...(Mathematics) 2. Dynamics (Mathematics) I. Marsden, Jerrold E. II. Title. III. Series. ISBN 0-387 97300-1 American Mathematics Society (MOS) Subject Classification (1980): 76-01, 76C05, 76D05, 76N05, 76N15 Copyright 1992 by Springer-Verlag Publishing Company, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer-Verlag Publishing Company, Inc., 175 Fifth Avenue, New York, N.Y. 10010. Typesetting and illustrations prepared by June Meyermann, Gregory Kubota, and Wendy McKay The cover illustration shows a computer simulation of a shock diffraction by a pair of cylinders, by John Bell, Phillip Colella, William Crutchfield, Richard Pember, and Michael Welcome. The corrected fourth printing, April 2000. v Series Preface Page (to be inserted) vi blank page This is page vii Printer: Opaque this Preface This book is based on a one-term course in fluid mechanics originally taught in the Department of Mathematics of the University of California, Berkeley, during the spring of 1978. The goal of the course was not to provide an...
Words: 50231 - Pages: 201
...Physical Chemistry Understanding our Chemical World Physical Chemistry Understanding our Chemical World Paul Monk Manchester Metropolitan University, UK Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley...
Words: 233668 - Pages: 935
...INTRODUCTION An exactly analysis of the landing gear, as designed on modern aircraft’s, is necessary to understand the construction and systems of the landing gear of the Airbus A320. Operation of the landing gear is made possible through extension/retraction, steering, braking and damping systems. In order to maintain the safety of the aircraft, the design of the landing is satisfied to the legislation of the European Aviation Safety Agency . With the knowledge of the landing gear construction of the Airbus A320, the forces on the construction calculated during different flight phases. In these flight phases the aircraft endures several forces. The materials that are used depends on the forces at the aircraft . Then, with a good insight of the A320’s landing gear I’m able to provide an in detail overview of the common faults and problems of the A320’s landing gear. These faults and problems have consequences for the aircrafts airworthiness. Change in the aircraft’s airworthiness requires maintenance with inevitable costs for the airline . The used main sources, serve as information to learn how the landing gear of the Airbus A320 operates. Literature review The Airbus A320 family consists of short- to medium-range, narrow-body, commercial passenger jet airliners manufactured by Airbus. The family includes the A318, A319, A320 and A321, and the ACJ business jet. Final assembly of the family in Europe takes place in Toulouse, France, and Hamburg, Germany. Since 2009...
Words: 6025 - Pages: 25
...ate Aptitude Test in Engineering GATE 2014 Brochure Table of Contents 1. Introduction .............................................................................................................1 2. About GATE 2014 ......................................................................................................1 2.1. Financial Assistance ............................................................................................................................ 1 2.2 Employment ............................................................................................................................................ 2 2.3 Administration ....................................................................................................................................... 2 3.1 Changes Introduced in GATE 2013 that will continue to remain in force for GATE 2014 .......................................................................................................................................................... 3 4.1 Eligibility for GATE 2014 ................................................................................................................... 4 4.2 GATE Papers ............................................................................................................................................ 5 4.3 Zone-Wise List of Cities in which GATE 2014 will be Held ................................................... 6 4.4 Zone-Wise List of Cities for 3rd...
Words: 32784 - Pages: 132
...Shock Waves (2009) 19:453–468 DOI 10.1007/s00193-009-0220-z ORIGINAL ARTICLE Some physical aspects of shock wave/boundary layer interactions Jean Délery · Jean-Paul Dussauge Received: 9 February 2009 / Accepted: 29 June 2009 / Published online: 26 July 2009 © Springer-Verlag 2009 Abstract When the flow past a vehicle flying at high velocity becomes supersonic, shock waves form, caused either by a change in the slope of a surface, a downstream obstacle or a back pressure constraining the flow to become subsonic. In modern aerodynamics, one can cite a large number of circumstances where shock waves are present. The encounter of a shock wave with a boundary layer results in complex phenomena because of the rapid retardation of the boundary layer flow and the propagation of the shock in a multilayered structure. The consequence of shock wave/ boundary layer interaction (SWBLI) are multiple and often critical for the vehicle or machine performance. The shock submits the boundary layer to an adverse pressure gradient which may strongly distort its velocity profile. At the same time, in turbulent flows, turbulence production is enhanced which amplifies the viscous dissipation leading to aggravated performance losses. In addition, shock-induced separation most often results in large unsteadiness which can damage the vehicle structure or, at least, severely limit its performance. The article first presents basic and well-established results on the physics of SWBLI corresponding to...
