Free Essay

Efficient Integration Between an Integrated Optics Raman Spectrometer and a Cmos Based Photo Detector

In:

Submitted By gvdengh
Words 9532
Pages 39
Group 2.6
Efficient integration between an integrated optics Raman spectrometer and a CMOS based photo detector

Group 2.6
Dirk Reith, Ewoud van Lent, Zeno Geuke, Martijn Blom, Gijsbert van den Engh
Coach:
Fehmi Civitci
Hugo Hoekstra
Senior Coach:
Gert-Jan Koster
OTNW-Oktober-2011

Table of Contents

Part 1: The research page 3
Introduction page 4
Chapter 1: Raman Spectroscopy page 5
Chapter 2: Integrated Raman Spectroscopy page 9
Chapter 3: The Experiment page 12
References page 19

Part 2: The research group page 20 Introduction page 21 Chapter 1: IOMS in general page 22 Chapter 2: The Chairman interview page 23 Chapter 3: The Master Student interview page 25 Chapter 4: The Postdoctoral researcher interview page 26 Chapter 5: The Ph. D student interview page 27

Part 3: Strategies to acquire information (Dutch language) page 28 Task 1 page 29 Task 2 page 42

Part 1: The research

Introduction

For the subject OTNW we got to choose a research group to follow in their research. There was a large amount of groups. We chose to follow group 2.6: “The efficient integration between a integrated optics Raman spectrometer and a cmos-based photo detector.
This project seemed very interesting and we got appointed a coach. One of the researchers explained us everything about the project including the theory and the devices that are used. He also showed us the setup of one of the experiments that they are performing.
The report is organized as follows, first we tell some theory about Raman spectroscopy itself, then how it is implemented in daily life, and how it is integrated.
After that we will give more information about the setup and the experiment that we've seen.
Chapter 1: Raman spectroscopy

What is it? [1][2]
Raman spectroscopy is a leading spectroscopic technique based on the Raman effect that is used in many domains, including Solid-state physics and Chemistry. Using Raman spectroscopy one is able to detect the compositions of certain molecules, like a fingerprint, having the (infrared) frequency corresponding to the vibrational and the rotational modes

Raman spectroscopy is based on the Raman scattering, which is also called inelastic scattering, this is the scattering of monochromatic light, which usually origins from a laser with a range near the infrared or ultraviolet, more about this later.

Raman spectroscopy is much like infrared spectroscopy, as they both rely on the shift in energy states in vibrations and rotations, however infrared spectroscopy is based on the absorption of the light whereas Raman spectroscopy is based on the scattering. The fact that they are both based on another principle makes them a good combination to gain information about a certain vibration or rotation, as in some occasions infrared spectroscopy can’t give you enough information about the to be analyzed material, e.g. when there is a certain symmetry, where Raman spectroscopy can, and vice versa. Therefore it is recommended to use both spectroscopic techniques to gain more useful and specific information about certain modes in a system.

Figure 1.1 Energy level diagram showing the states involved in Raman signal. [2]
As mentioned before, Raman spectroscopy is based on Raman scattering, which is the inelastic scattering of a photon, for example certain in molecules in human tissue. When a photon interacts with the material, for instance a liquid, solid or gas, and the frequency of this photon shifts to either red or blue. A blue shift can be seen as the photon gaining energy from the material, whereas a red shift can be observed as the photon depositing energy to the material, these shifts are called the
Raman shifts. And they are characteristics for the molecules that are observed.
However, the Raman scattering is very weak, and one of the principally difficulties in Raman spectroscopy is to segregate this scattering from the way more intense Rayleigh scattering. Rayleigh scattering occurs when there is no energy shift between the incoming and outgoing light. There are more scatterings though, for example fluorescence, which also has to be segregated before you can measure the Raman scattering.
As the Raman scattering is very weak, typically varying from 10-9 to 10-6 of the intensity of the other scatterings, it is difficult to observe the Raman scattering without a very sensitive detector or intense monochromatic excitation. But now, as there has been found a solution to overcome the difficulties in separating the scatterings it is becoming easier and easier to separate them.

A schematic Raman spectrometer[1][2]

On the right you can see a simple schematic drawing of a modern Raman spectroscopic instrument, showing the main parts of the system.

Figure 1.2 Schematic of laser Raman instrumentation. [1]
At first the laser, to create a light beam, then a mirror is used to reflect the light into the optical system to focus the light on the sample, and then there is the interaction between the light and the sample, after that the light reaches another optical system and a notch filter, in which all scatterings but the Raman scattering are removed. At the end there is a spectrometer (often a CCD-detector) to detect the remaining light and send data to the computer linked to it.

It is of importance to mention that Raman spectroscopy using near-infrared light has the advantage that the irradiation reaches further into biological tissues and creates lower fluorescence.

Applications for Raman spectroscopy[1][2]
Raman spectroscopy is often used in chemistry, as the information obtained using it is specific to the chemical bonds and symmetry of molecules, and since these are characteristics for molecules, you can use it to identify them.
For example, Raman gas analyzers are often used in medicine for real-time monitoring of anesthetic gases and controlling the breathing of the patient.

Raman spectroscopy can also be used through transparent windows in for example reactors, making it way less dangerous to analyze the reactions that are occurring inside, and still giving enough information to control them ( heating/cooling/stirring ). Thus making it safer and easier to maintain the reactions

Recently a company discovered they can use Raman spectroscopy to determine the amount of dust and fat in cheese, which is way better than the method they used before, as this used toxic chemicals, including sulfur acid. The combination of these toxic chemicals and nourishment is not a very safe way, as the analyzing might leave traces of these chemicals in the food that, on its turn, is distributed and consumed, which could cause serious health hazards.

Another useful implication of Raman spectroscopy is in the diagnosis of Atherosclerotic cardiovascular disease (atherosclerosis), as this one of the primary causes of mortality in the modern western world, and it is not very likely to disappear unless treated well. However, the current method of diagnosing atherosclerosis involves X-ray angiography, along with other methods that observe arterial stenosis, is unable to detect the most vulnerable spots where the Atherosclerosis is occurring, that are responsible for the largest part of the acute vascular incidents.

Below you can see the Raman spectrum of a normal aortic valve (a) and the Raman spectrum of a calcified aortic valve(b). The peak in (b) at approximately 960 cm-1 is typical for calcified biological tissues.

Figure 1.3b Raman spectrum of calcified aortic valve obtained in vitro with 830 nm excitation. [1]
Figure 1.3a Raman spectrum of normal aortic valve obtained in vitro with 830 nm excitation [1]

As you can see, Raman spectroscopy is starting to be more and more important in the modern World.

