-UNIT 11 REVIEWYou must be able to: Identify hypotheses and predictions. Recognize and describe hypothesis tests. Recognize a base rate, a false negative rate, and false positive rate, and use these in BT. Analyze hypothesis tests (with true or false predictions) using BT. Combine evidence Think of necessary conditions for evidence, and for a report of evidence. Construct a disconfirmation argument that includes a necessary condition. New Vocabulary Confirmation (spelling: confirmation, not conformation) o Disconfirmation Prior probability: P(H) and P(Not-H) Plausibility Base rate Updated probability: P(H|E) or P(H|Not-E) False negative rate: P(Not-E|H) False positive rate: P(E|Not-H) Class Preparation Questions …show more content…Label the Bayes Box. B C A D a) A: P(E|H); B: P(H); C: P(Not-H); D: P(E|Not-H) b) A: P(Not-E|H); B: P(H); C: P(Not-H); D: P(Not-E|Not-H) c) A: P(H); B: P(E|H); C: P(E|Not-H); D: P(Not-H) d) A: P(E|H); B: P(H|E); C: P(E|Not-H); D: P(Not-H|E) © Lyle Crawford - 210 - b. Which part of a Bayes Box is set by the false positive rate of a test? C D A B a) A b) B c) C d) D c. When is an hypothesis confirmed by evidence? a) P(H) > P(E) b) P(H|E) > 0.5 c) P(H|E) > P(H) d) P(E|Not-H) > …show more content…b) It can be observed. c) It is plausible. d) It makes a prediction. f. When does a piece of evidence confirm an hypothesis? a) P(H) > P(E) b) P(E|H) > P(E|Not-H) c) P(H) > P(Not-H) d) P(E|Not-H) > P(E|H) g. Which pattern does a disconfirmation argument have? a) AA b) DA c) AC d) DC h. In Bayes’ Theorem, P(Evidence) = a) [P(E) x P(H)] + [P(Not-E) x P(Not-H)] b) [P(H|E) x P(E)] + [P(H|Not-E) x P(Not-E)] c) [P(E) x P(Not-E)] + [P(H) x P(Not-H)] d) [P(E|H) x P(H)] + [P(E|Not-H) x P(Not-H)] © Lyle Crawford - 211 - i. What is Bayes’ Theorem? a) P(H) = [P(E|H) x P(E)] / P(H|E) b) P(H|E) = [P(E|H) x P(H)] / P(E) c) P(H) = [P(H|E) x P(E)] / P(E|H) d) P(H|E) = [P(E|H) x P(E)] / P(H j. How is a necessary condition NC included in a confirmation argument? a) If H, then E-AND-NC. b) IF H, then E-OR-NC. c) If H-AND-NC, then E. d) If H-OR-NC, then E k. When is a prediction the perfect test of an hypothesis? a) P(E|H) = 0; P(E|Not-H) = 0 b) P(E|H) = 1; P(E|Not-H) = 0 c) P(E|H) = 0; P(E|Not-H) = 1 d) P(E|H) = 1; P(E|Not-H) = 1 l. What does a false prediction tell us? a) Some necessary condition is false. b) The hypothesis is false. c) (a) or (b). d) (a) and (b). m. Which probability is determined by the false negative rate of a