value of A, for θ = 0, (ii) for θ = 2π, and (iii) for θ = (2m + 1)π?
10. What are beats? How are they formed? Explain graphically.
11.

Discuss graphically the formation of stationary waves. Why are these wave called stationary waves? Define nodes and antinodes.

12. State three differences between stationary and travelling waves.
13. Derive the equation of a stationary wave and show that displacement nodes are pressure antinodes and displacement antinodes are pressure nodes?
14. What are the characteristics of musical sounds. Explain.
15. What is a decibel (symbol) db)? What is meant by ‘threshold of hearing’ and ‘threshold of feeling’?
16. What is meant by quality of sound? Explain with examples?
17. Discuss the harmonics of organ pipes. Show that an open pipe is richer in harmonics.
18. Show that (i) the frequency of open organ pipes. is two times the frequency of the fundamental note of a closed pipe of same length (ii) to produce a fundamental note of same frequency, the length of the open pipe must be two times the length of the closed pipe.
19. Describe an experiment to demonstrate existence of nodes and antinodes in an organ pipes? 20. State the causes of noise pollution, its harmful effects and methods of minimising it.
21. Explain Doppler’s effect and derive an expression for apparant frequency. How does this equation get modified if the medium in which the sound travels is also moving. 22. Discuss the applications of Doppler’s effect in (i) measuring the velocity of recession of stars, (ii) velocity of enemy plane by RADAR and (iii) velocity of enemy boat by
SONAR?
342

Wave Phenomena
23. Calculate the velocity of sound in a gas in which two waves of wavelengths 1.00m and 1.01m produce 10 beats in 3 seconds.

MODULE - 4
Oscillations and Waves

24. What will be the length of a closed pipe if the lowest note has a frequency 256Hz at
20C. Velocity of sound at 0C = 332 ms–1.
25. The frequency of the sound waves emitted by a source is 1 kHz. Calculate the frequency of the waves as perceived by the observer when (a) the source and the observer are stationary, (b) the source is moving with a velocity of 50ms–1 towards the observer, and (c) the source is moving with a velocity of 50ms–1 away from the observer. Velocity of sound in air is 350ms–1.

Notes

26. Write the characteristic properties of e.m. waves which make them different from sound waves.
27. How does the velocity of e.m. waves depend upon the permeability µ and permittivity ε of the medium through which they pass?
28. Give the range of wavelengths of the following e.m. waves:
(i) Radio Waves (ii) Microwaves : (iii) Ultraviolet; (iv) x-rays.
29. How are x-rays produced?
30. Can e.m. waves of all frequencies propagate through vacuum?
31. Fill in the blanks.
(i)

A changing electric field produces a______________ in the adjacent region.

(ii) ___________ are more harmful to our eyes than x-rays.
(iii) __________ are emitted from radio active nuclei of cobalt.
(iv) Infra red rays are less energies than_______________
(v) In an e.m. wave propagating along z-direction, if the E field oscillates in the X,Z plane then the B field will oscillate in the _______________ plane.
(vi) The ratio

E in free space of e.m. wave is called ______________.
H

(vii) The frequency range of F.M. band is ________________.
(viii)___________signal is frequency modulated in T.V. broadcasting.

Answers to Intext Questions
14.1
1.

See section 14.1.4.

2.

If p be the path difference, then the phase difference is θ =

3.

φ



λ

p.

3.343
343

MODULE - 4
Oscillations and Waves

Physics

14.2
1.
3.

Newton assumed that isothermal conditions instead of adiabatic conditions for sound propagation. 4.

3570C.

5.

v=

6.

Notes

Newton assumed that compression and rarefaction caused by sound waves takes place under isothermal condition.

Therefore, n =

T m 1

λ

T m Further, for the simplest mode of vibration, at the two ends of the string, there are nodes and in between the two nodes is an antinode. Therefore, l = l/2 or λ = 2l, hence n = λ/2l

T
. If the string vibrates in p segments, the λ = p l/2 or λ = 2l/p. Then n = (p/2l) m T
.
m

14.3
For answers to all questions see text.

14.4
1.

25/9.

2.

Beats with frequency 4Hz are produced.

3.

Frequency of beat is ∆v.

4.

517, on loading the frequency of A decreases from 517 to 507.

14.5
1.

No energy swings back and forth in a segment.

2.

Distance between two successive nodes is λ/2, and between a node and antinode is λ/4. 4.

(i) 1m, (ii) 1m,

(iii) 1/4m.

14.6
1.
2.

Timbre

3.

Timbre

4.

Open pipe

5.

344

Pitch increases with increase in frequency.

For a closed pipe in case of fundamental note l = λ/4 or λ = 4l, therefore n = v/λ = v/4l. Wave Phenomena
For an open pipe l = λ/2. Therefore n′ = v /2l.

MODULE - 4
Oscillations and Waves

Comparing (i) and (ii) we find that n′ = 2n
6.

n=

v
. As v increases with increase in temperature n also increases.
2l

Notes

14.7
(i) microwaves.
(ii) yellow–green (λ = 5 × 10–7 m)
(iii) Sun.
(iv) X – rays.
(v) thermopile.
2.

(i) ultra voilet
(ii) r – rays.

3.

Microwaves

4.

Ozone.

5.

Perpendicular to each other.

14.8
1.

n′ = n

c – v0 c = 40 × 103 ×

= 40 ×

2.

1450 – 100
1450

135
× 10 = 37.2 KHz.
145

n′ = 200 ×

= 200 ×

340 + 16
340 – 16

356
= 220 Hz.
224

Answer to Terminal Problems
23. 337 ms–1
24.

30 cm.

25. (a) 1 kHz
(b) 857 Hz
(c) 1143 Hz.

3.345
345

SENIOR SECONDARY COURSE
PHYSICS
STUDENT’S ASSIGNMENT – 4
Maximum Marks: 50

Time : 1½ Hours

INSTRUCTIONS
Answer All the questions on a seperate sheet of paper
Give the following information on your answer sheet:
Name
Enrolment Number
Subject
Assignment Number
Address
Get your assignment checked by the subject teacher at your study centre so that you get positive feedback about your performance.

Do not send your assignment to NIOS
1.

Which of the following represent simple harmonic motion

(1)

(a) y = 1 + ωt.
(b) y = sin.ωt + cos.ωt.
(c) y = sin.ωt + cos ωt.
2.

Four simple pendulum A, B, C and D are suspended from the same support.
If any out of the pendulums is set into vibration all the four start oscillating.
Which two of these pendulums will oscillate with the same frequency.
Why?
(1)

B
A

C
D

3.

