Free Essay

Ulker Bar Assignment

In:

Submitted By samihabib
Words 11885
Pages 48
Graduate School of Business

MKTG 901
ÜLKER CHOCOLATE BARS ASSIGNMENT

28.12.2010

MKTG 901

Group 10

G du t School of Busin ss
BA S ASSIGN

¢

¡

¥

¤ ¤£ ¢¡

C LA

N

¡¦

C

¥

ÜL

1) To find the breakeven point, the cost of consumer promotion must be calculated.
Amount of coupons for JAN 2005
Amount of redeemed coupons
Face Value
Redeemed coupon value
Coupon processing cost
Printing & Distribution cost

: 4 X 2 million = 8.000.000 coupons
: 8.000.000 X 10% = 800.000 coupons
: 1TL
: 1 TL X 800.000 = 800.000 TL
: 0,1 TL X 800.000 = 80.000 TL
: (20 TL X 8.000.000)/1000 = 160.000 TL

TOTAL COST = 800.000 TL + 80.000 TL + 160.000 TL =1.040.000 TL
Since gross margin per case is 52,8 TL, to reach the break-even point of this promotion, the amount that Ülker must sell in excess of sales is;
1.040.000 TL / 52.8 TL = 19.697 cas s (appx. 20.000 cases)

§

2) Since we have a data that may have seasonality and trend components, we must build our regression model using dummy variables and trend factor.
COEFFICIENTS
Y
: Expected amount of cases to be sold int : Intercept of regression model
CP
: Consumer promotion coefficient
TP
: Trade promotion coefficient
Jan_D
: January dummy coeffitient
.
.
.
Nov_D
: November dummy coefficient
TRND
: Trend component coefficient
VA IABLES
X1
: Consumer promotion amount
X2
: Trade promotion amount
X3
: January dummy variable
X4
: February dummy variable
.
.
.
X13
: November dummy variable
X14
: Trend component variable

¨

So our regression model should be in below format;
Y=int+(CP. X1)+ (TP. X2)+(Jan_D. X3)+(Feb_D. X4)+...+(Nov_D. X13)+(TRND. X14)

MKTG 901
1

G aduate School of Business
Our current data shows that there are discontinuing valuesbetween the beginning of 1998 and the end of 2001. In order to run a proper regression, discontinuing part of the data (Jan 1998 Dec
2001) is deleted from the data series.
We assume that our sales data is affected by seasonality and trend components, so these issues must be examined by Excel Data Analysis/Regression Tool. According to our iterative calculations including shifted effects of consumer and trade promotions1, all possible regression models show that there is no significant trend effect in existing data. This means that existing positive sales trend exists because of the positive trend in promotions. Therefore, trend variable is excluded from our regression model.
In addition, we calculated both consumer and trend promotions shifting possibilities for 1 and 2 months, but all possible regression models resulted with smaller R2 values. This also shows us that there is no significant shifted effect of consumer and trade promotions on sales amount. These results can be seen in Exhibits1 to 9.
The best possible regression model (R2 = 0,93 - Exhibit 1) has the following equation:
Y

= 225.186,50 + (0,04 x CP) + (0,07 x TP) + (Jan_D x 241.553,38) + (Mar_D x 107.144,37) +
(Apr_D x 125.707,62) + (May_D x 201.766,33) + (Jun_D x 104.040,00) + (Jul_D x 167.069,63)
(Sep_D x 209.899,83) + (Oct_D x 97.483,01) + (Nov_D x 80.466,71)

In our example, we are looking for the sale expectation for January 2005. So our regression model becomes as below;
Y

= 466.739,88 + (0,04 x CP) + (0,07 x TP)

a. The variables that predict sales are amount of consumer promotions (in dollars) and trade promotions (in dollar) and the dummy variable that is used for the month of January.
b. The potential promotion impact will be the delta of the regression model, with or without the consumer promotions in Jan 2005. (Trade promotion is constant, so we can assume that it s zero, and we assume that the exchange rate for USD and TRL is 1,5 TL/USD)
Without consumer promotion;
With consumer promotion;
Difference

Y = 466.740 cases
Y = 466.740 + 0,04 x (1.040.000 / 1,5) = 494.473 cases
= 27.733 cases

Since we have 52,8 TL margin for each case, our potential profit would be;
Potential Profit = 27.733 x 52,8 TL = 1.464.302 TL
c. According to our calculation, Ülker Bar brand manager will spend 1.040.000 TL for promotion for an expected additional profit of 1.464.302 TL. These figures show that he should do the consumer promotion.

1

Shifted effect: Statistically, if consumer or trade promotions have a significant effect on previous months sales, we call this as a shifted effect of promotions to sales.
MKTG 901
2

G aduate School of Business
Exhibit 1 Regression Model Without Shifting Effect

%

Mar_D Apr_D May_D Jun _D Jul _D Sep_D
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0





1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0



Ja n



$0
$315. 196
$703. 62
$198. 64
$478.880
$457. 172
$709. 480
$45.380
$28. 080
$111.520
$267.200
$354.304
$664. 712
$536.824
$551.560
$150. 080
$580.800
$435. 080
$361. 144
$97.844
$30.372
$150.324
$293. 044
$162. 788
$32.532
$23. 468
$4.503. 456
$500. 904
$0
$0
$46. 104
$92.252
$4.869. 952
$376.556
$376.556
$552.536

c t _D N o _D
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

A u g_D

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0



P

eb_D
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0



%





CP


!
 

$ . 633. 9
$ 3.526
$13. 06
$133. 195
$105. 058
$5.328
$2. 093
$6. 754
$1.807. 920
$589. 949
$72. 662
$26.554
$2. 615. 074
$209. 798
$27.552
$46. 147
$7.234
$65.376
$485. 659
$385. 483
$1. 611. 686
$440.208
$47.309
$514. 426
$1. 438. 949
$101.846
$754
$62.213
$1. 600. 939
$854. 904
$1.514. 707
$384. 989
$28.512
$176. 731
$1. 125.898
$345. 029

&

#
"
 
   
©

ca. 0 u .0
Mar. 02 is. 02
May. 02
Ha . 02
Tem. 02
A u. 02
Eyl. 02
E i. 02
Kas. 02
Ara. 02 ca. 03 u . 03
Mar. 03 is. 03
May. 03
Ha . 03
Tem. 03
A u. 03
Eyl. 03
E i. 03
Kas. 03
Ara. 03
O ca. 04 u . 04
Mar. 04
Nis. 04
May. 04
Ha . 04
Tem. 04
A u. 04
Eyl. 04
E i. 04
Kas. 04
Ara. 04

&

Sal es i n CASES
()
6 9. 0
63. 67
389.320
376.569
444. 404
386. 986
414.314
253. 493
484.365
305. 989
315. 407
182. 784
655. 748
270. 483
365. 058
313. 135
528.210
379.856
472. 058
254.516
551.354
335.826
320. 408
276. 901
455. 136
247.570
622.204
429.331
453. 156
320. 103
451. 779
249. 482
744.583
421. 186
397.367
269. 096

'

M onth

'

INSIGNIFICAN
PARAME ERS

SIGNIFICAN REGRESSI N M DEL PARAME ERS

RN D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

$



"