Words: 7955 - Pages: 32
...Arturo Alcaraz (Philippines) - Instrumental in a team of scientists, who in 1967 were able to harness steam from a volcano resulting in the production of electricity. Diosdado Banatao (Philippines) - Improved computer performance throughthe development of accelerator chips, helping to make the Internet a reality. Marie Curie (Poland) - Winner of two Nobel Prizes in Chemistry and Physicsfor her studies into Radioactivity and her discoveries of Radium and Polonium. Paul Dirac (England) - An important contributor in the fields of QuantumMechanics and Electro Dynamics, Dirac was co-winner of the Nobel Prize inPhysics (1933). Albert Einstein (Germany) - Arguably needing no introduction, the most famous scientist that lived and a name that has become synonymous in popular culture with the highest intelligence. Enrico Fermi (Italy) - Heavily involved in the development of the world's first nuclear reactor and his work in induced radioactivity saw him awarded with the 1938 Nobel Prize in Physics. Vitaly Ginzburg (Russia) - One of three recipients of the 2003 Nobel inPhysics for their pioneering work in the theory of superconductors and superfluids. Christiaan Huygens (Netherlands) - Most well known for his wave theory of light, Huygens is credited with discovering the first of Saturn's moons. Werner Israel (Canada) - In 1990 Israel co-pioneered a study on black hole interiors. Ali Javan (Iran) - Born in Tehran, Ali Javan is listed as one of the top 100 living...
Words: 10739 - Pages: 43
...SENIOR SECONDARY COURSE PHYSICS 1 (CORE MODULES) Coordinators Dr. Oum Prakash Sharma Sh. R.S. Dass NATIONAL INSTITUTE OF OPEN SCHOOLING A-25, INSTITUTIONAL AREA, SECTOR-62, NOIDA-201301 (UP) COURSE DESIGN COMMITTEE CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Maidan Garhi, Delhi MEMBERS Prof. A.R. Verma Former Director, National Physical Laboratory, Delhi, 160, Deepali Enclave Pitampura, Delhi-34 Dr. Naresh Kumar Reader (Rtd.) Deptt. of Physics Hindu College, D.U. Dr. Oum Prakash Sharma Asstt. Director (Academic) NIOS, Delhi Prof. L.S. Kothari Prof. of Physics (Retd.) Delhi University 71, Vaishali, Delhi-11008 Dr. Vajayshree Prof. of Physics IGNOU, Maidan Garhi Delhi Sh. R.S. Dass Vice Principal (Rtd.) BRMVB, Sr. Sec. School Lajpat Nagar, New Delhi-110024 Dr. G.S. Singh Prof. of Physics IIT Roorkee Sh. K.S. Upadhyaya Principal Jawahar Navodaya Vidyalaya Rohilla Mohammadabad (U.P.) Dr. V.B. Bhatia Prof. of Physics (Retd.) Delhi University 215, Sector-21, Faridabad COURSE DEVELOPMENT TEAM CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Delhi MEMBERS Prof. V.B. Bhatia 215, Sector-21, Faridabad Prof. B.B. Tripathi Prof. of Physics (Retd.), IIT Delhi 9-A, Awadhpuri, Sarvodaya Nagar Lucknow-226016 Sh. K.S. Upadhyaya Principal Navodaya Vidyalaya Rohilla Mohammadabad, (U.P.) Dr. V.P. Shrivastava Reader (Physics) D.E.S.M., NCERT, Delhi EDITORS TEAM CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Delhi MEMBERS Prof. B.B. Tripathi Prof...
Words: 131353 - Pages: 526
...PHYSIC AL CONSTANTS CONSTANT Speed of light Elementary charge Electron mass Proton mass Gravitational constant Permeability constant Permittivity constant Boltzmann’s constant Universal gas constant Stefan–Boltzmann constant Planck’s constant Avogadro’s number Bohr radius SYMBOL c e me mp G m0 P0 k R s h 15 2p"2 NA a0 THREE-FIGURE VALUE 3.003108 m/s 1.60310219 C 9.11310231 kg 1.67310227 kg 6.67310211 N # m2/kg 2 1.2631026 N/A2 1H/m2 8.85310212 C 2/N # m2 1F/m2 1.38310223 J/K 8.31 J/K # mol 5.6731028 W/m2 # K4 6.63310234 J # s 6.0231023 mol21 5.29310211 m BEST KNOWN VALUE* 299 792 458 m/s (exact) 1.602 176 4871402 310219 C 9.109 382 151452 310231 kg 1.672 621 6371832 310227 kg 6.674 281672 310211 N # m2/kg 2 4p31027 (exact) 1/m0c2 (exact) 1.380 65041242 310223 J/K 8.314 4721152 J/K # mol 5.670 4001402 31028 W/m2 # K4 6.626 068 961332 310234 J # s 6.022 141 791302 31023 mol21 5.291 772 08591362 310211 m *Parentheses indicate uncertainties in last decimal places. Source: U.S. National Institute of Standards and Technology, 2007 values SI PREFIXES POWER 1024 1021 1018 1015 1012 109 106 103 102 101 100 1021 1022 1023 1026 1029 10212 10215 10218 10221 10224 THE GREEK ALPHABET PREFIX yotta zetta exa peta tera giga mega kilo hecto deca — deci centi milli micro nano pico femto atto zepto yocto SYMBOL Y Z E P T G M k h da — d c m μ n p f a z y Alpha ...