A mass m when made to oscillate on a spring of force constant k oscillates with a frequency v. The spring is then cut into two identical parts and the same mass is made to oscillate on half of the spring. What is the new frequency of oscillation of mass m.
(1)

4.

Give an example of a motion which is periodic but not oscillatory.

(1)

5.

Draw a graph showing the variation of velocity of sound in air with pressure.

(1)

6.

Is there a deviation in the direction of propagation of a sound wave in passing from air to water?
Explain.
(1)

7.

What happens when a transverse wave pulse travelling on a string meets the fixed end of the string?(1)

8.

What happens to the speed of em waves as they enter from vacuum to a material medium.

9.

Draw reference circle for the SHM represented by – π⎞ ⎛ x = 3 sin ⎜ 2πr + ⎟
4⎠


346

(1)

Indicate the initial position of the particle, the radius of the circle and the angular speed of the rotating particle. For simplicity, the sense of rotation may be taken to be anticlockwise. In the given expression x is in cm and t is in seconds.
(2)
10. Two waves having intensities in the ratio 1 : 9, superpose to produce interference pattern on a screen. Find the ratio of maximum and minimum intensities in the interference pattern.
(2)
11. Two tuning forks A and B are marked 480 hz each. When they are sounded together they give 5 beats s–1. What can you say about the frequency marked on the tuning forks. How can you find the ratio v A / v B?
(2)
12. (a) Name the em waves used in aircraft navigation by radar?
(b) Which gas in atmosphere absorbs u-v radiation?

(2)

13. Write Laplace’s formula for the speed of sound in air. Using the formula explain why the speed of sound in air (a) increases with temperature (b) increases with humidity.
(4)
14. A transverse harmonic wave on a string is described by y(x1t) = 3.0 sin(36t + 0.018x) find (i) amplitude of particle velocity. (ii) wave velocity.

(4)

15. A bat emits urasonic waves of frequency 103 KHz in air. If the waves strike a water surface, find the difference in the wave lengths of transmilted sound and reflected sound. (speed of sound in air is
350 ms-1 and is water 1500 ms-1).
(4)
16. A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 50 Hz.
The mass of the wire is 3.5 × 10-2 kg and its linear density is 4.0 × 10-2 kg m-1. What is (a) the speed of a transverse wave on the string and (b) the tension in the string?
(4)
17. A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430
Hz source? Will the same source be in resonance with the pipe if both ends are open.
(4)
18. Explain why :
(i) solids can support both transverse as well as longitudinal waves, however, only lougitudinal can propagate in gases.
(ii) the shape of a pulse get distorted during propagation in a dispersive medium.
(iii) in a sound wave displacement node is pressure antinode and vice-versa.
(iv) a note played on voilin and sitar has the same frequency but the two may still be distinguished from each other.
(4)
19. Discuss the applications of doppler effect in measuring
(i) the velocity of recession of stars (ii) velocity of enemy boat by SONAR.

(5)

20. The transverse displacement of a string of length 1.5 m and mass .03 kg which is clamped at both ends, is given by
(5)
⎛ 2 πx ⎞ y = 0.068m ⎜
⎟ cos ( 120πt )
⎝ 3 ⎠

when x and y are in m and t in s.
(i) Does it represent travelling wave or stationary wave?
(ii) Interpret the wave as a result of superposition of two waves.
(iii) Determine the frequency, wavelength and speed of each super posing wave.
3.347
347

Curriculum
Rationle
Physics is a fundamental science because it deals with the basic features of the world, such as, time, space, motion, charge, matter and radiation. Every event that occurs in the natural world has some features that can be viewed in these terms. Study of physics need not necessarily be taken as a means of becoming a physicist; it is a means of rationally understanding nature. Physics lies behind all technological advancements, such as, computer, internet, launching of rockets and satellites, radio and T.V communications, lasers, etc. It also finds applications in such simple activities of men as lifting a heavy weight or making a long jump. Physics is thus an all pervading science and its study helps us in finding answers to whys and hows of our day to day happenings.
Keeping in view the issues highlighted in the National Curriculum Framework (NCF) for School Education, present Physics curriculum has been so designed that it not only focusses on the basic concepts of Physics but relates them to the daily life activities. The application of the laws of Physics and their effects on daily life have been reflected in the curriculum. The basic themes of Physics which would be of interest to all, particularly to those who are interested in pursuing Physics as a career in life have been selected to form core content of the curriculum. Besides, the curriculum also includes such emerging areas as electronics, communication, nuclear physics, photography and Audio - videography, which find immense applications in daily life.
Though mathematics is basic to the understanding of most of the problems of physics, in the present course, stress has been given to avoid rigour of mathematics like intergration and differentiation. The focus has been to teach concepts of physics rather than mathematical calculations.

Course Objectives
The basic objectives of the sr. secondary level Physics course are to enable the learner to :


acquire knowledge and develop understanding of concepts, fundamental laws, principles and processes in the area of physics so that relationship between causes and effects of physical phenomnon can be understood; •

appreaciate the contributions of physics towards improving quality of life;



promote interest in physics and foster a spirit of enquiry; and



improve competencies of individuals in work skills required in their profession.
As a part of this process, the course also aims at developing the following abilities in the learner:



experimental skills like taking observations, manipulation of equipment, and communicative skills such as reporting of observations and experimental results;



problem solving ability e.g analyzing a situation or data, establishing relationship between cause and effect; •

scientific temper of mind by making judgment on verified facts and not opinions, by showing willingness to accept new ideas and discoveries; and



awareness of the dangers inherent in the possible misuse of scientific knowledge.

Course Structure
The physics curriculum at sr. secondary level consists of both theory and practical components.
(i)

The theoretical part of the Physics curriculum includes two parts – core modules and optional modules.

1.

Core modules : The core modules comprise of the essential concepts and phenomena of physics which

348

a student at this level should know. There are eight core modules which contain predominantly the subject matter of mechanics, electricity, light and other areas of physics representing the minimum knowledge required to progress into the more advanced areas and to develop appreciation for the fact that physics plays a significant role in most situations.
Core Modules

Marks

Minimum Study
Time (hours).

1. Motion, Force and Energy

45

2. Mechanics of Solids and Fluids

06

20

3. Thermal Physics

08

25

4. Oscillations and Waves

05

20

5. Electricity and Magnetism

14

45

6. Optics and Optical Inctruments

07

25

7. Atoms and Nuclei

07

25

8. Semiconductors and their Applications

07

205

Total
2.