#

$

#

$

SUMMA Y OUTPUT

6
B CBA @
7
65
1 1 21 0)
MS
0.3 . 9. 9 ,
1. . 90. 009,

Standard Error
1 . 99 , 03
0,0
0,01
. 0, 1
30. 9 9,1
. , 33
.0,
. 9, 3
. , 30
3 . 00 , 0
. 3 ,1
. 910,00

t Stat

F
Signific nce F
9,13
0,00

P-value
0,00
0,0
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,01

C

1 ,0
,0
,3
,3
3,
,1
, 10
3,
,9
,
3, 0
,

Low er 95%
19 . ,
0,01
0,0
1 9. 1, 3
3. , 3
. 19,10
1 3. 1 , 3
. ,10
10 . 33,
133. 3,0
0. 0 9,9
. 3, 30

CC
B C@P
A CA @
AB
PB 6B 6
P@
@ C @C 6@
P
@ P6C @
BB
AP @
B @ @@C @

PAP C
B6 A
BA
AB
B
A
6@ @
A
C@ B
AC
CA

BC
B BC
B@ 6 P B
6C
B @BP BPC
A @ @@@ PC
A BC
B @@P
C B @ @@
C
C@

A
@C

Coefficients
.1 , 0
0,0
0,0
1. 3, 3
10 . 1 , 3
1 .0,
01. , 33
10 . 0 0,00
1 . 0 9, 3
09. 99, 3
9 . 3,01
0. , 1

SS
3. 11. . 1 , 1
1. . 9 0. 3 , 9
9 . 90. 39. 0 9,00

Upper 95% Low er 95,0% Upper 95,0%
.1 , 3
19 . ,
.1 , 3
0,0
0,01
0,0
0,0
0,0
0,0
333.33 , 3
1 9. 1, 3
333.33 , 3
1 1. 0 0, 31
3. , 3
1 1. 0 0, 31
1 3. 19 , 1
. 19,10
1 3. 19 , 1
0.390,
1 3. 1 , 3
0.390,
1 1.311, 9
. ,10
1 1.311, 9
.0,
10 . 33,
.0,
. ,0
133. 3,0
. ,0
1 . 93 , 0
0. 0 9,9
1 . 93 , 0
13 . 0 0,1
. 3, 30
13 . 0 0,1

C AP
@6 6BC 6@AC
6
B @ A 6 6CPC
P6
@C 6C
@ 6C BP
PA
P
PA C 6AC
P

11,00
,00
3 , 00

CC
B C@P
A CA @
A
PB 6B B
P 6@
@ C @C 6@
6C P
@ PBB @
AP @
B @ @@C @

f

C AP
6
@6 6BC 6@AC
B @ A 6 6CPC
P6
@C 6C
@ 6C BP
PA
P
PA C 6AC
P

I

B 6 @@ P
P@ B C
6P 6 P B6
66@B @ C
C6 B B AC
B @@ B
AA C
BP @
@A 6 ACC
P

I nte r e pt
CP
TP an_D Mar_D pr_D May_D un_D ul _D
Sep_D
t_D o _D

,9
0,9
0,90
1. , 1
3 , 00

C CA A
6B C CB C @@C 6 B @
C AC C P B @ 6P@ A B @ P PBC P P A@A

8HDG 8
F ED
9
48
43

Regression
Resi dual
Total

is ics

2

(

Regressi S
Mul i pl R
R Squar j usted R Square
Standard Error se r ations

Q

R
R
8
R

G
FQD

Shifting Effect Assumption: Consumer Prom. and Trade Prom. have no delayed effect
Regression R2 =0,93(Best Possible Model)
MKTG 901
3

Graduate School of Business
Exhibit 2 Regression Model With Shifting Effect

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

A r_

Jun _

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

c t_

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

W

ut s st s

h e ed fe f ei d d ih f di d ff h d d id eh h fd d ed d dde hd fh f d d e hh d efd dd i d d edi h d h hh e h hd i ih df f ehi f e d idh h h ih he i fd d i f hhe if di fh ih i he i f hd e h ei ei eh ef d di fe ed
W V U TS

d d dq d d d dp d d d dc c r

p

q

c

r

p

q

ˆ
’j
’ˆ j
†l
ˆ’ ˆk k j ˆ jk ˆ ’ j ’ j k jk ’’k j
‘i †
ƒh
ƒg
ƒƒ

“
‘ fe
ˆd ‡ ’ˆ ˆ
‘™‘‘˜ •‘ •— ‰
“‡
‘ ‰ † • –• ”
“’ ‡
‘ ‰ †
ˆ‡
†
„…„ ƒ y y‚ € y
S MMA

o_

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

CP

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0

3.
$13.40
$133.19
$10 .0
$ .3
$ .093
$. 4
$ 1 . 0 .9 0
$ 9 .9 4 9
$.
$.4
$ . 1 .0 4
$ 09. 9
$.
$4 .14
$ . 34
$ .3
$4 . 9
$3 .4 3
$1. 11.
$440. 0
$4 .309
$ 14.4
$1.43 .949
$101. 4
$4
$ . 13
$1. 00.939
$ 4.904
$1. 14. 0
$3 4.9 9
$ .1
$1 . 31
$ 1 .1 . 9
$ 3 4 .0 9

P1

Feb_

$0
$31 .19
$ 03. 4
$19 .4 4
$4 . 0
$4 .1
$ 09.4 0
$4 .3 0
$ .0 0
$111. 0
$
. 00
$3 4.304
$ 4. 1
$3. 4
$ 1. 0
$ 1 0 .0 0
$ 0. 00
$43 .0 0
$3 1.144
$9 . 44
$30.3
$ 1 0 .3 4
$ 93.044
$1 .
$3 . 3
$ 3.4
$4. 03.4
$ 00.904
$0
$0
$4 .104
$9 .
$4. 9.9
$3 .
$3 .

1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

ehh ef ehh ef dh ei dhd d e 0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

h eh h ie d d hd iif de d dh df if e ih i ih ih eh hh di e h d f ee h d fed dh i id ih if df fh ii if ei de f eh WX W

9
30
31
3
33
34
3

Se _

WY W

3
4

Jul_

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

WY

9
10
11
1
13
14
1
1
1
1
19
0
1

Ma _

0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

bU

3
4

Mar_

PARAME ERS

W

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

S G F CA

A u g_

W

Ja n _

1

E PARAME ERS

x wv tvs

R

u

u .0
Mar.0
Nis.0
May.0
H a .0
Tem.0
A u.0
Eyl.0
E i .0
Kas.0
Ara.0 ca.03 u .03
Mar.03
Nis.03
May.03
Ha .03
Tem.03
A u.03
Eyl.03
E i .03
Kas.03
Ara.03 ca.04 u .0 4
Mar.04
Nis.04
May.04
H a .0 4
Tem.04
A u.04
Eyl.04
E i .0 4
Kas.04
Ara.04

Sales in
CASES )
3.4
3 9 .3 0
3.9
444.404
3 .9
414.314
3.493
4 4.3
30 .9 9
31 .40
1.4
.4
0.4 3
3 .0
313.13
. 10
3 9.
4 .0
4. 1
1 .3 4
33 .
3 0.40
.901
4 .13
4. 0
. 04
4 9.331
4 3 .1
3 0.103
4 1. 9
49.4
44. 3
4 1 .1
39 .3
9.09

M

dh i i hd f ef d h id ii ff h hi e d de hf ei i ed h f id eie e i hi he hi ef he df fe dhh fd if d f h ed hh ed dee df ih d fi hf e d id h ih h h e edh hdg
W aVW `W ut s st s ts

