...….hakhdbkajdaj kbdhabkdahibdeknqbihakbdihiabdhhiuhdbakn bdiuhakndshadbahdiuhans dbhiuahdnhc d d d d d d f kns sljs akhfa shflaj aojfda ioahda kahda dauhd ada da diabd aih aib abd anbdia dnajn akbdiab dkabd qdjnaond alnan dajndlamija daod akjdnaj daobd wdjouwne fmr nfouiw fnieofjwnfnf ifnlws fsof onf oiwnf wlnfn efihw fojf wmlnfojw fwmf owjf wlfnwnf nwnbfhjwf;wnfcw fon woif wbfowf w fiowbwf owf wofb wofwb fwofw wkf weovon ion iuh n jh in jouj ojhuih jh ihiuh jhi hi joui n h hjn hyu ohniy hij ihb iujm kh yuhn jl uh ujpk hiiu oj hiuo jui hjk nb ihnjl ljk hyih kln uh jkmn hy j ng hj g jk h yu jn gu bjkl hi jn ihh jkj y hvf vfev fdg fg fdg df fgfdgd gdhrg feg fgf efdrg g f gosjo onb jfjfldndslk sns ksnn j s ks lsobjo sbosn rnuo jgronjngsnbrgnbkmngjnbgnm I k gkogn jof I m oivbkj uin kjj kjn ju j uhn vkjh j h jnjinih bh bh hbnj ni nih nh u nyf fn tf bhf h h u ft jhy7 b jk bnug ugy g uuj hy uggn ubg byt byth uh uyh utghuy uyh by hgngjnyi guin I I uh ium inh ing iu iyng hiu nun gnu ygnygn ig nf gnr wnf f f f sf gg rt t r geg ege ere t tr egfdgd dfdgdf g er g t g rg e ger f gee fdf ergegtre ger geg e g eg en g nre ge g re gijkj nijh uyg b h ihn I iuni hgerihie...
Words: 254 - Pages: 2
...arXiv:math.DG/0207039 v1 3 Jul 2002 Exterior Differential Systems and Euler-Lagrange Partial Differential Equations Robert Bryant Phillip Griffiths July 3, 2002 Daniel Grossman ii Contents Preface Introduction 1 Lagrangians and Poincar´-Cartan Forms e 1.1 Lagrangians and Contact Geometry . . . . . . . . . 1.2 The Euler-Lagrange System . . . . . . . . . . . . . . 1.2.1 Variation of a Legendre Submanifold . . . . . 1.2.2 Calculation of the Euler-Lagrange System . . 1.2.3 The Inverse Problem . . . . . . . . . . . . . . 1.3 Noether’s Theorem . . . . . . . . . . . . . . . . . . . 1.4 Hypersurfaces in Euclidean Space . . . . . . . . . . . 1.4.1 The Contact Manifold over En+1 . . . . . . . 1.4.2 Euclidean-invariant Euler-Lagrange Systems . 1.4.3 Conservation Laws for Minimal Hypersurfaces 2 The 2.1 2.2 2.3 2.4 2.5 Geometry of Poincar´-Cartan Forms e The Equivalence Problem for n = 2 . . . . . . . Neo-Classical Poincar´-Cartan Forms . . . . . . e Digression on Affine Geometry of Hypersurfaces The Equivalence Problem for n ≥ 3 . . . . . . . The Prescribed Mean Curvature System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v vii 1 1 7 7 8 10 14 21 21 24 27 37...
Words: 82432 - Pages: 330