14

68

230 hours

Optional Modules : The optional modules are in the application oriented specific fields like Electronics and Communication and Photography and Audi– Videography. In the optional modules there is a choice to opt any one of the given modules. Each modules carries a weightage of 12 makrs which makes 15% of total theory marks.
Modules

Marks

Minimum Study
Time (in hours)

1. Electronics and Communication

12

30

2. Photography and Audio – Videography

12

30

(ii) Paractical in physics
There is a compulsory component of practicals in Physics. It carries a weightage of 20% marks in the term end examination. A list of experiments and suggested activities to be performed by the students is given at the end of theory syllabus.

Module 1 : Motion, Force and Energy
Approach : Besides highlighting the importance of universal standard units of measurement, applications of dimensions and vectors in the study of physics to be described in this module. The concept of motion and rest, cause of motion and different types of motion have been described with the help of daily life examples.
Significance of gravitation, concept of work and energy are to be highlighted. The basics of the motion of a rigid body and the significance of rotational motion in day to day life has been explained.
Unit 1.1.: Units, Dimensions and Vectors


Units of measurement – fundamental and derived units

Supprotive Video programme



Dimensions of physical quantities

1. Application of Vector in



Applications of dimensions

our daily life



Vectors and scalars
3.349
349



Vectors and their graphical representation



Addition and subtraction of vectors



Resolution of vectors into rectangular components
(two dimensions)



Unit vector



Scalar and Vector products

2.

Unit 1.2 motion in a Straight line



Distance and displacement

Supportive Video Programme



Speed, velocity and acceleration

1. Motion and Rest



Average & instantaneous velocities.



Uniformly accelerated motion



Position – time and velocity – time graphs



Equations of motion with constant acceleration including motion under gravity



Relative motion

3.

Unit 1.3: Newton’s laws of motion

Supprotive Video Programme



Concept of force and inertia

1. Laws of Motion



First law of motion

2. Frictional force



Concepts of momentum



Second law of motion



Third law of motion



Impulse



Conservation of linear momentum



Friction – static and kinetc, factors affecting friction



Importance of friction and methods of reducing fiction



Free body diagram technique



Elementary idea of inertial and non – inertial frames of references.

Unit 1.4: Motion in a Plane


Supportive Video Programme

Projectile motion (time of fligtht, range and maximum height)

1. Planetary Motion



Trajectory of a projectile

2. Circular Motion



Uniform circular motion



Centripetal acceleration



Circular motion in daily life

350

Unit 1.5: Gravitation

Supprotive Video Programme

• Universal law of gravitation

1. Planetary Motion

• Acceleration dute to gravity and its variation with

2. Satellites and Their Applications

height, depth and latitude (only formula), value of g at moon
• Kepler’s laws of planetary motion (no derivation)
• Motion of planets, orbital and escape velocity
• Satellites – geostationary and polar
• Achievements of India in the field of space exploration
• Applications of satellites
6.

Unit 1.6 : Work, Energy and Power

Supportive Video Programme



Work done by a constant force

1. Work and Power



Work done by a varying force (graphical method)

2. Mechanical Energy

With example of spring


Work – energy theorem



Conservative and non – conservative forces



Mechanical Energy (kinetic and potential energies)
With examples.



Conservation of energy (spring pendulum, etc)



Elastic and inelastic collisions



Power and its units.

7. Unit 1.7 : Motion of a Rigid Body

Supportive Video Programme



Rigid body motion, center of mass, couple and torque

1. Rotational Motion



Moment of inertia, radius of gyration and its significance •

Theorems of parallel and perpendicular axes concerning moment of inertia and their uses in simple cases (no derivation)



Equations of motion for a uniformly rotating rigid body (no derivation)



Angular momentum and law of conseration of angular momentum with simple applications



Rotational and transnational motions with examples
(motion of ball, cylinder, flywheel on an incline plane)



Rotational energy
3.351
351

Module 2 : Mechanics of Solids and Fluids
Approach : The classification of the substances into solids, liquids and gases is done on the basis of intermolecular forces. This module explains the elastic behaviour of the solids and highlights source of elastic behaviour of solids.
The mechanical properties of the fluids like buoyancy, surface tention, capillary action etc. have been explained with the help of daily like examples and their applications have been highlighted.
8.

Unit 2.1 : Elastic Properties of Solids

Supportive Video Porgramme

• Elastic behaviour and Hooke’s law, stress – strain curve

1. Elastic Behaviour of solids

• Inter –molecular forces
• Young’s modulous, bulk modulous, modulous of rigidity and compressibility
• Some applications of elastic behaviour of solids like cantilever, girder etc.
9.

Unit 2.2: Properties of Fluids

Supportive Video Porgramme



Hydrostatic pressure and buoyancy

1. Hydrostatic Pressure



Pascal’s law and its applications.

2. Surface Tension



Forces of cohesion and adhesion

3. Viscosity and Berinoulli’s



Surface tension and surface energy



Angle of contact and capillary action



Application of surface tension, drops, bubbles and

Theorem

detergents


Types of liquid flow – laminar and turbulent,
Reynold’s number,



Viscosity and Stoke’s law



Terminal velocity



Bernoulli’s theorem (no derivation) and its applications

Module 3 : Thermal Physics
Approach : Behaviour of gases and the gas laws have been described with the help of kinetic theory of gases.
The concept of temperature is to be explained by thermal equilibrium. Laws of thermodynamics and their applications in our day to day life are to be explained in this module. Working of heat engines and refrigerators will be explained.
Different modes of transfer of heat and their applications in different situations are to be emphasized. The concept of thermal pollution and the issue of green house effect will also be dealt with in this module.
10. Unit 1.1 kinetic Theory of Gases


Kinetic Theory of gases



2
Deduction of the relation PV = mn c



Ideal gas equation of state

Supportive Video Programme

1
3

352

2



K.E. and temperature relationship



Degree of freedom and law of equipartition of energy



Specific heats of gases & ralationship between Cp & Cv

11. Unit 3.2 Laws of Thermodynamics

Supportive Video Programme



1. Thermodynamic Processes

Thermal equilibrium – Zeroth law of thermo dynamics and concept of temperature



Thermodynamic variables and thermodynamic equilibrium •

2. Heat Engine and Refrigerator

Thermodynamic processes - isothermal, adiabatic, reversible, irreversible and cyclic process.



First law of thermodynamics – internal energy



Phase change, Phase diagram, latent heat and triple
Point carnot’s cycle and its efficiency – second law of thermodynamics, heat engine and refrigerator



Limitations of Carnot’s engine

12. Unit 3.3 : Heat Transfer and Solar Energy

Supportive Video Programme



1. Transfer of Heat

Modes of transfer of heat – conduction, convection and radiation



Newton’s law of cooling.