Words: 201181 - Pages: 805
...HEAD | PREVIOUS | Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does this ionization occur? When the temperature is hot enough. Balance between collisional ionization and recombination: | Figure 1.1: Ionization and Recombination Ionization has a threshold energy. Recombination has not but is much less probable. Threshold is ionization energy (13.6eV, H). χi | Figure 1.2: Ionization and radiative recombination rate coefficients for atomic hydrogen Integral over Maxwellian distribution gives rate coefficients (reaction rates). Because of the tail of the Maxwellian distribution, the ionization rate extends below T = χi. And in equilibrium, when | nionsnneutrals | = | < σi v >< σr v > | , | | (1.1) | the percentage of ions is large ( ∼ 100%) if electron temperature: Te >~χi/10. e.g. Hydrogen is ionized for Te >~1eV (11,600°k). At room temp r ionization is negligible. For dissociation and ionization balance figure see e.g. Delcroix Plasma Physics Wiley (1965) figure 1A.5, page 25. 1.1.2 Plasmas are Quasi-Neutral If a gas of electrons and ions (singly charged) has unequal numbers, there will be a net charge density, ρ. ρ = ne(−e) + ni(+e) = e (ni − ne) | | (1.2) | This will give rise to an electric field via ∇ . E= | ρϵ0 | = | eϵ0 | (ni − ne) | | (1.3) | Example:...
Words: 9955 - Pages: 40
...Assignment On Engineering Materials (Glass) Introduction Glass is a non-crystalline solid material. Glasses are typically brittle, and often optically transparent. The most prevalent type of glass, used for centuries in windows and drinking vessels, is soda-lime glass, made of about 75% silica (SiO2) plus Na2O, CaO, and several minor additives. Often, the term glass is used in a restricted sense to refer to this specific use. [pic] [pic]Roman Cage Cup from the 4th century A.D. In science, however, the term glass is usually defined in a much wider sense, including every solid that possesses a non-crystalline (i.e. amorphous) structure and that exhibits a glass transition when heated towards the liquid state. In this wider sense, glasses can be made of quite different classes of materials: metallic alloys, ionic melts, aqueous solutions, molecular liquids, and polymers. Of these, polymer glasses (acrylic glass, polyethylene terephthalate) are the most important; for many applications (bottles, eyewear) they are a lighter alternative to traditional silica glasses. Glasses play an essential role in science and industry. Their chemical, physical, and in particular optical properties make them suitable for applications such as flat glass, container glass, optics and optoelectronics material, laboratory equipment, thermal insulator (glass wool), reinforcement fiber (glass-reinforced plastic, glass fiber reinforced concrete), and glass art (art glass, studio glass). ...
Words: 6654 - Pages: 27
...in my grade sheet that would prevent me from getting a decent job. However none of these bothered me enough to cause insomnia. In fact, the four months off were great to catch up on sleep. But the one person whose voice, smell, image, feelings, crept up next to me at night and made sleep impossible was Neha. I tried calling her on the eleventh . She hung up in two minutes, telling me she never expected me to be like this. I guess for someone she called a loafer, she had pretty high expectations. I had called her right back, trying to explain in vain how the whole idea was not mine, and it was stupid of me to fall for it. “ You used me Hari. Like all men you used me”, she said. Like all men? How many men had she been with anyway, I thought. What has she...
Words: 5532 - Pages: 23
...equation will not be dimensionally correct. d. All constants of proportionality will be correct. C3. How long has it been that scientists have accepted that the nucleus of the atom consists of neutrons and protons? Think of your answers in terms of order of magnitude. a. about a decade b. about a century c. about a thousand years d. since Aristotle C4. Consider the sine of any angle between 30° and 40°. If the angle were doubled, what would happen to the sine of the angle? a. It would double. b. It would more than double. c. It would increase but be less than double. d. In different cases, it could do any of the above. C5. There are other ways of expressing uncertainty besides significant figures. For example, suppose a quantity is known to have a value between 20.4 and 20.0 and our best estimate of the value is midrange at 20.2. We could write the number as 20.2 +/- 0.2 and say that the number has a 1% uncertainty. We would also say it has 3 significant figures. If we square a number with 1% uncertainty (i.e., 2 parts in about 200) and 3 significant figures, what results? a. A number with 1% uncertainty and 3 significant figures. b. A number with 2% uncertainty and 3 significant figures. c. A number with 2% uncertainty and 2 significant figures. d. A number with 1% uncertainty and 2 significant figures. 1...