[1], [2]

Chapter 2: Integrated Raman Spectroscopy
Small scale
As said before, it’s inconvenient to have a bulky Raman spectrometer. There are however new techniques that allow the design of a small scale spectrometer. In the future it may be possible to design a complete Raman spectrometer with the size of a ballpoint pen, in the present however the researchers are aiming for a spectrometer on a chip.
The two most important parts for an integrated Raman spectrometer already exist. One of them is the Arrayed Waveguide Grating or AWG and the other is the Photo detector, which is CMOS (Combined Metal Oxide Semiconductor)-based. [3]

Figure 2.1
Figure 2.1 shows a schematic drawing of the top view of a spectrometer based on AWG’s. Numbers 1, 3 and 5 indicate regular waveguides. Numbers 2 and 4 indicate wider chambers that allow light to diverge. [4]
The AWG
What is happening is that the scattered light from the sample arrives through waveguide 1. Because the initial light that illuminated the sample was laser light, this is monochromic light. This light then enters chamber two and diverges, after which the light enters the waveguides labelled 3. As shown in the picture, these waveguides don’t have the same length, so when the light enters chamber 4 the light isn’t in phase anymore. At this point the light of every single waveguide diverges again, which allows for interference between the photons coming from the different waveguides. Due to this interference, the light of a specific wavelength range concentrates at a specific location on the other end of chamber 4 and is there collected in yet another waveguide. This waveguide now contains light of only one wavelength range, so light of only one colour. [3] [5]

Because every waveguide now only contains the light of a specific wavelength range, all the waveguides together contain a spectrum of light, which is exactly what we want in a spectrometer. The only thing we have to do now is measure the intensity of the light of each colour; however, there is a small problem. A waveguide has a diameter of about 1 micrometer. This requires a very small photo detector (PD). A CMOS based PD is perfect for the job! There is one but: A CMOS chip has metals in it and a waveguide just doesn’t work when it has metals around it. Let’s look at the CMOS in closer detail.
The photo detector
Figure 2.2
Figure 2.2 shows a single photodiode. [6]
A photo detector consists out of many photodiodes, which are linked together. The more photodiodes per unit of surface area, the more sensitive the PD is. Inside the photodiode there is a voltage difference between the top and bottom layer. This potential was built in at the production stage. When light hits the electrons of the atoms in the charged layer in the photodiode, at may free an electron. This electron is then pulled to the positive side of the photodiode by the built in potential, which results in an electric current. This current can then be measured and is a measurement for how many photons hit the photodiode, so it’s a measurement for the intensity of the light.
The problem
In order to be usable for its intended application, the Raman spectrometer as a whole needs to have the size of chip. This means that the chip which is containing the CMOS and the chip that is containing the AWG need to be combined by placing them on top of each other. This has proven to be quite difficult, because of the different substrates and low intensity of the light. The research team we are following has however come up with a solution.

Figure 2.3
Figure 2.3 shows a schematic drawing of the solution to the problem. [5]
The solution
What they are planning to do is combining the photo detector and the waveguides with integrated optics (the AWG), but keep them separated by a special layer, which doesn’t let the metals from the photo detector hinder the optical section. What happens is that the light comes out of the waveguide and hits a special mirror, which reflects the light upwards. This light will then diffuse a little bit while passing through the dielectric layer and hit the photo detector. Where is will be detected. [7]
Of course the mirror doesn’t reflect 100% of the light and the initial signal isn’t very strong to begin with, so it is important to maximise the efficiency. Because of research [2] data and manufacturing convenience the angle of the mirror was chosen to be 45°. The mirror is manufactures by creating a gap in the cladding layer in which the waveguide is placed, right as the end of the waveguide. The gap contains air end the waveguide is made out of an optically more dense material, so due to total reflection the light will reflect upwards when the angle is 45°.[8]
This means that the CMOS-based photo detector can be combined with an integrated optics spectrometer (mainly the AWG) on the same chip, so this is one step closer to small scale Raman spectroscopy.
Chapter 3: The experiment

The goal of the experiment is to measure the efficiency of the TIR mirror that is used in the optical chip, which can be seen in figure 2.3. To gain this goal, we use the following set-up.

Figure 3.1: the set-up 1. Red light lamp 2. Laser 3. Fiber 4. This is an adjustable part of the experiment that the fiber is connected to, so you can adjust the positioning of the light beam. This can be accurate to mm. 5. Camera 6. Chip with a TIR Mirror 7. Photo detector 8. Amplifier 9. Voltage meter 10. Computer

The fiber that transports the laser beam has to be placed right in front of the waveguide that’s placed on the chip. But the human eye can’t see the laser beam. That’s why we need to use a light that can be seen to place the fiber in front of the waveguide. Now we only have to dispatch the fiber from the red light lamp and attach it to the laser. Off course the laser beam isn’t perfectly placed in front of the center of the waveguide. We can achieve this by adjusting the positioning of the fiber to the place where the voltage meter shows the highest voltage. Now we can measure two variables, the power of the laser beam that reaches the photo detector after being reflected by the mirror and the intensity of the laser beam that travels through the Waveguide by using a camera. We call these P1 and I1. As can be seen in figure 3.2. The laser beam that reaches the mirror is being reflected towards the viewer. Now we need to measure reference power and reference intensity. The fiber has to be placed in front of the second waveguide on the chip that doesn’t travel to the mirror but to the side of the chip. The photodetector has to be placed at the side of the chip. Now we need to measure the power and intensity of the laser beam traveling to the waveguide. We call these P2 and I2. When measuring I1 and I2 it’s important to only measure the intensity of the area where the laser beam can be seen. The pixels used for I1 have to be of the same amount as used for I2. We also have to make pictures when there is no laser beam as references (Ir1 and Ir2). The difference between I1 and Ir1 is being used for Figure 3.2: Top view of the chip that’s used for the experiment To calculate the intensity we use the following formula: (P1 / P2) * (I2 / I1)