Green house effect



Solar energy

Module 4 : Oscilations and Waves
Approach : Besides explaining the terms associated with periodic motion, the harmonic motion will be described with the help of common examples. A qualitative idea of forced oscillations,resonance and damped oscillations will also be given in the module.
13. Unit 4.1: Simple Harmonic Motion

Supportive Video Programme



1. Simple Harmonic Motion

Periodic motion – amplitude, period, frequency and phase •

Reference circle and equation of simple harmonic motion •

Examples of spring mass system and simple pendulum



Forced oscillations and resonance (no derivation)



Damped oscillations (no derivation)

14. Unit 4.2: Wave Phenomena
• Formation and propagation of waves

Supportive Video Programme
1. Formation and Propagation of Waves
3.353
353

• Wavelenth, frequency, speed and their relationship, amplitude of wave and wave equation.

2. Sound Waves

• Longitudinal and transverse waves
• Wave motion in a medium and formula for its speed
• Reflection of waves from rigid boundary
• Superposition of waves – interference of waves
• Standing waves and beats (only qualitative treatment with equations)
• Characteristics of musical sound (overtones and harmonics) • Threshold of hearing, intensity of sound and noise pollution
• Doppler effect and its application. (qualitative only)
• Electromagnetic waves and their properties
• Em – waves spectra
• Constancy of speed of light (non – evaluative in a box)

Module 5 Electricity and Magnetism
Approach : The basic concept of electrostatics and frictional electricity will be described in the module. The electric field and electric potential due to a point charge will be explained. Different types of capacitors, their compbinations and applications will be explained. The electric current and thermal and magnetic effects of current are explained in the module. Significance of maganetic effedct of current and electromagnetic induction has been emphasized. The generation and transmission of current power and the problems of low voltage and load shedding have been explained.
15. Unit 5.1 : Electric Charge and Electric Field

Supportive Video Programme



Frictional electricity – electric charges and their conservation 1. Coublomb’s Law or Frictional
Electricity



Coulomb’s law



Superposition principle



Electric field and field intensity due to a point charge (through diagram)



Force on a charged particle in an electric field



Electric field of a dipole in uniform electric field



Electric flux and Gauss theorem in electrostatics
(no derivation)



Uses of Gauss’s theorem to determine electric field of a point charge, long wire, plane sheet.

16. Unit 5.2 : Electric Potential and Capacitors
• Electric potential due to a point charge
354

Supportive Video Programme

• Electric potential at a point due to a dipole
(axial and equatorial).
• Electric Potential energy of a system of point charges
• Relation between electric field and potential – equipotent surface, • Conductors and electric field inside a conductor
• Electrostatic shielding
• Capacitors and capacitance of a parallel plate capacitor.
• Different type of capacitors and their applications
• Capacitors in series and parallel combinations
• Energy stored in a capacitor
• Dielectrics and their polarization
• Effects of dialectics on capacitance
17. Unit 5.3 : Electric Current

Supportive Video Programme

• Electric current in a conductor

1. Ohm’s Law

• Concept of drift velocity of electrons

2. Heating Effect of Electric Current

• Ohm’s law, ohmic and non – ohmic resistances –
• Colour coding of resistors.
• Free and bound electrons
• Combination of resistances (series and parlalle)
• Kirchoff’s laws and their application to electrical circuits • Wheatstone bridge principle and its application
• Electromotive force and potential difference
• Potentiometer and its applications.
• Heating effect of electric current – Joule’s law of heating 18. Unit 5.4 Magnectism and Magnetic Effect of Electric Current
• Bar Magnet and its magnetc field

Supportive Video Programme

• Magnetic effect of electric current

1. Magnetism

• Bio – Savart’s law and its application to find magnetic field at the center of a coil carrying current (qualitative treatment) • Ampere’s circuital law and its application in finding magnetic field of a wire, circular loop (at the center), and solenoid. 3.355
355

• Force on a charged particle in a magnetic field;
Lorentz force
• Force on a current carrying wire in a uniform magnetic fiedd
• Current loop as a Magnectic dipole and its magnetic moments • Torque on a current loop in magnetc field
• Moving coil galvanometer and its conversion into ammeter and voltmeter
• Earth’s magnetic field
• Ferro magnetic materials – domain theory (qualitative)
19. Unit 5.5 : Electromagnetic Induction and Alternating Current
• Feraday’s law of electro – magnetic induction

Supportive Audio/Video

• Lenz’s law

Promgramme

• Self and mutual inducton – choke coil

1. Generation and Transmission of

• Alternating current and voltage illustrating with

of Electric Current

Phase diagram – peak and rms values
• Circuits containing only R, L or C separately – phase relationship between I & V
• LCR series combination (using phaser diagram only) and resonance
• Generators – AC and DC
• Transformers and their applications
• Transmission of electric power
• Problem of low voltage and load shedding
(concepts of stabilizer and inverters )

Module 6 : Optics and Optical Instruments
Approach : After giving a brief introduction of reflection of light, the basic concepts like refraction, total internal reflection, dispersion, scattering, of light will be described in the module. The wave properties of light like interference, diffraction and polarization are also to be described in a qualitative manner. Further applications of the properties of light have been described to construct various types of optical instruments.
20. Unit 6.1 Reflection and Refraction of Light
• Reflection of light from spherical mirrors, sign convention and mirror formulae

Supportive Video Programme
1. Reflection of light

• Refraction of light, Snell’s law of refraction

2. Refraction of light

• Total Internal Reflection and its applications in fibre optics
356

• Refraction through single curved surface and lenses • Lens maker’s formula and magnification
• Power of a lens
• Combination of lenses
• Defects of vision and their correction
(myopia and hypermetropia)
21. Unit 6.2 : Dispersion and Seattering of light
• Dispersion of light, angle of deviation

Supportive Video Programme

• Rainbow and its formation

1. Rainbow

• Defects of image formation–spherical and chromatic aberration (qualitative only)
• Scattering of light in atmosphere.
22. Unit 6.3 : Wave Phenomena and Light
• Huygen’s wave theory and wave propagation.