M onth

REGRESS

u

S G F CA

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

TP T

Regression
Multipl e ua e uste ua e ta a se vations

istics

01
0
09
0. 9
3 , 00

N VA

P- alue Lo er 95 er 95 Lo er 95 0
0, 00
276.762,36 348.947, 64 276.762,36
0, 00
120.190, 89 364.983,11 120.190,89
0, 01
43.920,26 248.091, 08
43.920, 26
0, 00
60.316,26 264.487, 08
60.316, 26
0, 01
31.109,92 235.280, 74
31.109, 92
0, 00
178.493,59 382.664, 41 178.493,59

n

17,73
4, 05
2, 93
3,25
2, 67
5, 62

o

t Stat

ignificance
0, 00

rrq p

Standard rror
17.647, 23
59.844, 68
49.913,91
49.913,91
49.913,91
49.913,91

10,

rrq p s o p

m

Coefficients
312. 55, 00
242.587, 00
146.005, 67
162.401, 67
133.195,33
280.579, 00

9. 53. . 9,
.539.921.376,90

ps

ˆ

nte cept
Jan_
Ma _
May_
Jul _
Sep_

5, 00 3 9. . .1 , 0
29, 00 1 9. 57.719.930, 00
3 , 00 53 .923.962.076, 0

h

df

e ession esidual otal

er 95 0
348.947,64
364.983,11
248.091,08
264.487,08
235.280,74
382.664,41

u u u u‘ u
‘t

Shifting Effect Assumption: Consumer Prom. none, Trade Prom.has 1 month delayed effect
Regression R2 =0,65

MKTG 901
4

Graduate School of Business
Exhibit 3 Regression Model With Shifting Effect

T +2
0
315.196
703.624
198.464
478.880
457.172
709.480
45.380
28.080
111.520
267.200
354.304
664.712
536.824
551.560
150.080
580.800
435.080
361.144
97.844
30.372
150.324
293.044
162.788
3 2 .5 3 2
23.468
4.503.456
500.904
0
0
46.104
92.252
4.869.952
376.556








0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0




Feb _



0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0



Au g _

13.406
133.195
105.058
5.328
2.093
6.754
1.807.920
589.949
72.662
26.554
2.615.074
209.798
27.552
46.147
7.234
65.376
485.659
385.483
1.611.686
440.208
47.309
514.426
1.438.949
101.846
754
62.213
1.600.939
854.904
1.514.707
384.989
28.512
176.731
1.125.898
345.029




0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0





o_

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0




O c t_

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0












Jun_

0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0




Ap r _

y{ y

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34








TR

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

y|

Se _

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

y

Jul_

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

y

Ma _

1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

y

Mar _

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

~

xw

TP T

‘

v

ƒ
‚
€
„

†
…

ƒ
‚
€
„

…

ƒ
‚
€
„

’ ‘‘
 

S MMARY

Jan_



‡ˆ ‡

Mar.02 i s.02
May.02
a .02
Tem.02
A u.02
Eyl.02
E i .02
Kas.02
Ara.02 ca.03 ub.03
Mar.03
i s.03
May.03
a .0 3
Tem.03
A u.03
Eyl.03
E i .0 3
Kas.03
Ara.03 ca.04 ub.04
Mar.04
i s.04
May.04
a .0 4
Tem.04
A u.04
Eyl.04
E i .0 4
Kas.04
Ara.04

Sales in
A SES Y
389.320
376.569
444.404
386.986
414.314
253.493
484.365
305.989
315.407
182.784
655.748
270.483
365.058
313.135
528.210
379.856
472.058
254.516
551.354
335.826
320.408
276.901
455.136
247.570
622.204
429.331
453.156
320.103
451.779
249.482
744.583
421.186
397.367
269.096

yz y y
‹Š ‰ ‡

M onth

I SIG IFI A T ARAMETERS

ARAMETERS



































~v y } | y y
ŽŒ Œ Œ

SIG IFI A T REGRESSIO MO E



Regre i n Stati tics
Mul ti l e R
R S uare j uste R S uare
Sta ar Error
.
O servatio s

,
,
,
,
,

”” Ÿ
Ÿ— Ÿ˜ ž •
•› ”˜
—”
”˜• ”

“

™¡ ™
œ

š šœ
– š š™
–
NO

F

.
.

,
,

t Stat
,
,
,
,
,
,

,

P v alue
,
,
,
,
,
,

¥

.
.

”” ”
£” ”
”” ”
” ”
”” ”
”” ”

”› ›
•› £
— Ÿ
•£
—˜¤ Ÿ
›£ ž

Standard Err r
.,
.,
.,
.,
.,
.,

S

.
.

Significance F
,

Ÿ •Ÿ ˜ ˜ž
›— ›” ž£
•¤ ”˜—£ —›
•¤ —• ¤Ÿ
Ÿ— ž˜Ÿ¤ ›
Ÿž £•• žž£
§¦ ’

,
,
,

L wer %
.,
.,
.,
.,
.,
.,

¤• ”•ž •Ÿ
££ ž¤Ÿ Ÿ£
›› Ÿ”— Ÿ˜—£
›› ž”£ ž £
ž› ž¤£ —˜Ÿ
ž” ——ž £˜›Ÿ
§¦

.
.
.

U pper
.
.
.
.
.
.

Ÿ •Ÿ ˜ ˜ž
›— ›” ž£
•¤ ”˜—£ —›
•¤ —• ¤Ÿ
Ÿ— ž˜Ÿ¤ ›
Ÿž £•• žž£
¨ §¦ ’

•— ”— ”›
•— ”— ”›
•— ”— ”›
•— ”— ”›
”ž ££— ”—
Ÿ ˜ •ž£ •
’

C efficients
.,
.,
.,
.,
.,
.,

.
.
.

¤• ”•ž •Ÿ
££ ž¤Ÿ Ÿ£
›› Ÿ”— Ÿ˜—£
›› ž”£ ž £
ž› ž¤£ —˜Ÿ
ž” ——ž £˜›Ÿ
¨ §¦

SS
.
.
.

£ — ””• ££› ”” ŸŸ
”˜•˜ •›—˜ —•›˜ —¤” ž• ”” •£
˜— £—ž ¤£• Ÿ”ž ›ŸŸ ”” ›
,
,
,

” £›¤ ”£” £•— —
›” ” Ÿ› £›¤ ›—ž ” ˜ ž—
¢

”— ¤” •ž£
Ÿ¤ ›£ž ”Ÿ
ž£ £Ÿ¤ ¤›
ž£ —Ÿ› Ÿ 
”— ž ” ˜£
” ˜ ˜£Ÿ ›˜Ÿ
’

œ

š

I ter e t aD Mar D
Ma D ul D
Se D

df

”” ”

Regressio
Resi ual
Total

% L wer , % U pper , %
,
.,
.,
,
.,
.,
,
.,
.,
,
.,
.,
,
.,
.,
,
.,
.,

«“
«
ǻ
«¬
«œ
“ © œª

Shifting Effect Assumption: Consumer Prom. none, Trade Prom.has 2 months delayed effect
Regression R2 =0,64

MKTG 901
5

Graduate School of Business
Exhibit 4 Regression Model With Shifting Effect

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0

TR ND
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

CP +1

Feb _D Au g _D

2.633.779
253.526
13.406
133.195
105.058
5.328
2.093
6.754
1.807.920
589.949
72.662
26.554
2.615.074
209.798
27.552
46.147
7.234
65.376
485.659
385.483
1.611.686
440.208
47.309
514.426
1.438.949
101.846
754
62.213
1.600.939
854.904
1.514.707
384.989
28.512
176.731
1.125.898