Measurement
Not all the light that falls on the mirror will be reflected, a part of it will be ‘lost’. So the mirror’s efficiency is not 100%. It’s important for the device that the efficiency of the mirror is as high as possible.
To determine the mirror’s efficiency we needed to do an experiment ( of course, when manufacturing the integrated device you need to do a lot of tests to determine the mirror’s efficiency, but for this report we just want to show how you can figure out the efficiency in a simple way).
The experiment we did, contained two light beams ( or waveguides); one reflected beam ( by the mirror, from now on called MWG ( Mirror Wave Guide)) and one not reflected beam ( RWG, Reference Wave Guide). Because the mirror’s efficiency is not 100%, the intensity of the MWG will be lower than the intensity of the RWG. That’s why we needed not only the MWG to determine the mirror’s efficiency, but also a RWG. This beam is used as a reference beam, which we assume has not lost any of its light.
Important is that in this case the intensity of the MWG could be higher. That will mean that the Power used for the light is higher than the Power used to produce the RWG. So to determine the efficiency we should not only look at the intensity, but also at the power that produced that intensity.
The formule for the efficiency will be; ƞ = (P1 / P2) * ( I2 / I1)
We determined the intensity of the beams by taking pictures of both beams. It has to be dark when taking the pictures, otherwise you can’t see them because the beams are very tiny. Both beams can be seen on the pictures below, of course highly magnified.
With the computer programme Matlab we can calculate the intensity of the pixels on a certain interval. Every pixel has its own value, the more light ( or white) the pixel becomes, the higher the value will be. This value represents the intensity of the pixel. By selecting a certain area, Matlab can sum up all the pixels’ values in the selected area. This gives us the intensity of the beam in the selected area. We took five pictures per beam and calculated the average intensity of the beams to make our measurement more accurate.
But this is not enough to take an accurate measurement. When the light generator is switched off, there will be no beam. But this does not mean that the background is fully dark. There will always be some light, from outside the room or from devices in the room that are switched on ( LED lights in a computer to show the computer is switched on, for example). So if we project the beam, this does not mean that values of the pixels all come from the beam itself. They will also be determined by background light.
This means we have to take a picture when the light generator is switched off. Than we can take a picture which contains only the background light. If we take the same area as the area we want to check for the beams, than our programme will calculate the intensity of this area, and so the we have the ‘background’ intensity of the beam’s area. By subtracting this intensity from the intensity measured with the light switched on, we get the beam’s intensity in the selected area.
So we had to select an area. As you can see on the picture, the RWG has a bend on the left side. To measure its intensity we have to pick an area when the beam is right. Therefore we choose four coordinates which are the corners of an area. So, we will measure the intensity of the light inside that specific area. By taking the right x-value as high as possible our measurement will be more accurate. Than we take the y-values so that they are on the edge of the beam. For the RWG we had to take a different y-values compared to the MWG y-values, otherwise the beam wouldn’t lie in the selected area. But we have to beware that we need exactly the same value for both the areas, to make calculation correct. The x-values for both areas are kept the same. If the x-values are kept the same, the difference in x-value is also the same; dx1 = dx2. To make sure we have the same amount of pixels with different values for y we just need to make sure our dy is the same for both beams. We took a look on the picture and selected the y-values ( by looking where the edges of the beam are and also considering that the dy has to be same as for both beams). If you take look at the pictures, you can see the values for the x and y coordinates and as you can see that dx1= dx2 and dy1 = dy2. This means the selected areas in have the same area value, just what we needed for our calculation.

Figure 3.3; MWG beam with coordinates.
Figure 3.4; RWG beam with coordinates.

Now we have selected areas for both beams which contain the same amount of pixels. But as said before, we also need to know the intensity of the background, so we can subtract this from the beam’s intensity. To do so, we have to take the same area on the picture with no beam . Which means not only the same value of the area, but also exactly the same coordinates of the corners. Than our programme in Matlab will calculate the intensity of the selected area, in this case the intensity of the background light in the area.

Figure 3.5; Background ‘light’ with coordinates.
We let the programme calculate the intensity of the beams, first the values for the MWG. As said before we will do 5 measurements per beam.

Intensity ( cd) | RWG | Background RWG | MWG | Background MWG | 1 | 128435646 | 102439910 | 144576294 | 102965033 | 2 | 135688480 | 102439910 | 153265853 | 102965033 | 3 | 128975480 | 102439910 | 147194387 | 102965033 | 4 | 128621771 | 102439910 | 150133316 | 102965033 | 5 | 127914305 | 102439910 | 148956476 | 102965033 | Average Intensity | 129927136,4 | 102439910 | 148825265.2 | 102965033 |
Figure 3.6; intensity RWG, MWG and background

As you can see, the background intensity is the same for all 5 measurements per beam ( MWG and RWG).To get the Intensity of the MWG ( I1) and RWG ( I2) we subtract the background intensity from the average values for I1 and I2.
To calculate the efficiency, we only need the power of the beams, P1 and P2.
While making the MWG the light generator used a voltage of 2.28V. A voltage of 0.8 V was used for making the RWG. For both we used the same current. So if we want to compare the power used for both beams, we just check the voltages used for them, because the current is equal for both.;
P1 / P2 = I1 * U1 / I2 * U2 ( in this case the symbol ‘I’ is used as current).
I1= I2 ( we used the same current for both beams)
So; P1 / P2 = U1 / U2
Than the efficiency can be determined by the formula; ƞ = (U1 / U2 ) * ( I2 / I1)
With our measurements and calculated values our result is an efficiency of approximately 57 %.

Discussion
Overall we are very pleased with the result we have found. This experiment has already been done by our coaches, they found a theoretical efficiency of 66%. The fact that we found an efficiency of approximately 57%, proves that the experiment was a success, because it is never possible to achieve the theoretical 66% efficiency. This is because certain factors occur during an experiment, but are ignored in the theory.
As you can see on Figures 3.3 and 3.4 the beams are not a perfect straight lines and the picture is not perfectly sharp. Because of those two factors, the measured intensity is not perfect either. This means that the result can be slightly inaccurate.
The best way to solving this problem is using better equipment, like a more accurate waveguide and a better camera, but this is quite expensive. It’s not worth to spend much money on this small experiment.

References
[1] Leonardo M. Moreira, Landulfo Silveira Jr., Fábio V. Santos, Juliana P. Lyon, Rick Rocha, Renato A. Zângaro, Antonio Balbin Villaverde, Marcos T.T. Pacheco. “Raman spectroscopy: A powerful technique for biochemical analysis and diagnosis”, Spectroscopy Volume 22, pp. 1-19, 2008.
[2] Wikipedia, Raman Spectroscopy, (last updated 2011), http://en.wikipedia.org/wiki/Raman_spectroscopy
[3] Verbal conversation with F. Civitci
[4] Wikipedia, arrayed waveguide grating, image downloaded on Oct. 10, 2011 http://en.wikipedia.org/wiki/Arrayed_waveguide_grating
[5] K.A. McGreer. “Arrayed Waveguide Gratings for Wavelength Routing”, IEEE Communication Magazine, pp. 62-68, Dec. 1998.
[6] Photodiode, image downloaded on Oct. 10 2011 http://electricly.com/photodiodes/ [7] Image from PowerPoint presentation “OTNW_overview” provided by F. Civitci
[8] D. Marcuse and H. M. Presby. “Integrated Optical Circuit Having Planar Waveguide Turning Mirrors”. U.S. Patent 5,966,478, Oct. 12, 1999.

Part 2: The researchgroup

Introduction

Our assignment was to investigate how the functions within IOMS are distributed among the members, and how money comes in and how it is divided between the particular segments of the research group. To do this, we interviewed a few of the members of the organization and asked them some questions about their functions.