Words: 66672 - Pages: 267
...| 2013 | | Department of Management Studies IIT Roorkee | [Country report: france] | The report contains an overall analysis of France as a business destination for trade and new business ventures. We have adopted the PESTEL Analysis methodology to arrive to our conclusion. | INDEX 1. Introduction 2. Timeline: France 3.1 History 3.2 Present 3.3 Future 3. PESTEL Analysis 4.4 Political 4.5 Economic 4.6 Social 4.7 Technological 4.8 Environmental 4.9 Legal 4. Summery 5. Conclusion 6. Bibliography Introduction France – officially known as the ‘French Republic’, is one of the most influential nations and has dominated the world with its art, culture, fashion, economy and military. Located in Western Europe, France is spread over an area of 640,000 Sq. Kms and shares its borders with Spain in south and Belgium, Luxemburg, Germany, Italy, Switzerland, Italy, Monaco and Andorra in north. Capital city of France is Paris, and other major cities and industrial centres include, Bordeaux, Strasbourg, Valence and Nimes. Paris, the capital city of France is one of the four fashion capitals of the world, also famous for Eiffel Tower – One of the seven wonders, this city boasts of hosting some of the biggest fashion related events of the world. France is a major player in political affairs of the world and is of the permanent members of UN Security Council. Economy of France...
Words: 4886 - Pages: 20
...in: R.A. Meyers (ed.), Encyclopedia of Physical Science & Technology (3rd ed.), (Academic Press, New York, 2001). Cybernetics and Second-Order Cybernetics Francis Heylighen Free University of Brussels Cliff Joslyn Los Alamos National Laboratory Contents I. Historical Development of Cybernetics....................................................... 1 A. Origins..................................................................................... 1 B. Second Order Cybernetics............................................................ 2 C. Cybernetics Today...................................................................... 4 II. Relational Concepts................................................................................ 5 A. Distinctions and Relations........................................................... 5 B. Variety and Constraint ................................................................ 6 C. Entropy and Information.............................................................. 6 D. Modelling Dynamics .................................................................. 7 III. Circular Processes................................................................................... 8 A. Self-Application......................................................................... 8 B. Self-Organization ....................................................................... 9 C. Closure .....................................................................................
Words: 12122 - Pages: 49
...NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR Bachelor of Technology Programmes amï´>r¶ JH$s g§ñWmZ, m¡Úmo{ à VO o pñ Vw dZ m dY r V ‘ ñ Syllabi and Regulations for Undergraduate PROGRAMME OF STUDY (wef 2012 entry batch) Ma {gb Course Structure for B.Tech (4years, 8 Semester Course) Civil Engineering ( to be applicable from 2012 entry batch onwards) Course No CH-1101 /PH-1101 EE-1101 MA-1101 CE-1101 HS-1101 CH-1111 /PH-1111 ME-1111 Course Name Semester-1 Chemistry/Physics Basic Electrical Engineering Mathematics-I Engineering Graphics Communication Skills Chemistry/Physics Laboratory Workshop Physical Training-I NCC/NSO/NSS L 3 3 3 1 3 0 0 0 0 13 T 1 0 1 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 4 1 1 0 0 0 0 0 0 2 0 0 0 0 P 0 0 0 3 0 2 3 2 2 8 0 0 0 0 0 2 2 2 2 0 0 0 0 0 2 2 2 6 0 0 8 2 C 8 6 8 5 6 2 3 0 0 38 8 8 8 8 6 2 0 0 40 8 8 6 6 6 2 2 2 40 6 6 8 2 Course No EC-1101 CS-1101 MA-1102 ME-1101 PH-1101/ CH-1101 CS-1111 EE-1111 PH-1111/ CH-1111 Course Name Semester-2 Basic Electronics Introduction to Computing Mathematics-II Engineering Mechanics Physics/Chemistry Computing Laboratory Electrical Science Laboratory Physics/Chemistry Laboratory Physical Training –II NCC/NSO/NSS Semester-4 Structural Analysis-I Hydraulics Environmental Engg-I Structural Design-I Managerial Economics Engg. Geology Laboratory Hydraulics Laboratory Physical Training-IV NCC/NSO/NSS Semester-6 Structural Design-II Structural Analysis-III Foundation Engineering Transportation Engineering-II Hydrology &Flood...
Words: 126345 - Pages: 506