1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

°

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

°
°
°
°

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

°

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

°
°

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

°

0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

°

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

°
°
°

Jan_D Mar _D A r _D Ma _D Jun_D Jul_D Se _D O c t_D Nov_D

­

TP

°
°
°
°
°
°

315.196
703.624
198.464
478.880
457.172
709.480
45.380
28.080
111.520
267.200
354.304
664.712
536.824
551.560
150.080
580.800
435.080
361.144
97.844
30.372
150.324
293.044
162.788
3 2 .5 3 2
23.468
4.503.456
500.904
0
0
46.104
92.252
4.869.952
376.556
376.556
552.536

°
°
°
°

°
°
°
°
°
°

°
°

°
°
°
°
°
°
°
°
°
°
°
°
°
°

°
°

°
°
°

°
°

Sales in
CA SES (Y)
263.467
389.320
376.569
444.404
386.986
414.314
253.493
484.365
305.989
315.407
182.784
655.748
270.483
365.058
313.135
528.210
379.856
472.058
254.516
551.354
335.826
320.408
276.901
455.136
247.570
622.204
429.331
453.156
320.103
451.779
249.482
744.583
421.186
397.367
269.096

®

¯

ub.02
Mar.02
Nis.02
May.02
a z.02
Tem.02
A u.02
Eyl.02
Eki.02
Kas.02
Ara.02 ca.03 ub.03
Mar.03
Nis.03
May.03
a z.03
Tem.03
A u.03
Eyl.03
Eki.03
Kas.03
Ara.03 ca.04 ub.04
Mar.04
Nis.04
May.04
a z.04
Tem.04
A u.04
Eyl.04
Eki.04
Kas.04
Ara.04

­

M onth

IN SIGNIFICAN T PARAMETERS

°

SIGNIFICAN T REGRESSION MODEL PARAMETERS

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

²
±

¯
³

²
±

¯
³

²
±

SUMMA Y UTPUT

ÈÀ ¾ÀËÆÃÃ
ÉÄ
ÃË ¼¼¼Æ ¼À
Ö
½Ã ËÃÊÆÊžÇ
¾À ½ÇÃƾÃÀ
½ ¾ÇÆȼÀ
ÊÅË ËŽ¼ÆÈÀÇ
Ƚ ¾ËÈÆÃÀÀ
Á
¾ ËÃÊÆÊÀÀ
ËËÅ ÈÊËÆȽÇ
¿
¾¼ ¼
À¾ ¼È ÅÆÃÊÇ
Ö
¸
ÍÍ Ð
¼¼ Ê
¿Ä
¼¼ ÅÇ
º¿ »
¼¼ ¼ÅÀ
Ä Ï»
ÍÌ
ÁÁ
¼¼ ËÊ
Ä ¿É
È Å ÃǼÆ
Ä ¿¿
ÃÃ ¼ ÅÅ
¿ » ÂÁ
À½ ¼
¿»
¾½ ¼
»º º
¹ ¸·
¶¶
µ´
,
,
,
,
,

t St t

¹

ÊÊ ÃËÊƽÇ
ÃÊ ÊËÊƽÇ
¼Ã ÇȾÆÀÊ
ȼ ÊÈÊƽÇ
˼ ¾ËÊƽÇ
ȾÊƽÇ
ÈÅÊÅ ËÊƽÇ
ÊÀ ½ÅǾÆÇÊ
½ Å ¼Ê ÅÆ ÅÊ
À¼ ¼
Åà ½ÀÃÆÑÅÀÌ ¹Ì¸¹
,
,
,
,
,
,
,
,
,
,
,

P- v
,
,
,
,
,
,
,
,
,
,
,

Ǽ Ê
ËÊ
ÇÅÊ Ã
¾Ê ¾
˾ Ê
½Ê È
˼
È Å ÊÅ
¾Ã
¾ÅË ¾
½¼ ¾À

rror

Sig i ic

,

e

À¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
¼¼ ¼
ÓÒ¹

r

F

,
,

,
,
,
,
,
,
,
,
,
,
,

ce F
,

Lower 95%
,
,
,
,
,
,
,
,
,
,
,

ËË ÊǽÆÈÇ
ÃÀ ÃÀ ÆÊ
Ê ¾À¼ÅÆýÅÀ
ÀÀÅ ¾¼ÇƾÇÀ
ʼ ÈȾƾ
ÀÀ Åà ÅƾËÅÀ
Ë ÇÈÀÆÃË
ËÅÇ Ç ¼Æ¾
ÀË ¾ÈÅÅƾÇÅÇ
¼¼
¾Å½ ÊÃÃÆȼÇ

St

S

½È üÀƽ À
ý ÇÃËÆ Å¾ÅÀ
Ê ËËÈÆÃÇÊ
¼ÅÇ ÇË ÆÈ Ç
Ëà ÇËÃÅÆȾÅÀ
¾½ ¾¼ÈÆÈÈÇ
À À ÊƽÈÀ
þŠÃÇÅÈƼÃÀ
¼¾ ýËÆþÊ
ȼ ¼
¾Ç È˼ƽ¾Ç
ÔÔ

,
,
,

U

er 95% Lower 95, % U
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

ËË ÊǽÆÈÇ
ÃÀ ÃÀ ÆÊ
Ê ¾À¼ÅÆýÅÀ
ÀÀÅ ¾¼ÇƾÇÀ
ʼ ÈȾƾ
ÀÀ Åà ÅƾËÅÀ
Ë ÇÈÀÆÃË
ËÅÇ Ç ¼Æ¾
ÀË ¾ÈÅÅƾÇÅÇ
¼¼
¾Å½ ÊÃÃÆȼÇ
Õ

¼ Å ¾È¼ÆǾ½ÆÊǽÆÃÊË
¾ È ËÆ ÀÆ ÇËƾ
ÈÅÈ ÃÇÅËÆÈÅÀÅÃƽŽÊÆǽÅÅ

oe icie ts
,
,
,
,
,
,
,
,
,
,
,

SS

Çà ÇǼƾ¼ËÆÃʽÆÀ
¼ Å ËÇ Ãà ÇËÈÆÀýƽÊÇƽ Å
Î

Inter ept
TP
J n_D
Mar_D
pr_D
May_D
Jun_D
Jul _D
Sep_D
O t_D
N _D

,
,
,

¸¹ Í ¸

e ressi n esi du
Ttl

½È üÀƽ À
ý ÇÃËÆ Å¾ÅÀ
Ê ËËÈÆÃÇÊ
¼ÅÇ ÇË ÆÈ Ç
Ëà ÇËÃÅÆȾÅÀ
¾½ ¾¼ÈÆÈÈÇ
À À ÊƽÈÀ
þŠÃÇÅÈƼÃÀ
¼¾ ýËÆþÊ
ȼ ¼
¾Ç È˼ƽ¾Ç
Õ ÔÔ

NOV

¼¼ ¼

Regre o St tistics
Mu ti p e
Squ re d usted Squ re
St nd rd Err r
Obser ti ns

er 95, %
,
,
,
,
,
,
,
,
,
,
,

Shifting Effect Assumption: Consumer Prom.has 1 month delayed effect, Trade Prom. none
Regression R2 =0,91
MKTG 901
6

Graduate School of Business
Exhibit 5 Regression Model With Shifting Effect

u .0 2
Mar.0 2
N is .0 2
May.0 2
H a .0 2
Tem.0 2
A u .0 2
Eyl .0 2
E i .0 2
Kas .0 2
Ara .0 2
O ca .03 u .03
Mar.03
N is .03
May.03
H a .03
Tem.03
A u .03
Eyl .03
E i .03
Kas .03
Ara .03
O ca .0 4 u .0 4
Mar.0 4
N is .0 4
May.0 4
H a .0 4
Tem.0 4
A u .0 4
Eyl .0 4
E i .0 4
Kas .0 4
Ara .0 4