Chapter 1: IOMS in general
Research groups contain about twenty people, but there are different kinds of members, for example there are PhD students, these are students that are already graduated, but are trying to get a doctorate, which is the highest possible given degree by universities, they can get this degree by doing research. This particular group contains 9 PhD Students.
There’s also scientific staff, these are often professors that are helping within the organization, one of these professors is the chair, that means he’s sort of the main leader of the project. Within the research group there are 6 scientific staff members
Then there are post-doc researchers, they are members of the research group who have recently completed doctoral studies, normally within the previous five years, and their main reason to stay is to further deepen expertise in a specialist subject, this includes acquiring novel skills and methods. IOMS currently has 2 postdoctoral researchers.
There are also master students, these are students who are trying to get their masters degree. After finishing their bachelor they can continue studying for a masters degree. At the moment there are 3 master students in the group.
Then there’s the technical staff, their main task is to make sure that all the used machines and equipments work properly, so that the researchers don’t have to worry about this resulting in more time to make measurements. IOMS currently has 3 people hired as technical staff.
And of course there’s a secretary. The role of the secretary is purely supportive. She isn’t closely involved in the research, but she handles paperwork and the telephone. She gets quite a good picture about the costs of the project, but she has no participation in any decision. One important part of her work is that she is partially responsible for fund-raising, so she does play a vital role.

Chapter 2: The Chairman interview
Prof. Dr. Markus Pollnau is the chairman of IOMS. Most days are filled with the following tasks:
- Teaching
- Writing projects
- Meetings (mostly scheduled, but also not scheduled
- Making corrections on research projects. But not as a final stage and he’s not involved in every research project.
- Visiting conferences.
Chairman about:
Ph. D students; have to find their own subject to make an research project about. It takes between 3 and 5 years until they are finished. When exploring a subject a lot of questions come up. It is important not to wander off from the main question. Most PhD students come from foreign countries.
Master students; also work on research projects. But mostly to support PhD students. Master students don’t have to book results. But their job is mostly to explore a subject and look for what is possible. Having master students in a research group has a lot of advantages. They are flexible and you don’t have to pay them salary. But there is a problem. IOMS doesn’t really belong to one specific faculty. For EWI it is too tough and for TNW it’s not applied enough. This means that there are only 3 master students at the moment. And most of them are from foreign countries. The advantage is that students from foreign countries work harder, as they usually don't have family around here in the Netherlands, although they have no work related connections in the Netherlands that could improve the research, like dutch students, that .
Money; the money for research itself never comes from the university. The money that the university provides they pay the permanent personnel. The money for research comes from the STW. The Foundation for Applied Sciences (STW) is a Dutch foundation founded in 1981 and aims to achieve knowledge transfer between science and technical users. STW tries to combine researchers and potential users and finances the technical and scientific research. To get money from STW the researchers have to write a proposal first. The chance to pass is low. The average chance to get funding from STW is 30%. There is also a similar funding agency: The FOM, the chance to get funding from this agency is a lot lower, it is around 10%. And this funding agency focuses on research meant for commercial purposes whereas STW focuses more on applied research. Sometimes projects fall in the gap between these two institutes. This can be improved says the chairman. When a research project fails, the research group can’t ask for new funding. The project will be terminated or a new proposal has to be written on a subject that was found during the original research. However, it is almost never the case that a project will be terminated. So in short, the funding comes from three places, at first the university itself, this is strictly used to pay the permanent staff, then the funding from the agencies like STW and FOM, used for the research, and there is also funding from agencies like the EU.

Chapter 3: The Master Student interview

A master student has to complete a master assignment, for which he has to participate in a research group. This assignment takes about three quarts of a year to complete. The master student performs his own research within the group, in which he is accompanied by the PhD students and the staff.
It is not a necessity to acquire results. The goal of the assignment is to perform a research. It’s important that the student performs this research, but when the conclusion of such a project is that his goal can’t be accomplished, that’s no problem.
If it’s the case that the master students research yields success such as the discovery of a new material with exceptional properties, a decision has to be made, whether to publish the result or start a business with it. It’s namely the case that a patent can only be given out on something that hasn’t been publishes about yet.

Of course there are special features in the assignment for each master student. In the case of Pim, he has to work in the clean room a lot. One thing about a clean room is that should not be contaminated as this could ruin any running projects. so in the case of Pim, as he’s introducing a new material with unknown properties which could potentially contaminate the clean room, Pim has to deliberate quite a lot and work with extreme care.
In the beginning it took three months before he could even start with the practical part of the research. He could perform some literature research, but that didn’t fill all that time. Even now the material is introduces it can take a few days before he can make an appointment to use the clean room.
Pim doesn’t spend all his time on this project, he is approximately three days a week busy with this project.
He does play a role of some significance in this project. He develops a new material on which things can be integrated. If his material turns out to be useful and good results with further research are obtained, the group might publish about it, which helps raise funding for the project. In this particular line of research, there is a lot discovered at the moment, so it’s of no use just to publish about a new material, there must be published about a total package. If his research will earn some money, it will not be for him, because once you published something, it’s public property.
Pim’s plans for the future are probably to do something with the things he is researching right now. He likes to work with optics and sees himself work in this type of division.

Chapter 4: Postdoctoral Researcher interview

The Postdoctoral Researcher is doing his own individual project. At the same time he spends a lot of time by guiding and advising Ph. D students. He’s basically doing similar work comparing to the Ph. D student, but he has a lot more freedom and is not under strict supervision of the chairman. Georgios Ctistis is a postdoctoral researcher in the IOMS. As a Ph. D student, he did research in Germany. It’s usual to do your postdoctoral research in a foreign country. This to know how research is done in foreign groups and universities, but also to get to know people and build a network. Also it is possible for a postdoctoral researcher to be involved in more than one research groups.
The measurements for the research are usually not done by the postdoctoral researcher himself. He let this to be done by the master students and more restricted by bachelor students. But these students are not used as just ‘measurement slaves’. They can also come up with their own ideas or advices. Of course they cannot just do the measurements the way they want without discussing it with the postdoctoral researcher, but they have a certain freedom. Because of this, the students usually like to do the measurements, since it is not boring if you come up with own ideas.

Chapter 5: The Ph. D student interview
The main goal for a Ph. D student is to write an article about his research. But to start his research, he has to write a proposal to a financial institute, in this case STW. If his research proposal has been approved, he can start his research. The Ph. D student is free to spend his money on whatever he thinks he needs, but now and then he has to discuss his purchases with the chairman. For example, the Ph. D student Dimitri Geskus whom we interviewed was given an empty laboratory and he was free to use that laboratory whenever he wanted. But now and then during his research he has to report to the chair or to STW about the progress he’s making.
In the end he’s judged on the thesis he wrote. If his articles are not published in a scientific magazine, he won’t get his doctoral degree. And even after he’s finished with his article, he is not yet done. It’s important for a Ph. D student to not only publish, but also ‘commercialise’ his research and the article following that research. This can be done by visiting lots of conferences and creating a network of people, so he makes a name for himself, like a reputation. People in this network could be people from companies, people from other universities. This is needed for possible collaboration in future, and of course to make profit from the research. So the raise of interest from companies is an important factor in his research promotion. For himself there is the so-called H-index. This is an index which tells you how many times you published an article and how many times that article has been cited in articles from other researchers. For example, if you have an H-index of 3, this means that you published 3 articles that are cited 3 times each. It’s usual for financial institutes that they also look at this H-index of a researcher while judging the research proposal. By promoting your research in the ways stated above, you increase the chance to raise your H-index.
So in short, the Ph. D student is not only doing his research and writing an article about it, he also have to promote his research and the next article. This to make a reputation for your research and yourself, but also to make the research the beginning of a possible collaboration with other universities or companies.