Supportive Video Programme

• Interference–Young’s double slit experiment
• Diffraction of light at a single slit (qualitative)
• Polarization-Brewster’s law and its application in daily life
23. Unit 6.4 : Optical Instruments
• Simple and Compound microscopes and their magnifying power

Supportive Video Programme
1. Optical Instruments

• Telescopes–reflecting and refracting
• Resolving power and Rayleigh’s criterion
• Applications in astronomy

Module 7 : Atoms and Nuclei
APPROACH : Different atomic models describing the structure of atom have been described and the limitations of these and their modifications have been systematically presented in the module. Nuclei and radio activity have been explained along with their applications. The peaceful uses of nuclear energy have been described highlighting the latest trends.
24. Unit 7.1 : Structure of Atom
• Alpha-Particle scattering and Rutherford’s atomic model

Supportive Video Programme

• Bohr’s model of hydrogen atom and energy levels

1. Atomic Structure

• Hydrogen spectrum
• Emission and absorption spectra
25. Unit 7.2 : Dual nature of Radiation and Matter
• Work function and emission of electrons

Supportive Video Programme

• Photoelectric effect and its explanation

1. Photo electric Effect and its Applications
3.357
357

• Photo electric tube and its applications
• Matter waves-Davisson and Germer experiment
• Electron microscope (non evaluative box)
26. Unit 7.3 : Nuclei and Radioactivity
• Atomic mass unit, mass number, size of nucleus

Supportive Video Programme

• Isotopes and isobars

1. Radioactivity and its Applications

• Nuclear forces, mass-energy equivalence
• Mass defect and binding-energy curve
• Radioactivity-alpha, beta decay and gamma emission
• Half life and decay constant of nuclei
• Applications of radioactivity
27. Unit 7.4 : Nuclear Fission and Fusion
• Nuclear reactions

Supportive Video Programme

• Nuclear fission and chain reaction

1. Nuclear Energy

• Nuclear-fusion-energy in stars
• Misuses of nuclear energy-atom bomb and hydrogen bomb (non-evaluative in a box
• Peaceful uses of Nuclear Energy (including latest trends)
• Hazards of nuclear radiation and safety measures

Module 8 : Semiconductors and their Applications
APPROACH : Semiconductors find a very significant place in almost all the electronic devices. Besides highlighting the basis of semiconductors, different types of semiconductor devices and their applications have been explained in the module.
28. Unit 8.1 : Semiconductors and Semiconductor Devices
• Intrinsic and extrinsic semiconductors

Supportive Video Programme

• Pn-junction-its formation and properties
• Biasing of pn-junction diode
• Characterstics of pn-junction diode
• Types of diodes-zanier diode, LED, Photo diode and solar cell
• Transistors-pnp and npn
• Characteristic curves of a transistor
29. Unit 8.9 : Applications of Semiconductor Devices
• pn-junction diode as a rectifier

Supportive Video Programme

• Zener diode as a voltage regulator

Semiconductor Devices and their

• Transistor as an amplifier (common emitter)

application

358

• Transistor as an oscillator
• Transistor as a switching device
• Logic gates and their realization (OR, AND, NOT,
NAND, NOR)

OPTIONAL MODULES
Optional Module–1 : Electronics and Communication
APPROACH : In the present age of information and communication technology, it is essential for all to know the basic of electronics and communication technology. Working principles of different electronic devices used in daily life have been explained. Besides explaining communication systems, the communication techniques and media have been explained in the module.
30. Unit 1 : Electronics in Daily Life
• Power supply – SMPS, inverters, UPS

Supportive Video Programme

• Circuit Breaker – MCB

1. Electronics in Daily Life

• Timer – digital clock
• Processor – calculator
• LCD
• transducers and control system – Burglar alarm/fire alarm
31. Unit 2 : Communication Systems
• Communication system model –

Supportive Video Programme

• Components of communication systems like transmitter,

1. Communication systems

receiver media of communication and antenna
• Types of signals – analogue & digital
• Electromagnetic waves in communication
32. Unit 3 : Communication Techniques and Devices
• Sampling

Supportive Video Programme

• Modulation – Analogue AM and FM, digital (p)

1. Modulation and Demodulation

• Demodulation
• Role of tuner
• Common communication devices–radio/TV/Fax/Modern etc.
33. Unit 4 : Communication Media
• Guided Media – transmission lines and optical fibre

Supportive Video Programme

• Unguided Media and antenae–ground wave Communication, Communication media sky wave communication, space wave communication and satellite communication.
• Communication application to modern day communication
• EDUSAT

3.359
359

Optional Module – 2 : Photography and Audio–Video–Graphy
APPROACH : The basic principles of physics used in the field of photography and audio–videography have been described in different units of the module. Working principle of camera, types of camera, film exposing and processing have been explained the basic principles of audio and video recording both on tape and on compact disc have be described.
30. Unit 1 : Photography – Camera
• Camera – an introduction, parts of a camera, camera eye
(lens), shutters, special lenses.

Supportive Video Programme
1. Camera & its Working

• Types of camera – their basic principle, constructions and working • Principle of video camera.
• Choosing a camera, picture size.
• Choice of lens – angle of view and resolving power, aperture and focusing system.
31. Unit 2 : Film Exposing and Processing
• Constituents of photographic films and types of films.

Supportive Video Programme

• Characteristics of film

1. Film Exposing and Processing

• Film exposure, aperture and speed
• Processing the film – developing, fixing and washing
• Printing of the photo
32. Unit 3 : Audio–Video Recording
• Basic principle of recording

Supportive Video Programme

• Conversion of audio signal into electrical signals,

1. Audio–Video Recording

• Conversion of video signal into electrical signals.
• Storage of audio–video signals on tapes.
• Quality of recording, sound recording on cine films.
• Tape characteristics, structure and composition, tape format, tape speeds, important tape parameters,
• Presentation of tapes, storage techniques, precautions during handling and transportation.
33. Unit 4 : Compact Disc for Audio–Video Recording
• Limitations of traditional audio–video recording systems,

Supportive Video Programme

• Compact Disc
• Need for compact disc, advantages of compact disc.

1. Compact Disc for Audio–Video
Recording

• CD for audio recording,
• Basic principle of audio recordings,
• Methods of CD – audio-recording,

360

• CD for video-recording,
• Basic principle for video recording
• Methods of CD – video recording
• General operating and installation precautions,
• CD – players, operating principle,
• Quality of reproduction.

List of Practicals
Section-A
1.

Measurement of physical quantities using single scales like metre scale, graduated cylinder, thermometer, spring balance, stopwatch, ammeter, voltmeter,

2.

Measurement of physical quantities using about scales like vernier callipers, screw gauge, barometer, travelling microscope etc.

3.

Plotting and interpreting graphs of physical quantities like (i) L-T, L-T2 for a simple pendulum, (ii) load-extension for spring balance, (iii) θ-t for a cooling body, (iv) I-V Characteristics for a resistor,
(v) i-δ relation for a glass prism.