Sa le s in an SES )
26 3.46 7
3 8 9.3 2 0
3 7 6 .56 9
444 .4 0 4
3 86 .9 86
4 1 4 .31 4
25 3.4 93
484 .3 65
30 5 .9 8 9
31 5 .4 0 7
1 82 .7 84
655 .7 48
2 7 0.48 3
3 65 .0 58
313.13 5
528 .2 10
3 7 9.856
4 7 2 .0 58
254 .5 1 6
55 1.3 54
33 5 .826
3 2 0.4 0 8
2 7 6 .901
455 .13 6
24 7 .5 7 0
622 .2 0 4
42 9.331
45 3.1 56
3 2 0.103
45 1.77 9
24 9.482
7 44 .58 3
42 1.1 86
39 7 .3 6 7
26 9.09 6

Mar

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

å

æ

ç

ä

å

æ

ç

ä

å

æ

ç

R ME ERS

Ma

0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

ýý ý û ý üû ø þ ÷ý üû ø ø÷ ö õ ô ò óò ñð ï
S MMA

EL

ul

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

Sep

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

NS GN F

RN

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

pr

un

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

ct

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

N

No

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0

R ME ERS

Feb

1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

1

$ 2 .6 33.77 9
$ 25 3.526
$ 13.4 0 6
$ 133.19 5
$ 10 5 .0 58
$ 5 .3 28
$ 2 .093
$ 6 .7 54
$ 1.8 0 7 .9 2 0
$ 58 9.9 4 9
$7 2 .662
$ 26 .554
$ 2 .6 1 5 .0 7 4
$ 2 09.7 9 8
$ 2 7 .552
$ 46 .1 4 7
$7 .2 3 4
$ 65 .3 7 6
$ 485 .65 9
$ 3 85 .48 3
$ 1.6 11.686
$ 44 0.2 0 8
$ 4 7 .309
$ 5 1 4 .426
$ 1.4 3 8 .9 4 9
$ 101.846
$7 54
$ 62 .2 13
$ 1.6 00.939
$ 854 .90 4
$ 1.5 1 4 .7 0 7
$ 3 84 .9 8 9
$ 28 .5 1 2
$ 1 7 6 .7 31
$ 1.1 25 .8 9 8

ãâ ß Ý Ü Ø

ä
Ý Ü á Ý Ü à Ý Ü Û Ý Ü Ø Ý ß Ý Ü Ý Ü Û Ý Ü Þ Ý Ü Ý Ü Û ÚÙ Ø× ë ê êî íì ìè ë êéè è è êéè è è è

M onth

N REGRESS N M

ãâ × Ý Ü ë ê êî ë

S GN F

ug

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

1

$0
$ 31 5 .19 6
$7 03.624
$ 19 8 .464
$ 4 7 8 .88 0
$ 45 7 .1 7 2
$7 09.48 0
$ 45 .3 8 0
$ 28 .0 8 0
$ 111.52 0
$ 26 7 .2 00
$ 3 54 .30 4
$ 664 .7 1 2
$ 5 3 6 .824
$ 55 1.56 0
$ 1 5 0.0 8 0
$ 58 0.8 00
$ 4 3 5 .0 8 0
$ 3 6 1.1 44
$ 9 7 .844
$ 30.3 7 2
$ 1 5 0.3 24
$ 2 93.0 44
$ 1 62 .7 88
$ 3 2 .5 3 2
$ 2 3.468
$ 4 .5 03.456
$ 5 00.90 4
$0
$0
$ 46 .10 4
$ 9 2 .252
$ 4 .86 9.9 52
$ 3 7 6 .556
$ 3 7 6 .556

OUTP UT

R r ssio t tistics
Mu l ti p l
,8
ua
,65
djusted ua e
0, 5 tand a d o r
80.86 ,78 servati ons
35, 00

ÿ ÿ ù úù 

Lo er
276.762, 36
120.190, 89
43.920, 26
60.316, 26
31.109, 92
178.493, 59




lu e
0,00
0,00
0,01
0,00
0,01
0,00

 

ö© ¨

17,73
4, 05
2, 93
3, 25
2,67
5,62



-

öõ

ttt

er
Lo er
348.947,64 276.762, 36
364.983, 11 120.190, 89
248.091, 08
43.920, 26
264.487, 08
60.316, 26
235.280,74
31.109, 92
382.664,41 178.493, 59


õõ

ú

rro r
17.647, 23
59.844,68
49.913, 91
49.913, 91
49.913, 91
49.913, 91

ific n c
0, 00

    

ÿ

r

i

 


õ¤

ÿ ÿ ö öõ

§£ £

tn

0,68

ÿ

£

ÿ

o efficients
312.855, 00
242.587, 00
146.005,67
162.401,67
133.195, 33
280.579, 00

34 .266.242. 46,40 6 .853.248.42 ,28
18 .657.719.930, 00 6.539.921.376, 90
538.923.962.076,40

ú

5, 00
2 , 00
34, 00

¥

¦

Intercept
Jan _
Mar_
Ma _
Ju l_ e p_

f

ò ö ôó õ

Regressi on
Resi du al
Total

¥

¢¡

ANOVA

er
348.947,64
364.983, 11
248.091, 08
264.487, 08
235.280,74
382.664,41







û

Shifting Effect Assumption:Both Consumer and Trade Promotionshave 1 month delayed effect
Regression R2 =0,65

MKTG 901
7

Graduate School of Business
Exhibit 6 Regression Model With Shifting Effect

%

!$

!#

0
0
0
0
0
0
0

!

!#

!

A @9

79

7

8

7

!"

!

!

01(
(3
3(
1
33
10
(

1
1
21( 2 (
1
3
( 0 332
33
22 03
(
(
10 (03
(( 3
3
1
20 23
1( 003
12
3(
1 0((
30( 00
1 0 30
0 23
10 2(
0
0( ( (
0 01(
(3 2
32 001
32
2 30 (
0(
33
(0
33
1(
333
12(
(

2
1
0
3
(

Eki.02 0 .989
Kas.02 1 . 0
Ara.02 182 . 8
Oca.0
.8 ub.0 2 0 . 8
.0 8
Mar.0

0
0
0
1
0
0

0
0
0
0
0
1

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

8
9
10
11
12
1

0
0
0
0
0
0

0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

Nis.0
May.0
a z.0
Tem.0
A u.0
Eyl.0
Eki.0
Kas.0

1 .1
28 .210
9 .8
2 .0 8
2 .1
1.
.82
20 . 08

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0

1
1
1
1
18
19
20
21

1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

.901
.1
2.0
22 .20
29 . 1
.1
20 .10
1. 9
2 9 . 82
.8
21 .18
9.
2 9 .09

0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0

22
2
2
2
2
2
28
29
0
1
2

0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0

2
1
0
3
(
2
1
0
3
(

3(
((
(
(
(

2

CP +

Feb _

.2
1.0
1 .19
10 .0 8
. 28
2 .09
.