Part 3: Strategies to acquire information (Dutch language)

Task 1

1. Over welk onderwerp wil je informatie verwerven (een zin of 2)? Welke vraag wil je beantwoorden?
(door hier je eigen woorden te gebruiken maak je een start met verkrijgen van inzicht in je onderzoeksprobleem

Ik wil meer weten over de opbouw van een waveguide en hoe verschillende metaal ionen de werking van de waveguide beinvloeden.
Hoe beïnvloeden verschillende metaal ionen de efficientie van een waveguide.

2. Wat voor soort informatie zoek je?
(samenvattend boek, recent wetenschappelijk artikel, getallen, patent, ontwerp, oppervlakkige informatie, bedrijfsinformatie…..)

Ik zoek een recent wetenschappelijk artikel.

3. Waar ga je die informatie zoeken? Wat verwacht je specifiek van die plek, wat zijn de voordelen van die database boven een andere?
(er zijn veel plekken om te zoeken, binnen en buiten de universiteitsbibliotheek, een verstandige , EN bewuste keuze verbetert je resultaten)

Ik ga informatie zoeken via findUT, omdat ik dan op een voor mij bekende manier informatie kan zoeken en de meeste informatie die ik vind dan ook bereikbaar zal zijn.

4. Welke termen ga je gebruiken in de verschillende systemen?
(afhankelijk van database/zoekmachine en soort informatie die je zoekt)

Efficiency, metal iones, anions, waveguide

5. Welk gereedschap, geboden door de verschillende systemen heb je nodig?
(bekijk de technische mogelijkheden, eventueel onder advanced search)

Ik ga mijn zoekresultaten verfijnen met het menuutje aan de linkerkant.

6. Wat is gedetailleerd je zoekzin per systeem? Hoeveel hits?
(welke woorden, operatoren, symbolen, velden, settings van database, limiteringen en defaults, voor ieder database anders)

The effect of cations on the efficiency of a waveguide 227 hits.
Met de instellingen op standard
Daarna verfijnde ik met Physics -- Optics, Optoelectronics, Plasmonics and Optical Devices en hield ik nog 7 hits over, waarvan er 1 bruikbaar was.

7. Wat is de betrouwbaarheid van de gevonden informatie?
(met name zaak af te wegen bij bronnen van het open internet, en afhankelijk van je vraag, denk aan eerlijkheid, wetenschappelijke waarde, diepgang, vooroordeel, wat is er niet vermeld, externe kwaliteitskenmerken, doelgroep)

Ik vond een boek uit 2007. Dit is recent en komt niet lukraak van internet, dus is het wel betrouwbaar.

8. Evalueer je eigen zoekgedrag. Zijn je verwachtingen over de databases uitgekomen? Had het slimmer gekund? Dubbel werk gedaan? Eindeloze lijsten met resultaten moeten doorspitten? Geeft de gevonden informatie antwoord op je oorspronkelijke vraag, voldoende, volledig? Hoe zou je verder gaan? Wat zou je advies zijn aan je opvolger?
(deze evaluatiestap is de kern van het zoekproces, en is het verschil tussen zomaar wat doen en bewust bezig zijn je kennis te vergroten)

Ik zocht eerst alleen op artikelen, maar kon toen eigenlijk niets vinden. Ik had me eerder moeten realiseren dat ik naar vrij basale informatie zocht en dus beter naar een boek kon zoeken. Ook denk ik dat ik beter alleen binnen de UT bibliotheek had kunnen zoeken. Nu heb ik een boek gevonden, dat volgens de inhoudsopgave wel bevat wat ik zoek, maar waarvan ik niet heel de tekst kan zien. Waar de rest denk ik dat mijn manier van zoeken, in dat geval goed werkte. 9. Documenteer je acties en resultaten. (in een wetenschappelijke omgeving moet je verantwoording af leggen, over je acties, over je bronnen, en dingen kunnen herhalen, dan wel modificeren) Geef hier een lijstje met je belangrijkste bronnen in formele notatie voor referentielijst: auteur, titel document + i. tijdschrift: titel tijdschrift, jaartal, jaargang, pag begin-eind (of artikelnummer), DOI ii. boek: uitgever, jaartal, editie als niet eerste iii. website: volledig URL, datum gemaakt, datum gelezen

Springer Series in Materials Science
Volume 102, 2007, DOI: 10.1007/978-1-4020-6326-8
Photonic Crystal Fibers
Properties and Applications

Federica Poli, Annamaria Cucinotta and Stefano Selleri

10. Voorzien van je eigen naam en projecttitel.

Martijn Blom groep 2.6
Efficient integration between a CMOS based photo detector and an Integrated Optics spectrometer.