Section-B
1.

Study the variation of time period (T) of a simple pendulum with lengths (L). Plot the L-T2 graph and use it to determine (a) the length of a second’s pendulum, (b) the value of acceleration due to gravity.

2.

Determine the weight of a given body using parallelogram law of forces. Also, calculate, the mass of the body.

3.

Draw the cooling curve of a body and calculate the rate of cooling at three different points of the curve. 4.

Determine the specific heat capacity of a liquid using the method of mixtures.

5.

Study the extension of a spring under different loads and calculate its spring constant (static method).

6.

Determine the spring constant of a spring by dynamic method.

7.

Study the rate of flow of a liquid as a function of pressure head using a burette.

8.

Study the fall of a spherical body in various liquids of different viscosities. Determine the terminal velocity of the body in a viscous liquid and determine the coefficient of viscosity of that liquid.

Section-C
1.

Study the formation of stationary waves in (a) stretched strings and (b) air columns. Determine the frequency of the tuning fork and comment on the result.

2.

Investigate formation of images with mirrors and lenses. Determine the focal length of (a) convex lens, and (b) concave mirror.

3.
4.
5.

Determine the internal resistance of a cell using a potentiometer.
Determine the resistance of a moving coil galvanometer by half deflection method. Convert the galvanometer into a voltmeter of suitable range and verify it.
Determine the resistivity of the material of a given wire using a metre bridge.
3.361
361

6.
7.

Study the I-V characteristics of (a) a resistor, and (b) a P-n juncton.
Study the characteristics of an npn transistor in common emitter configuration. Determine current and voltage gains.

Home Activities (Suggestive)
1.

Determine the refractive index of a transparent liquid using cancave mirror and single pin.

2.

Draw a graph between the angle of incidence and the angle of deviation for a glass prism. Determine the refractive index of the glass using the graph.

3.

Study the relationship between the angle of rotation of a plane mirror and the change in angle of reflection.

4.

Draw magnetic filed line due to a bar magnet keeping (i) North pole pointing north, and (ii) North pole pointing south. Locate the neutral points.

362

Final fold and seal

Complete and Post the feedback form today

Lesson Name
Difficult

Thank you
Coordinator
(Physics)

Content
Confusing

Complex

Language
Simple

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Lesson Name

Second Fold

Lesson No.

Feed back on Questions

Interesting

Dear Learners,
You must have enjoyed going through your course books.
It was our endeavor to make the study material relevant, interactive and interesting. Production of material is a two way process. Your feedback would help us improve the study material. Do take a few minutes of your time and fill-up the feedback form so that an interesting and useful study material can be made.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Lesson
No.

---Fourth fold----

Feed back on Lessons

Useful

Not useful

Intext Questions

Not useful

Illustrations
Useful

---Third fold----

Easy

Diff.

V. diff.

Terminal Questions

Not helpful

What You Have Learnt
Very helpful

Similar Documents

Free Essay

Physics

...Assignment in Physics... 1. Definition of Science, Major branches of science 2. Scientific Method 3. Definition of Physics and its major branches 4. Notable Physicist and their contribution 5. Importance of Physics in our everyday life and in our society. (Write the references) Short bond paper, written or computerized (font: Times New Roman/font size: 12) Reading assign. Measurement Diff. system of measurement fundamentals and derive quantities scientific notation rules in significant figures conversion of units http://www.hep.man.ac.uk/babarph/babarphysics/physicists.html ) I.1 Science The intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment. I.2 The Branches of Science The Physical Sciences * Physics: The study of matter and energy and the interactions between them. Physicists study such subjects as gravity, light, and time. Albert Einstein, a famous physicist, developed the Theory of Relativity. * Chemistry: The science that deals with the composition, properties, reactions, and the structure of matter. The chemist Louis Pasteur, for example, discovered pasteurization, which is the process of heating liquids such as milk and orange juice to kill harmful germs. * Astronomy: The study of the universe beyond the Earth's atmosphere. The Earth Sciences * Geology: The science of the origin, history, and structure...

Words: 1431 - Pages: 6

Free Essay

Physics

...Aristotle was perhaps the first in the Western tradition to look at mechanics in any sort of structured way. A philosopher, rather than physicist, Aristotle thought about the way objects interact with each other, particularly their motions. One of the ideas to come from Aristotle’s work is that objects “like” to remain at rest. This seems rather reasonable put a book on a table and it remains still, push it gently and it will move until you stop. This begs the question, though what happens when we throw ad object? Our hand stops pushing, but the object continues to move. Likewise when we roll a ball we release the ball and it continues to move. Aristotle’s answer was impetus. When an object is moved by another (your hand, for example, throwing a ball), it accrues impetus. When the mover stops acting upon the movee, the impetus it accrued whilst being acted upon is used to continue the motion. Under this model, we would expect objects to exhibit straight-line trajectories rather than the parabolic trajectories we see when we throw an object A second idea of Aristotle’s is that heavier objects fall faster than lighter objects. It does, at first glance, seem rather reasonable but it is, like the idea of impetus, quite easily shown incorrect. The Aristotleans didn’t bother to take observations or do experiments to support their beliefs and most of those that came after them were content to trust Aristotle. Thus for more than 100 years, our understanding of mechanics was fundamentally...

Words: 667 - Pages: 3

Free Essay

Physics

...1. (5) famous physicist in their invention. Denis Papin (22 August 1647 - c. 1712) was a French physicist, mathematician andinventor, best known for his pioneering invention of the steam digester, the forerunner of the steam engine and of the pressure cooker. Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventorand businessman. He developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electriclight bulb. Dubbed "The Wizard of Menlo Park" by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large-scale teamwork to the process of invention, and because of that, he is often credited with the creation of the first industrial research laboratory Alexander Graham Bell (March 3, 1847 – August 2, 1922) was an eminent scientist, inventor, engineer and innovator who is credited with inventing the first practical telephone. Many other inventions marked Bell's later life, including groundbreaking work in optical telecommunications, hydrofoils and aeronautics. In 1888, Bell became one of the founding members of the National Geographic Society.[8] He has been described as one of the most influential figures in human history. John Logie Baird FRSE (13 August 1888 – 14 June 1946) was a Scottish engineer and inventor of the world's first practical, publicly demonstrated television system, and also the world's first...