0
0
0
0
0
0
0

0
)
(2 12 )
0)
3 ()
2 23 0 )
3 30 )
(
1)
(
1)
30 2)
13
)
3 (3 )
1 3 3 0)
( 23)
33)
11 1 )
( 3 0 ()
01 0 3)
12( 01)
3( 2)
23 13)
00 2 )
2
)
32 0 1 )
300 1 )
11 2)
3
0)
2
)

o_

0
0
0
0
0
0
0

1 .80 .920
89 .9 9
2. 2
2.
2 . 1 .0
209 . 98

0
0
0
0
1
0

2. 2
.1
.2
.
8. 9
8.8
1 . 11 . 8
0 .208

0
0
0
0
0
0
0
0

. 09
1.2
1 . 8 .9 9
101 .8

0
0
1
0
0
0
0
0
0
0
0
0
0

2

2 .21
1 . 00 .9 9
8 .90
1. 1 . 0
8 .989
28 . 12
1.1
1 .12 .898

TP+2

ug_

0
1 .19
0.2
198 .
8 .880
.1 2
09 . 80

0
0
0
0
0
1
0

. 80
28 .080
111 . 20
2 .200
.0
. 12

0
0
0
0
0
0

.82
1. 0
1 0 .080
80 .800
.080
1 .1
9 .8
0. 2

0
0
0
0
1
0
0
0

1 0. 2
29 .0
1 2 . 88
2. 2
2. 8
.0.
00 .90
0
0
.10
92 .2 2
.8 9 .9 2
.

0
0
0
0
0
0
0
0
1
0
0
0
0

1 00 1 2()
0 1 3)
0
)
3 1 3)
)
)
0)
3
1 03 ( 0 3 )
13 ( )
(0 ()
2 1)
33 ( )
3( 0)
2( ()
33 2 )
3 3 1()
0 (3)
0)
0)
10 00)
3 1 (0)
2 3 11)
3 ( 3 0()
21 )
0
)
)
( 0 3)
3 2)
2 2 03)
23)
3 13
)
3 1 ( 2)
1 0 ()

! &$!

c t_

0
0
0
1
0
0
0

30 2 1)
(
)
( 0)
00 )
0 (( )
1 3( )
1 0 (0 )
'

Jun_

!

r_

1
2

)

TR

0
1
0
0
0
0
0

4

5

3
3
3
3
3
3
3
3
3
3
3
3
(
(
(
(
(
(
(
(
(
(
(
(

6

4

5

Ara.0
Oca.0
ub.0
Mar.0
Nis.0
May.0
a z.0
Tem.0
A u.0
Eyl.0
Eki.0
Kas.0
Ara.0

0
0
0
0
0
0
1

T P R METERS
!

88

Se _

0
0
0
0
1
0
0

7

Sa le s in
Ja n_ Mar _ Ma _ Jul_
C S ES (Y )
89 . 20
0
1
0
.9
0
0
0
.0
0
0
1
8 .98
0
0
0
1.1
0
0
0
2 .9
0
0
0
8.
0
0
0

I SIG IFIC
7

E P R METERS

8

Mar.02
Nis.02
May.02 a z.02
Tem.02
A u.02
Eyl.02

M

7

M onth

T REGRESSI

88

SIG IFIC

6

4

5

S MMARY O TP T
B

CC

B

B

CC

Reg re io n Sta ti tic
Mu l ti p l R
0 80
R Squ are
0 64
Ad j uste d R Squ are
0 58
Stand ard Error
81.743 63 b servati o ns
34,00
E
E
E
E

D

F

A

t Sta t
17,25
3, 96
2,84
3, 16
2,58
5,50

P -v a lu e
0,00
0,00
0,01
0,00
0,02
0,00

Lo er 95
277.882,73
115.937,63
39.864,98
56.260,98
27.054,65
174.438,31
I

Sta n da rd Error
18.278,43
60.622,70
50.610,68
50.610,68
50.610,68
50.610,68

P

C

Co efficien t
315.324,40
240.117,60
143.536,27
159.932,27
130.725,93
278.109,60

R RQ

Interce pt
Jan
Mar_D
May_D
Ju l _D
Se p _D

F
Sig n ifica n ce F
10,05
0,00

SS
MS
335.703.829.762,64 67.140.765.952,53
187.096.586.658,80 6.682.020.952,10
522.800.416.421,44

er 95 Lo er 95 0
352.766,07
277.882,73
364.297,57
115.937,63
247.207,55
39.864,98
263.603,55
56.260, 98
234.397,22
27.054,65
381.780,89
174.438,31
P

5,00
28,00
33, 00

I

df

R RQ P S

Re gre ssi o n
Re si du al
To tal

er 95 0
352.766,07
364.297,57
247.207,55
263.603,55
234.397,22
381.780,89
PS

FG
H

A

UT

Shifting Effect Assumption:Con. Prom. has 1 month, Trade Prom. has 2 months delayed effect
Regression R2 =0,65

MKTG 901
8

Graduate School of Business
Exhibit 7 Regression Model With Shifting Effect

o _D

TR D

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0

1
2

9
10
11
12
1
1
1
1
1
1
19
20
21
22
2
2
2
2
2
2
29
0
1
2

h p q s r g rg gg g g g

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

h p q s r g c t_D

b

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

h p q s r g d

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

fe

ul_D Se _D

a

a

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

e

un_D

c

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

V

 b W

0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

P +2

u g _D Feb _D

gp qp i sh i h rhgi p pr s i r rshi g qi g qi rspi qrh i r hgr i q r r si g pri h rri qhq q i ghr shgi sq shri qpg sqi rg pi pr qri ss p i hp i rp s q i rss q i qq pi r hsi ph i rsp qi g i h g si hs s i s gg i q rg i q s gs i pp ggq i

x

r _D Ma _D

T P R METERS
W

‚

x

1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

€€

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

x

€y

an_D Mar _D

x

a

qgs ssi qss qpgi qss qpgi s qh ri s i r qri i i r si qsr g s ri hqr g i gs gi hhp q i rr g i rg si pg gi rrh p i rr qgi h sgri h hsi h si qs ssi r h qgsi p rqqi r g rsgi pq i s i h hi hg sri hr pi p psri hh hpri rqr h i r q g pi

0.2
19 .
.0
.1 2
09. 0
.0
2 .0 0
111. 20
2 .200
.0
. 12
.2
1. 0
1 0 .0 0
0. 00
.0 0
1 .1
9.
0. 2
1 0. 2
29 .0
1 2.
2. 2
2.
.0.
00.90
0
0
.10
92.2 2
. 9 .9 2
.
.
2.

I SIG IFI x TP

€y

`X
Y

q q pqg p g qh r ghs rrp hr r pp sr g g qs gsr gg r r q ps pr qg ssr qp hr g q h sgg rsg ss q s rs hs pr qsh pg hs sg g g hs sqg ghr p hrp ssq rhp h p rs g h sg sqg rhr g r gs r gr r qh qhg r r rrr qs qpg g hg
WV

Mar.02
Nis.02
May.02 a .02
Tem.02
A u.02
Eyl.02
Eki.02
Kas.02
Ara.02
Oca.0
ub.0
Mar.0
Nis.0
May.0
a .0
Tem.0
A u.0
Eyl.0
Eki.0
Kas.0
Ara.0
Oca.0
ub.0
Mar.0
Nis.0
May.0
a .0
Tem.0
A u.0
Eyl.0
Eki.0
Kas.0
Ara.0

Sales in
SES
9. 20
.9
.0
.9
1.1
2 .9
.
0 .9 9
1.0
1 2.
.
2 0.
.0
1 .1
2 .210
9.
2 .0
2 .1
1.
.2
20. 0
2 .901
.1
2.0
22.20
29. 1
.1
20.10
1. 9
2 9. 2
.
21.1
9.
2 9.09

MODE P R METERS

x

M onth

T REGRESSI

€€

SIG IFI

2.