1. Over welk onderwerp wil je informatie verwerven (een zin of 2)? Welke vraag wil je beantwoorden?
(door hier je eigen woorden te gebruiken maak je een start met verkrijgen van inzicht in je onderzoeksprobleem)
Hoe kunnen CMOS en intergraded optics worden geïntegreerd? 2. Wat voor soort informatie zoek je?
(samenvattend boek, recent wetenschappelijk artikel, getallen, patent, ontwerp, oppervlakkige informatie, bedrijfsinformatie…..)
Een wetenschappelijk onderzoek, of resultaten van een onderzoek 3. Waar ga je die informatie zoeken? Wat verwacht je specifiek van die plek, wat zijn de voordelen van die database boven een andere?
(er zijn veel plekken om te zoeken, binnen en buiten de universiteitsbibliotheek, een verstandige , EN bewuste keuze verbetert je resultaten)
Scopus, ik verwacht recente en wetenschappelijke informatie, anders google scolar, want dat vind je wat globalere informatie 4. Welke termen ga je gebruiken in de verschillende systemen?
(afhankelijk van database/zoekmachine en soort informatie die je zoekt) cmos integrating optics 5. Welk gereedschap, geboden door de verschillende systemen heb je nodig?
(bekijk de technische mogelijkheden, eventueel onder advanced search)
Met scopus kun je je zoekresultaten verfijnen, je kunt kiezen tussen jaartal, auteur, onderwerp, documenttitel en keywoorden. Ik gebruik op onderwerp zoeken: materiaal wetenschappen. Niets gevonden nu verfijnen op artikel.
Ik ga nu zoeken met scholar.google, verfijnen naar sinds 2010, in typen bij exacte woordcombinatie gebruiken, of met ten minste een van deze woorden levert niets op. 6. Wat is gedetailleerd je zoekzin per systeem? Hoeveel hits?
(welke woorden, operatoren, symbolen, velden, settings van database, limiteringen en defaults, voor ieder database anders) cmos integrated optics, vanaf 2010. 7. Wat is de betrouwbaarheid van de gevonden informatie?
(met name zaak af te wegen bij bronnen van het open internet, en afhankelijk van je vraag, denk aan eerlijkheid, wetenschappelijke waarde, diepgang, vooroordeel, wat is er niet vermeld, externe kwaliteitskenmerken, doelgroep)
Deze bron lijkt me betrouwbaar, het komt uit het blad Optics Letters, aan de andere kant staat er wel best wat reclame aan de zijkant van de site, die het wat minder betrouwbaar maakt. Het artikel is wel een soort brief waarin ze hun bevindingen vertellen, wat in principe dus niet heel diepgaand is. 8. Evalueer je eigen zoekgedrag. Zijn je verwachtingen over de databases uitgekomen? Had het slimmer gekund? Dubbel werk gedaan? Eindeloze lijsten met resultaten moeten doorspitten? Geeft de gevonden informatie antwoord op je oorspronkelijke vraag, voldoende, volledig? Hoe zou je verder gaan? Wat zou je advies zijn aan je opvolger?
(deze evaluatiestap is de kern van het zoekproces, en is het verschil tussen zomaar wat doen en bewust bezig zijn je kennis te vergroten)
Ik had goede hoop op scopus en heb daar redelijk uitgebreid gezocht, terwijl daar heel weinig te vinden was. Ik heb wel geleerd dat je bij scopus eigenlijk meteen op artikelen verfijnen. Google scholar heeft zeker een grotere database, maar je moet een goede zoekzin hebben. 9. Documenteer je acties en resultaten. (in een wetenschappelijke omgeving moet je verantwoording af leggen, over je acties, over je bronnen, en dingen kunnen herhalen, dan wel modificeren) Geef hier een lijstje met je belangrijkste bronnen in formele notatie voor referentielijst: auteur, titel document + i. tijdschrift: titel tijdschrift, jaartal, jaargang, pag begin-eind (of artikelnummer), DOI ii. boek: uitgever, jaartal, editie als niet eerste iii. website: volledig URL, datum gemaakt, datum gelezen

Optics Letters, Vol. 35, Issue 7, pp. 1013-1015 (2010) doi:10.1364/OL.35.001013 Joris Van Campenhout,* William M. J. Green, Solomon Assefa, and Yurii A. Vlasov

10. Voorzien van je eigen naam en projecttitel.

Ewoud van Lent, 2.6 Efficient integration between an integrated optics Raman spectrometer and a CMOS based photo detector

1. Over welk onderwerp wil je informatie verwerven (een zin of 2)? Welke vraag wil je beantwoorden?
De Arranged Waveguide Grating
Hoe werkt de arranged waveguide grating zonder veel lichtintensiteit te verliezen 2. Wat voor soort informatie zoek je?
(samenvattend boek, recent wetenschappelijk artikel, getallen, patent, ontwerp, oppervlakkige informatie, bedrijfsinformatie…..)
Patent
3. Waar ga je die informatie zoeken? Wat verwacht je specifiek van die plek, wat zijn de voordelen van die database boven een andere?
(er zijn veel plekken om te zoeken, binnen en buiten de universiteitsbibliotheek, een verstandige , EN bewuste keuze verbetert je resultaten)
Scholar.google.com
Deze database bevat erg veel patenten. 4. Welke termen ga je gebruiken in de verschillende systemen?
(afhankelijk van database/zoekmachine en soort informatie die je zoekt)
Efficient Arranged Waveguide Grating 5. Welk gereedschap, geboden door de verschillende systemen heb je nodig?
(bekijk de technische mogelijkheden, eventueel onder advanced search)
Ik zoek artikelen zonder gereedschap. Ik denk namelijk niet dat het uitmaakt of het artikel te oud is. Als de theorie die uitgelegd wordt mag het artikel wat mij betreft oud zijn. 6. Wat is gedetailleerd je zoekzin per systeem? Hoeveel hits?
(welke woorden, operatoren, symbolen, velden, settings van database, limiteringen en defaults, voor ieder database anders)
Efficient intensity Arranged Waveguide Grating; 10300 hits 7. Wat is de betrouwbaarheid van de gevonden informatie?
(met name zaak af te wegen bij bronnen van het open internet, en afhankelijk van je vraag, denk aan eerlijkheid, wetenschappelijke waarde, vooroordeel, wat is er niet vermeld, externe kwaliteitskenmerken, doelgroep)
Het is een patent. Dus de kans bestaat dat het een idee een flop is. Toch staat duidelijk aangegeven hoe een AWG eruitziet.

8. Evalueer je eigen zoekgedrag. Zijn je verwachtingen over de databases uitgekomen? Had het slimmer gekund? Dubbel werk gedaan? Eindeloze lijsten met resultaten moeten doorspitten? Geeft de gevonden informatie antwoord op je oorspronkelijke vraag, voldoende, volledig? Hoe zou je verder gaan? Wat zou je advies zijn aan je opvolger?
(deze evaluatiestap is de kern van het zoekproces, en is het verschil tussen zomaar wat doen en bewust bezig zijn je kennis te vergroten)
Ik vind dat er toch wel erg veel hits zijn. Toch stond het nuttige patent op de 3e plaats. De gevonden informatie geeft een schematisch beeld van een AWG. Toch is het jammer dat er geen uitleg wordt gegeven over de weg die het licht aflegt. In dat geval zou een artikel of boek beter zijn geweest dan een patent.

9. Documenteer je acties en resultaten. (in een wetenschappelijke omgeving moet je verantwoording af leggen, over je acties, over je bronnen, en dingen kunnen herhalen, dan wel modificeren) Geef hier een lijstje met je belangrijkste bronnen in formele notatie voor referentielijst: auteur, titel document + i. tijdschrift: titel tijdschrift, jaartal, jaargang, pag begin-eind ii. boek: uitgever, jaartal, editie als niet eerste iii. website: volledig URL, datum gemaakt, datum gelezen
Yutaka Urino
Arrayed waveguide grating having arrayed waveguide employing taper structure http://www.google.nl/patents?hl=nl&lr=&vid=USPAT6389201&id=Tr0LAAAAEBAJ&oi=fnd&dq=Efficient+intensity+Arranged+Waveguide+Grating&printsec=abstract#v=onepage&q&f=false 14 mei 2002
Gelezen: 9 oktober 2011

10. Voorzien van je eigen naam en projecttitel.

Gijsbert van den Engh, Efficient integration between an integrated optics Raman spectrometer and a CMOS based photo detector (2.6)

1. Over welk onderwerp wil je informatie verwerven (een zin of 2)? Welke vraag wil je beantwoorden?
(door hier je eigen woorden te gebruiken maak je een start met verkrijgen van inzicht in je onderzoeksprobleem)

Principe/werking CMOS fotodetector

2. Wat voor soort informatie zoek je?
(samenvattend boek, recent wetenschappelijk artikel, getallen, patent, ontwerp, oppervlakkige informatie, bedrijfsinformatie…..)