Words: 508 - Pages: 3

Free Essay

Physics

...Statics of Rigid Bodies STATICS OF RIGID BODIES Chapter 1: Introduction Department of Engineering Sciences enter 〉〉 Statics of Rigid Bodies DEFINITION Mechanics • the study of the relationship among forces and their effects on bodies. • the science which describes and predicts the conditions for rest and motion of bodies under the action of forces. • a physical science (for it deals with physical phenomena) Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies MECHANICS MECHANICS RIGID BODIES STATICS bodies at rest DYNAMICS bodies in motion DEFORMABLE BODIES INCOMPRESSIBLE FLUIDS COMPRESSIBLE Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies What is a FORCE? represents the action of one body on another that tends to change the state or state of motion of a body. may be exerted by actual contact or at a distance (e.g. gravitational and magnetic forces). characterized by its point of application, magnitude and direction. represented by a vector. Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies Effects of a FORCE • development of other forces (reactions or internal forces) • deformation of the body • acceleration of the body Applied Force Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies Development of other forces ...

Words: 534 - Pages: 3

Premium Essay

Physics: The Physics Of Roller Coasters

...In any amusement park, the roller coaster is usually the most popular ride. It was first built in Russia during the 16th century, ever since then, the roller coaster has been a hit. With the car slowly moving up the everlasting height of the hill, high enough to touch the clouds, and then rushing downwards through many loops and twists, is enough to keep one’s adrenaline pumping. But what is the secret of the roller coaster? How is it possible for it to work this way? The answer is science. Many may not know, but science, specifically physics, has a lot to do with roller coasters. The roller coaster is actually powered by many types of energy: mechanical, potential, and kinetic. Mechanical energy is ‘the energy acquired by the objects upon which work is done.’ (Definition of Mechanical Energy). Potential energy is ‘energy possessed by an object because of its height above the ground’ (Definition of Potential Energy). Kinetic energy is ‘the energy of motion’ (Definition of Kinetic Energy)....

Words: 444 - Pages: 2

Free Essay

Physics

...Discussion #3 For this experiment we measured gravitational acceleration and velocity of a cart getting pushed up a ramp. First we had to make a prediction of how a velocity and acceleration graph would look like with a cart going up the ramp. After that we actually started to do the experiment. We then went to the computer which would help us graph our measurements of each time we did the experiment. It measured velocity, acceleration, and position of the cart each time. We did the experiment about a couple times until we got a good looking graph, then we recorded it on our lab reports and used it for the rest of our remaining results. Before using that, we took a measurement of the angle of the ramp which turned out to be 4.04 degrees. After that, we then took the graphs we did that were on the computer and we used different tools to find out the acceleration and slope of each specific time in the reading the lab report told us to do. From there after we were done, we then waited till the whole class was done and we all wrote down what our readings were for each measurement. Our measurements were; 4.04 degrees for angle A, .63 kg for the mass of the cart, .582 with an uncertainty of .009 for our acceleration from the average slope, .58 with an uncertainty of .009 for th average acceleration from STATS , 1.13 for mass of the cart with added mass, .569 with an uncertainty of .032 for acceleration from average slope with the doubled mass, and finally 8.199 with an uncertainty...

Words: 285 - Pages: 2

Premium Essay

Physics Research

...Galileo was born in Pisa (then part of the Duchy of Florence), Italy in 1564, the first of six children of Vincenzo Galilei, a famous lutenist, composer, and music theorist; and Giulia Ammannati. Galileo was named after an ancestor, Galileo Bonaiuti, a physician, university teacher and politician who lived in Florence from 1370 to 1450. Galileo Galilei  was an Italian physicist, mathematician, astronomer, and philosopher who played a major role in the scientific revolution. Galileo has been called the "father of modern physics Galileo's theoretical and experimental work on the motions of bodies, along with the largely independent work of Kepler and René Descartes, was a precursor of the classical mechanics developed by Sir Isaac Newton. Galileo conducted several experiments with pendulums. It is popularly believed that these began by watching the swings of the bronze chandelier in the cathedral of Pisa, using his pulse as a timer. Later experiments are described in his Two New Sciences. Galileo claimed that a simple pendulum is isochronous, i.e. that its swings always take the same amount of time, independently of the amplitude. In fact, this is only approximately true. Galileo also found that the square of the period varies directly with the length of the pendulum. It is said that at the age of 19, in the cathedral of Pisa, he timed the oscillations of a swinging lamp by means of his pulse beats and found the time for each swing to be the same, no matter what the amplitude...

Words: 734 - Pages: 3

Premium Essay

Math and Physics

...MOST DIFFICULT SUBJECTS FOR HIGHSCHOOL STUDENTS: MATH AND PHYSICS A Term Paper Presented to the Faculty of Saint Joseph's School In Partial Fulfillment of the Requirement in English IV Submitted to: Gemalyn Cantes Submitted by: Jovilyn Bumohya Date of submission: January 5, 2009 iii CONTENTS TITLE PAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii CONTENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACKNOWLEDGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . xii CHAPTER I: THE PROBLEM AND ITS BACKGROUND A. Statement of the Problem. . . . . . . . . . . . . . . . 1 B. Objectives of the Study. . . . . . . . . . . . . . . . . 1 C. Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 D. Significance of the Study. . . . . . . . . . . . . . . . 1 E. Scope and Delimitation. . . . . . . . . . . . . . . . . 2 F. Definition of Terms. . . . . . . . . . . . . . . . . . . . 2 CHAPTER II: MOST DIFFICULT SUBJECTS FOR HIGHSCHOOLSTUDENTS: MATH AND PHYSICS A. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 3 B. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CHPATER III: SUMMARY, CONCLUSION AND RECOMMENDATION A. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . 5 C. Recommendation...

Words: 1424 - Pages: 6

Premium Essay

Physics For Dummies

...(2008). John Michell: (1724-1793). Retrieved November 1, 2015, from http://www.relativitybook.com/resources/John_Michell_bio.html Browne, Michael E. (1999). Schaum's outline of theory and problems of physics for engineering and science (Series: Schaum's Outline Series). McGraw-Hill Companies. p. 58. ISBN 978-0-07-008498-8. Holzner, Steven (2005). Physics for Dummies. Wiley, John & Sons, Incorporated. p. 64. ISBN 978-0-7645-5433-9. Koberlein, B. (n.d.). Einstein and Eddington. Retrieved October 24, 2015, from https://briankoberlein.com/2014/05/19/einstein-eddington/ Mastin, L. (2009). Important Dates and Discoveries - The Physics of the Universe. Retrieved October 24, 2015, from http://www.physicsoftheuniverse.com/dates.html Newton's law of universal gravitation. (n.d.). In Wikipedia. Retrieved October 31, 2015, from https://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation Speed-of-Light. (n.d.). The American Heritage® New Dictionary of Cultural Literacy, Third Edition. Retrieved November 01, 2015, from Dictionary.com website: http://dictionary.reference.com/browse/speed-of-light Stanford's Gravity Probe B confirms two Einstein theories...