.9
2 .2
1.0
1 .19
10 .0
.2
2.09
.
1. 0 .920
9 .9 9
2. 2
2.
2 . 1 .0
209. 9
2. 2
.1
.2
.
.9
.
1. 11.
0.20
. 09
1.2
1.
.9 9
101.

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

2.21
1. 00.9 9
.90
1. 1 . 0
.9 9
2 . 12
1.1

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

ut v r r r r rv r t ru r r r r w r g g g g gv g t gu g g g g w g S MMARY O TP T
ƒƒ

ƒ

Regression Statisti s
Mul tiple R
,
R Square
,
Adj usted R Square
,
Standard Error
44. 45, 42
Observati ons
4,
„

‰ …
ˆ† …
‡† …

…… ‘
†

A OVA
„

‰

‰

‘ ‰‘‘

…… …ˆ

ˆ

14, 83
6,42
8,40
3,39
3,93
7,16
3,56
6,17
8,06
3,45
2,94

P-value Lower 95% pper 95% Lower 95, % pper 95, %
0,00
204.410, 20 270.685, 14 204.410,20 270.685, 14
0,00
0, 04
0,07
0, 04
0, 07
0,00
224.934, 69 372.002, 12 224.934,69 372.002, 12
0,00
44.509, 75 184.194, 17
44.509,75 184.194, 17
0,00
56.734, 44 182.638, 25
56.734,44 182.638, 25
0,00
155.044, 12 281.008, 86 155.044,12 281.008, 86
0,00
45.238, 56 171.150, 71
45.238,56 171.150, 71
0,00
124.765, 58 250.755, 52 124.765,58 250.755, 52
0,00
196.507, 91 332.184, 30 196.507,91 332.184, 30
0,00
41.981, 77 167.874, 93
41.981,77 167.874, 93
0,01
26.484, 68 152.407, 72
26.484,68 152.407, 72
“

t Stat

”

Standard Error
16.018, 83
0, 01
35.546, 59
33.762, 09
30.431, 28
30.446, 01
30.433, 30
30.452, 10
32.793, 34
30.428, 71
30.435, 93

“

Coeffi ients
237.547,67
0, 06
298.468,41
114.351,96
119.686,34
218.026,49
108.194,63
187.760,55
264.346,11
104.928,35
89.446, 20

”

’

„

Intercept
TP
Jan_D
Mar_D
Apr_D
Ma _D
Jun_D
Jul_D
Sep_D
Oct_D
Nov_D

F
Signifi an e F
23,58
0, 00

SS
MS
,
476. . 22.266, 4 47.633. 32.226,68
23, 00 46.462.094. 54, 60 2.020.091.050, 20
33, 00 522.800.416.421, 44

„

df

Regressi on
Residual
Total

•

Shifting Effect Assumption: Con. Prom. has 2 months delayed effect, Trade Prom. none
Regression R2 =0,91

MKTG 901
9

Graduate School of Business
Exhibit 8 Regression Model With Shifting Effect
SG

A

ARAME ERS

h

kj f

1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
0

1
2
3
4
5
6
7
8
9
10
11
12
13

0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0

$ 31 5 .19 6
$ 7 03 .6 2 4
$ 19 8 .464
$ 478 .88 0
$ 457 .1 7 2
$ 7 09 .48 0
$ 45 .3 8 0
$ 2 8 .0 8 0
$ 111 .5 20
$ 2 67 .200
$ 3 54 .30 4
$ 664 .7 12
$ 5 3 6 .8 2 4

0 $ 2 .6 33 .77 9
0
$ 2 5 3 .5 2 6
0
$ 13 .4 0 6
0
$ 133 .19 5
0
$ 10 5 .0 58
0
$ 5 .32 8
0
$ 2 .093
0
$ 6 .754
0 $ 1 .8 0 7 .920
0
$ 58 9 .9 4 9
0
$ 7 2 .66 2
1
$ 2 6 .554
0 $ 2 .6 1 5 .0 74

0
0
0
0
0
1
0
0
0
0
0
0
0

313 .13 5
5 2 8 .210
3 7 9 .856
47 2 .0 58
2 54 .5 1 6
55 1 .3 54
33 5 .8 2 6
320 .4 0 8

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0

14
15
16
17
18
19
20
21

1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

$ 55 1 .56 0
$ 1 5 0 .0 8 0
$ 58 0 .8 00
$ 4 3 5 .0 8 0
$ 3 6 1 .1 44
$ 9 7 .844
$ 30 .3 7 2
$ 1 5 0 .32 4

0
$ 209 .7 9 8
0
$ 2 7 .55 2
0
$ 46 .1 47
0
$ 7 .23 4
0
$ 65 .3 76
0
$ 485 .65 9
0
$ 3 85 .48 3
0 $ 1 .6 11 .686

0
0
0
0
1
0
0
0

2 76 .901
455 .13 6
2 47 .57 0
6 22 .20 4
4 29 .331
45 3 .1 56
320 .103
45 1 .77 9
2 4 9 .48 2
744 .58 3
4 21 .1 86
39 7 .3 67
2 6 9 .09 6

0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0

22
23
24
25
26
27
28
29
30
31
32
33
34

0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0

0
$ 293 .0 44
0
$ 1 6 2 .788
0
$ 32 .5 32
0
$ 23 .468
0 $ 4 .5 03 .456
0
$ 5 00 .90 4
0
$0
0
$0
0
$ 46 .10 4
0
$ 92 .2 5 2
0 $ 4 .86 9 .9 5 2
1
$ 3 76 .556
0
$ 3 76 .556

0
$ 44 0 .20 8
0
$ 47 .309
1
$ 5 1 4 .4 2 6
0 $ 1 .4 3 8 .9 4 9
0
$ 101 .846
0
$ 754
0
$ 6 2 .213
0 $ 1 .6 00 .939
0
$ 854 .90 4
0 $ 1 .5 1 4 .7 0 7
0
$ 3 84 .9 8 9
0
$ 2 8 .5 12
0
$ 1 76 .7 31

0
0
0
0
0
0
0
0
1
0
0
0
0

ig

ct D

o

e

e

un D

1

eb D

el

e

R D Apr D

2

Aug D

e

e

g

f

ul D Sep D

d

e

e

d

e

e

e

d

q sprpq p t D

0
0
0
0
0
0
0
0
0
0
1
0
0

a n D Mar D May D

kj –

qup

Ara.03
O ca.0 4 u .0 4
Mar.0 4
N is.0 4
May.0 4
H a .0 4
Tem.0 4
A u.0 4
Eyl.0 4
E i .0 4
Kas.0 4
Ara.0 4

u

N is.03
May.03
H a .03
Tem.03
A u.03
Eyl.03
E i .03
Kas.03

M DEL ARAME ERS v Mar.02
N is.02
May.02
H a .02
Tem.02
A u.02
Eyl.02
E i .02
Kas.02
Ara.02
O ca.03 u .03
Mar.03

Sa le s in
ASES
3 8 9 .320
3 76 .56 9
444 .4 0 4
3 86 .9 86
4 1 4 .31 4
2 5 3 .4 93
484 .3 65
30 5 .9 8 9
31 5 .4 0 7
1 8 2 .784
655 .748
2 7 0 .48 3
3 65 .0 58

™—
˜

–

M onth

t

REGRESS

v q sprpq p qp t A

t

SG

m

n

o m n

o m n

SUMMARY OUTPUT
Re ression Statistics
Multiple R
0, 80
R Square
0, 64 dj usted R Square
0, 58
Standard Error
81.743, 63
Observati ons
34, 00 w x

xy

NO

17, 25
3, 96
2, 84
3, 16
2, 58
5, 50

P-v alue
0, 00
0, 00
0, 01
0, 00
0, 02
0, 00

Lower 95
277.882, 73
115.937, 63
39.864, 98
56.260, 98
27.054, 65
174.438, 31 z t Stat