Iets wat mij de werking van een CMOS photodetector kan uitleggen of beschrijven, dus een samenvattend boek/wetenschappelijk artikel of een ontwerp.

3. Waar ga je die informatie zoeken? Wat verwacht je specifiek van die plek, wat zijn de voordelen van die database boven een andere?
(er zijn veel plekken om te zoeken, binnen en buiten de universiteitsbibliotheek, een verstandige , EN bewuste keuze verbetert je resultaten)

Google ( scholar) dit omdat ik opzoek ben naar algemene uitleg over de CMOS photodetector.

4. Welke termen ga je gebruiken in de verschillende systemen?
(afhankelijk van database/zoekmachine en soort informatie die je zoekt)

Principle, Working ,CMOS Photodetector ,Integrated Circuits, Image Sensor

5. Welk gereedschap, geboden door de verschillende systemen heb je nodig?
(bekijk de technische mogelijkheden, eventueel onder advanced search)

Met name kijken of termen als zinsdeel te schrijven zijn, zodat je bij ‘advanced search’ dit op kan geven als zinsdeel. 6. Wat is gedetailleerd je zoekzin per systeem? Hoeveel hits?
(welke woorden, operatoren, symbolen, velden, settings van database, limiteringen en defaults, voor ieder database anders)

CMOS Photodetector principle, 17.100 Hits

7. Wat is de betrouwbaarheid van de gevonden informatie?
(met name zaak af te wegen bij bronnen van het open internet, en afhankelijk van je vraag, denk aan eerlijkheid, wetenschappelijke waarde, diepgang, vooroordeel, wat is er niet vermeld, externe kwaliteitskenmerken, doelgroep)

Het is een ontwerp voor een bepaald apparaat. Dus ik neem aan dat de theorie daarachter al uitgezocht is. Dit betekent dat de tekst en plaatjes informatie bevatten die al is onderzocht door de mensen van dit ontwerp.

8. Evalueer je eigen zoekgedrag. Zijn je verwachtingen over de databases uitgekomen? Had het slimmer gekund? Dubbel werk gedaan? Eindeloze lijsten met resultaten moeten doorspitten? Geeft de gevonden informatie antwoord op je oorspronkelijke vraag, voldoende, volledig? Hoe zou je verder gaan? Wat zou je advies zijn aan je opvolger?
(deze evaluatiestap is de kern van het zoekproces, en is het verschil tussen zomaar wat doen en bewust bezig zijn je kennis te vergroten)

Om eerlijk te zijn heb ik zelf nog niet goed door hoe ik het best informatie kan zoeken via deze voor mij nieuwe databases. Wat ik vind zijn vaak artikelen waarvoor al zekere kennis nodig is om de teksten hiervan te kunnen begrijpen. Ik heb moeite met informatie zoeken die begrijpelijk is.

9. Documenteer je acties en resultaten. (in een wetenschappelijke omgeving moet je verantwoording af leggen, over je acties, over je bronnen, en dingen kunnen herhalen, dan wel modificeren) Geef hier een lijstje met je belangrijkste bronnen in formele notatie voor referentielijst: auteur, titel document + i. tijdschrift: titel tijdschrift, jaartal, jaargang, pag begin-eind (of artikelnummer), DOI ii. boek: uitgever, jaartal, editie als niet eerste iii. website: volledig URL, datum gemaakt, datum gelezen

Vyshnavi Suntharalingam
Megapixel CMOS Image Sensor Fabricated in three dimensional Integrated Circuit technology.
MIT Lincoln Laboratory, Lexington, MA
8 Februari 2005

Gelezen op 10 Oktober 2011

http://epp.fnal.gov/DocDB/0001/000128/001/VS_ISSCC_2005_talk.pdf

10. Voorzien van je eigen naam en projecttitel.
Dirk Reith Efficient integration between an integrated optics Raman spectrometer and a CMOS based photo detector (2.6)

1. Over welk onderwerp wil je informatie verwerven (een zin of 2)? Welke vraag wil je beantwoorden?
(door hier je eigen woorden te gebruiken maak je een start met verkrijgen van inzicht in je onderzoeksprobleem)
Ik ga op zoek naar de werking van Raman-spectroscopy. 2. Wat voor soort informatie zoek je?
(samenvattend boek, recent wetenschappelijk artikel, getallen, patent, ontwerp, oppervlakkige informatie, bedrijfsinformatie…..)
Iets wat mij algemene uitleg kan geven over de werking van een Raman spectrometer. Een wetenschappelijk artikel of een ontwerp zal waarschijnlijk de beste keuze zijn.

3. Waar ga je die informatie zoeken? Wat verwacht je specifiek van die plek, wat zijn de voordelen van die database boven een andere?
(er zijn veel plekken om te zoeken, binnen en buiten de universiteitsbibliotheek, een verstandige , EN bewuste keuze verbetert je resultaten)
Ik ga eerst kijken op google scholar, omdat wat ik zoek redelijk algemeen is, als ik daar te weinig resultaten krijg ga ik verder met zoeken op scopus 4. Welke termen ga je gebruiken in de verschillende systemen?
(afhankelijk van database/zoekmachine en soort informatie die je zoekt)
Raman spectroscopy, analysis, diagnosis, working 5. Welk gereedschap, geboden door de verschillende systemen heb je nodig?
(bekijk de technische mogelijkheden, eventueel onder advanced search)
Bij Google scholar was geen gereedschap nodig. 6. Wat is gedetailleerd je zoekzin per systeem? Hoeveel hits?
(welke woorden, operatoren, symbolen, velden, settings van database, limiteringen en defaults, voor ieder database anders) raman spectroscopy, analysis and diagnosis, 12800 hits. 7. Wat is de betrouwbaarheid van de gevonden informatie?
(met name zaak af te wegen bij bronnen van het open internet, en afhankelijk van je vraag, denk aan eerlijkheid, wetenschappelijke waarde, diepgang, vooroordeel, wat is er niet vermeld, externe kwaliteitskenmerken, doelgroep)
Ik ga er van uit dat de informatie die op google scholar wel betrouwbaar is in dit geval, het gaat immers over de werking van een apparaat.