Words: 1084 - Pages: 5

Free Essay

Real World Physics

...REAL WORLD PHYSICS Did you know that Physics and Sports cannot be separated? In sports, athletes need to apply the concepts of Physics. But the application of Physics is not just limited to the machineries but also on how people should move the parts of their body. If successfully applied, well it can increase an athlete’s performance. But there are far more reasons why I believe Physics is a spectator of sports: firstly the physics of ice skating or figure skating which was shown in the movie Ice Princes that I recently watched; second, the physics of playing basketball and lastly, the physics of archery. To start off, the movie Ice Princess is the perfect example wherein Physics was applied into sports. Remember Isaac Newton’s first law of motion? Which states: An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force. (Mckinley, 2000) It is also known as inertia, and the very main reason why ice skaters glide smoothly on ice with the help of friction simply because there is less friction on ice. It is truly amazing on how the girl in the movie successfully applied Physics in figure skating. Another argument I have is, when your playing basketball. Physics is applied and can be seen when basketball players shoot the ball into the ring. As seen in the viral game angry birds, it basically shows and applies the concept of projectile motion wherein before the bird flies, a...

Words: 570 - Pages: 3

Free Essay

Understanding the World of Physics

...UNDERSTANDING PHYSICS – Part 1 MOTION, SOUND & HEAT Isaac Asimov Motion, Sound, and Heat From the ancient Greeks through the Age of Newton, the problems of motion, sound, and heat preoccupied the scientific imagination. These centuries gave birth to the basic concepts from which modern physics has evolved. In this first volume of his celebrated UNDERSTANDING PHYSICS, Isaac Asimov deals with this fascinating, momentous stage of scientific development with an authority and clarity that add further lustre to an eminent reputation. Demanding the minimum of specialised knowledge from his audience, he has produced a work that is the perfect supplement to the student’s formal textbook, as well se offering invaluable illumination to the general reader. ABOUT THE AUTHOR: ISAAC ASIMOV is generally regarded as one of this country's leading writers of science and science fiction. He obtained his Ph.D. in chemistry from Columbia University and was Associate Professor of Bio-chemistry at Boston University School of Medicine. He is the author of over two hundred books, including The Chemicals of Life, The Genetic Code, The Human Body, The Human Brain, and The Wellsprings of Life. The Search for Knowledge From Philosophy to Physics The scholars of ancient Greece were the first we know of to attempt a thoroughgoing investigation of the universe--a systematic gathering of knowledge through the activity of human reason alone. Those who attempted this rationalistic search for understanding...

Words: 259 - Pages: 2

Free Essay

Physics Test Paper

...[pic] |Level 1 Science | |90940 (1.1): Demonstrate understanding of aspects | |of mechanics | Credits: Four You should answer ALL parts of ALL questions in this booklet. If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question. Check that this booklet has pages 2–13 in the correct order and that none of these pages is blank. YOU MUST HAND THIS BOOKLET TO YOUR TEACHER AT THE END OF THE ALLOTTED TIME. |For Assessor’s |Achievement Criteria | | |use only | | | |Achievement |Achievement |Achievement | | |with Merit |with Excellence | |Demonstrate...

Words: 976 - Pages: 4

Free Essay

Physics

...Roger Truong Week 4 Physics Notes Experiment 1 * Rise and fall is pressure in the sound wave makes the flame move * The rise and fall in pressure makes the click sound * The rise and fall in the disturbance to what brings the sound to your ear * The square waves to what makes the flame move and bring the sound to your ear * The air molecules don’t move the disturbance does * For a 0.5 Hz your hear a click and the flame moves and resets * For 100 Hz the flame remains displaced and doesn’t recover * The transition from a click to a tone is between 20 and 50 Hz Reflection * Change in direction of a wave at an interference between two media wave returns into media from which it originated form. Wave Refraction * Change in direction of a wave when it passes from one medium to another caused by the different speeds of a wave * When water moves into different depths Wave Diffraction * Bending waves when they encounter an obstacle Absorption of waves * Reduction of energy in wave consumed by medium which it travels. * The main cause of absorption is Viscosity Interference * Two or more waves form coming together to make up a new wave Resonance * Tendency of a system to oscillate at a large amplitude at certain frequencies * Tendency to magnify a sound * The difference between an acoustic and electric guitar Wave Motion in Space and Time * Wave Motion in Space * Horizontal Axis:...

Words: 323 - Pages: 2

Free Essay

Physics Collisions

...Throughout our previous unit, we described the constant velocity of objects in motion. That laid the basis for this next unit, where we will be studying why and how the object moves the way it does, specifically the "push" or "pull" of force. The heavier cart in a same-direction elastic collision seems to push the lighter cart, which causes an increase in speed for the lighter cart. Although we may have brushed on the surface of movement, this unit will pave the path for further investigation on velocity as well as momentum. According to today's lab, it is possible to measure the mass of the carts and then multiple the mass by the velocity to determine momentum. These two things will be related to almost everything that we will be doing in physics, as how can we study how things move if we don't know how they're...

Words: 279 - Pages: 2

Free Essay

Physics

...Computational Condensed Matter 4 (2015) 32e39 Contents lists available at ScienceDirect Computational Condensed Matter journal homepage: http://ees.elsevier.com/cocom/default.asp Regular article Putting DFT to the trial: First principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3 Ghazanfar Nazir a, b, *, Afaq Ahmad b, Muhammad Farooq Khan a, Saad Tariq b a b Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, South Korea Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan a r t i c l e i n f o a b s t r a c t Article history: Received 8 July 2015 Received in revised form 21 July 2015 Accepted 27 July 2015 Available online 31 July 2015 Here we report optical properties for cubic phase Strontium Zirconate (SrZrO3) at different pressure values (0, 40, 100, 250 and 350) GPa under density functional theory (DFT) using Perdew-Becke-Johnson (PBE-GGA) as exchange-correlation functional. In this article we first time report all the optical properties for SrZrO3. The real and imaginary dielectric functions has investigated along with reflectivity, energy loss function, optical absorption coefficient, optical conductivity, refractive index and extinction coefficient under hydrostatic pressure. We demonstrated the indirect and direct bandgap behavior of SrZrO3 at (0) GPa and (40, 100, 250 and 350) GPa respectively. In addition, static dielectric...

Words: 5414 - Pages: 22