U pper 95
Lower 95 0 U pper 95 0
352.766, 07 277.882, 73 352.766,07
364.297, 57 115.937, 63 364.297,57
247.207, 55
39.864, 98 247.207,55
263.603, 55
56.260, 98 263.603,55
234.397, 22
27.054, 65 234.397,22
381.780, 89 174.438, 31 381.780,89 z Standard Error
18.278, 43
60.622, 70
50.610, 68
50.610, 68
50.610, 68
50.610, 68

z{

Coefficients
315.324, 40
240.117, 60
143.536, 27
159.932, 27
130.725, 93
278.109, 60

F
Si nificance F
10, 05
0, 00

z{

x

ntercept
Jan_D
Mar_D
May_D
Jul _D
Sep_D

SS
MS
5, 00 335.703.829.762, 64 67.140.765.952, 53
28, 00 187.096.586.658, 80 6.682.020.952,10
33, 00 522.800.416.421, 44

w

df
Regressi on
Residual
Total

|

Shifting Effect Assumption: Con. Prom. has 2 months, Trade Prom. has 1 month delayed effect
Regression R2 =0,64

MKTG 901
10

Graduate School of Business
Exhibit 9 Regression Model With Shifting Effect

TP+2

‚

‚
‚

‚

‚

‚

‚
‚

‚
‚
‚

‚
‚

‚
‚

‚
‚
‚
‚

‚
‚

‚

‚
‚

0
0
0
0
0
0
0
0
0
0
0
1
0

‚

0
0
0
0
0
0
0
0
0
0
1
0
0

‚
‚

0
0
0
0
0
0
1
0
0
0
0
0
0

‚

0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

‚

22
23
24
25
26
27
28
29
30
31
32
33
34

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

25 3.52 6
1 3.4 0 6
1 33.195
105 .058
5 .3 28
2 .09 3
6.7 5 4
1 .80 7.920
589 .9 4 9
7 2 .66 2
2 6.55 4
2 .6 15 .0 74
209 .7 98
2 7.552
46.1 47
7.2 34
6 5 .376
4 85 .6 59
3 85 .4 8 3
1 .6 11 .6 8 6
44 0 .208
47.3 09
51 4.4 2 6
1 .43 8 .9 4 9
101 .8 46
754
6 2 .21 3
1 .6 00 .9 3 9
85 4.90 4
1 .51 4.7 0 7
3 8 4.989
28 .512
1 76.73 1

‚
‚

0
0
0
0
0
0
0
0
0
1
0
0
0

Feb D Au g D

2 .633.77 9

‚

0
0
0
0
0
0
0
1
0
0
0
0
0

‚
‚
‚
‚
‚
‚
‚
‚
‚
‚

0
0
0
0
0
1
0
0
0
0
0
0
0

3 15 .19 6
7 0 3.6 2 4
198 .464
47 8 .880
4 5 7.1 7 2
7 09 .4 80
4 5 .3 80
28 .080
111 .520
2 67.200
3 5 4.3 0 4
664.7 12
5 36.82 4
551 .5 6 0
150 .080
580 .800
43 5 .080
36 1 .1 44
9 7.8 44
3 0 .37 2
150 .3 2 4
29 3.0 44
1 6 2 .7 88
3 2 .5 3 2
2 3.46 8
4.50 3.4 5 6
500 .90 4
0
0
46.10 4
92 .252
4.8 6 9 .952
376.55 6

‚
‚

0
0
0
1
0
0
0
0
0
0
0
0
0

‚
‚
‚
‚
‚
‚



0
1
0
0
0
0
0
0
0
0
0
0
0

CP+2
0

‚



0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

‚
‚

€

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0

‚



0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

‚

~

0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

‚



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

‚
‚



0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0

‚



0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

‚
‚



0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

‚
‚
‚



1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

‚

un D O c t D Nov D

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

‚

~

T RND A r D



D



~

}

2 76.901
4 55 .1 36
2 47.5 7 0
6 22 .20 4
4 29 .33 1
4 5 3.15 6
3 20 .10 3
4 51 .77 9
2 4 9 .4 82
744.58 3
4 21 .18 6
3 9 7.367
2 6 9 .09 6

D ul D Se



ƒ

„

ƒ

„

Ara.0 3
Oca.0 4 ub.0 4
Mar.0 4
Nis.0 4
May.0 4 az.0 4
Tem.0 4
A u.0 4
Eyl.0 4
Eki.0 4
Kas.0 4
Ara.0 4

D Mar D Ma

‚

Mar.02
Nis.02
May.02 az.02 Tem.02
A u.02
Eyl.02
Eki.02
Kas.02
Ara.02
Oca.0 3 ub.0 3
Mar.0 3
Nis.0 3
May.0 3 az.0 3
Tem.0 3
A u.0 3
Eyl.0 3
Eki.0 3
Kas.0 3

‚

Sa le s in an CA SES ( )
3 89 .3 20
376.5 6 9
444.4 0 4
3 8 6.98 6
4 1 4.3 1 4
25 3.4 9 3
4 8 4.36 5
3 05 .989
3 15 .4 0 7
182 .7 8 4
6 55 .74 8
2 7 0 .4 8 3
36 5 .058
3 1 3.1 3 5
528 .210
37 9 .85 6
47 2 .058
25 4.51 6
551 .3 5 4
33 5 .82 6
3 20 .4 08



M onth

INSIGNIFICANT PA RA METERS


SIGNIFICANT REGRESSION MODEL PA RA METERS

ƒ

„

…

SUMMAR OUTP UT
†‡ †

††

Reg re ion Sta ti ti
Mu lti p l e R
0, 80
R Square
0, 64
Adjuste d R Square
0, 58
Standard Error
81.743,63
Observati o ns
34, 00
ANOV A

t Sta t
17, 25
3, 96
2, 84
3, 16
2, 58
5, 50

P -v a lu e
0, 00
0, 00
0, 01
0, 00
0, 02
0, 00

Lower 95%
277.882, 73
115.937, 63
39.864, 98
56.260, 98
27.054, 65
174.438, 31

Š Š‰

Sta n da rd Erro r
18.278, 43
60.622, 70
50.610, 68
50.610, 68
50.610, 68
50.610, 68

er 95% Lower 95,0%
352.766, 07
277.882,73
364.297, 57
115.937,63
247.207, 55
39.864,98
263.603, 55
56.260,98
234.397, 22
27.054,65
381.780, 89
174.438,31

Š Š‰

ˆ

†

C oeffi ien t
315.324,40
240.117,60
143.536,27
159.932,27
130.725,93
278.109,60

‡

‡

In terce p t
Jan_D
Mar_D
May_D
Ju l _D
Se p_D

F
Sig n ifi a n e F
10, 05
0, 00

SS
S
5, 00 335.703.829.762, 64 67.140.765.952, 53
28, 00 187.096.586.658, 80 6.682.020.952, 10
33, 00 522.800.416.421, 44

‡

df
Regre ssi o n
Re si dual
To tal

er 95,0%
352.766, 07
364.297, 57
247.207, 55
263.603, 55
234.397, 22
381.780, 89

Shifting Effect Assumption: Both Consumer and Trade Promotions have 2 months delayed effect
Regression R2 =0,64

MKTG 901
11

Similar Documents