8. Evalueer je eigen zoekgedrag. Zijn je verwachtingen over de databases uitgekomen? Had het slimmer gekund? Dubbel werk gedaan? Eindeloze lijsten met resultaten moeten doorspitten? Geeft de gevonden informatie antwoord op je oorspronkelijke vraag, voldoende, volledig? Hoe zou je verder gaan? Wat zou je advies zijn aan je opvolger?
(deze evaluatiestap is de kern van het zoekproces, en is het verschil tussen zomaar wat doen en bewust bezig zijn je kennis te vergroten)
Ik begon eerst op scopus met een paar andere zoekthermen en kreeg veel te uiteenlopende resultaten, toen kwam ik tot de conclusie dat ik beter meer en betere zoekthermen kon gebruiken en ook beter kon overstappen naar google scholar omdat hier makkelijker dingen te vinden zijn als er niet heel veel diepgang in zit, naar mijn mening. Ik had dus beter kunnen beginnen bij google scholar, met een groter aantal zoekthermen van een betere kwaliteit. 9. Documenteer je acties en resultaten. (in een wetenschappelijke omgeving moet je verantwoording af leggen, over je acties, over je bronnen, en dingen kunnen herhalen, dan wel modificeren) Geef hier een lijstje met je belangrijkste bronnen in formele notatie voor referentielijst: auteur, titel document + i. tijdschrift: titel tijdschrift, jaartal, jaargang, pag begin-eind (of artikelnummer), DOI ii. boek: uitgever, jaartal, editie als niet eerste iii. website: volledig URL, datum gemaakt, datum gelezen het artikel: Raman spectroscopy: A powerful technique for biochemical analysis and diagnosis

Journal | Spectroscopy | Publisher | IOS Press | ISSN | 0712-4813 (Print)
1875-922X (Online) | Subject | Chemistry, Biochemistry and Biophysics, Biotechnology, Microbiology and Virology and Spectroscopy | Issue | Volume 22, Number 1 / 2008 | Pages | 1-19 | DOI | 10.3233/SPE-2008-0326 | Pages | 1-19 | Subject Group | Chemistry | Online Date | Monday, April 07, 2008 |

Datum gelezen: 11 oktober 2011 http://iospress.metapress.com/content/l2884228g218138h/ 10. Voorzien van je eigen naam en projecttitel.
Zeno Geuke Efficient integration between an integrated optics Raman spectrometer and a CMOS based photo detector (2.6)

Task 2

Information references from the coach:

Articles: * D. Marcuse and H. M. Presby. “Integrated Optical Circuit Having Planar Waveguide Turning Mirrors”. U.S. Patent 5,966,478, Oct. 12, 1999. (bijv op http://worldwide.espacenet.com/): http://www.google.nl/patents?hl=nl&lr=&vid=USPAT5966478&id=2FUZAAAAEBAJ&oi=fnd&dq=%E2%80%A2%09D.+Marcuse+and+H.+M.+Presby.+%E2%80%9CIntegrated+Optical+Circuit+Having+Planar+Waveguide+Turning+Mirrors%E2%80%9D.+U.S.+Patent+5,966,478,+Oct.+12,+1999&printsec=abstract#v=onepage&q&f=false * D. Resnik, D. Vrtacnik, U. Aljancic and M. Mozek. “The Role of Triton Surfactant in Anisotropic Etching of {110} Reflective Planes on (100) Silicon”. Journal of Micromechanics and Microengineering, vol. 15, pp. 1174-1183, Feb. 2005: doi:10.1088/0960-1317/15/6/007 * K.A. McGreer. “Arrayed Waveguide Gratings for Wavelength Routing”, IEEE Communication Magazine, pp. 62-68, Dec. 1998. :
Doi: 10.1109/35.735879

Book:
C.R. Pollock and M. Lipson. “Integrated Photonics”, Kluwer Academic Publishers, 2003. :

ISBN: 1-402-07635-5 geb. Plaatsnummer: | CBa 536.9:535.8 p066 | Locatie: | Locatie Vrijhof | |

The incomplete references completed

* http://www.mdpi.com/1424-8220/10/4/3857/pdf:

Maximiliano S. Perez, Betiana Lerner, Daniel E. Resasco, Pablo D. Pareja Obregon, Pedro M. Julian, Pablo S. Mandolesi, Fabian A. Buffa, Alfredo Boselli and Alberto Lamagna
Carbon Nanotube Integration with a CMOS Process
Sensors 2010, 10(4), 3857-3867; doi: 10.3390/s100403857

* doi:10.1016/j.carbon.2010.09.021 :

Guan Yow Chen, Ben Jensen, Vlad Stolojan, S.R.P. Silva
Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies
Carbon
Volume 49, Issue 1, January 2011, Pages 280-285 doi: 10.1016/j.carbon.2010.09.021

* On-chip deposition of carbon nanotubes using CMOS microhotplates; M S Haque, K B K Teo, N L Rupensinghe, S Z Ali, I Haneef, Sunglyul Maeng, J Park, F Udrea and W I Milne :

Nanotechnology Volume 19 Number 2 2008
On-chip deposition of carbon nanotubes using CMOS microhotplates
M S Haque, K B K Teo, N L Rupensinghe, S Z Ali, I Haneef, Sunglyul Maeng, J Park, F Udrea and W I Milne doi: 10.1088/0957-4484/19/02/025607

* Min Zhang; Chan, P.C.H.; Yang Chai; Qi Liang; Tang, Z.K.;
IEEE Transactions on Nanotechnology, 2009, 8, pp260 – 268:

Min Zhang; Chan, P.C.H.; Yang Chai; Qi Liang; Tang, Z.K.;
Novel Local Silicon-Gate Carbon Nanotube Transistors Combining Silicon-on-Insulator Technology for Integration
IEEE Transactions on Nanotechnology, 2009, 8, pp260 – 268
Doi: 10.1109/TNANO.2008.2011773

Efficient integration between an integrated optics Raman spectrometer and a CMOS based photo detector

Similar Documents

Free Essay

Maglev

...*3963103* [3963] – 103 T.E. (Petroleum) (Semester – I) Examination, 2011 DRILLING & PRODUCTION OPERATIONS (2003 Course) Time : 3 Hours Max. Marks : 100 Instructions : 1) Question Nos. 1 and 5 are compulsory. Out of the remaining attempt 2 questions from Section I and 2 questions from Section II. 2) Answers to the two Sections should be written in separate books. 3) Neat diagrams must be drawn wherever necessary. 4) Black figures to the right indicate full marks. 5) Use of Logarithmic Tables, Slide Rule, Mollier Charts, Electronic Pocket Calculator and Steam Tables is allowed. 6) Assume suitable data, if necessary. SECTION – I 1. What are different systems on a drilling rig ? Explain any one in detail with suitable diagramme. 18 2. a) Calculate Bottom hole pressure if well depth is 2500 m and mud weight is 1.2 gm/cc. b) Calculate mud weight if mud gradient is 0.87 psi/ft. ′ c) Calculate volume bbl/meter for drill pipe O.D. = 5′ inch and I.D. = 4.276 inch. 2 2 2 10 8 8 16 d) Draw circulation system on a drilling rig. 3. a) Discuss IADC classification of a bit in details. b) Discuss different factors affecting rate of penetration in details. 4. Write short note on : i) Coring ii) Fishing tools iii) BOP iv) Directional well P.T.O. [3963] – 103 -2- *3963103* SECTION – II 5. a) Discuss different types of casings and function of the casings in brief. b) Discuss different types of well completion techniques. 6. a) Discuss primary cementation process with...

Words: 172166 - Pages: 689