Free Essay

Essay

In:

Submitted By oscky2323
Words 45070
Pages 181
756

Maths In Focus Mathematics Extension 1 Preliminary Course

Answers
8.

o oo oo o (a) 0.83 (b) 0.07 (c) 0.13 (d) 0.16 o oo o or 0. 142857 (h) 1.18
(g) 0.142857

9.

(a)

8
9

(h)

Chapter 1: Basic arithmetic

13
60

Problem
5

Exercises 1.1
1.

2.

(a) Rational (b) Rational
(e) Rational (f) Irrational
(i) Rational (j) Irrational

(e) - 4.3

(a) 18 (b) 11 (c) 6 (d) 11
(h) 1

3.

(c) Rational
(g) Irrational

19
20

(i) 2

(j) 3

(d) Irrational
(h) Rational

(f) −1

(g) 2

7
15

1
3

(f) 0.17 (g) 0.36 (h) 1.20 (i) - 4.27
1300

8.

5. 950

600

16. 1.7

6. 3000

(j) 8.16

1.

7. 11 000

8.

17. 79 cents 18. 2.73 19. 1.1 20. 3.6 m

21. $281.93

22. 1.8 g

(b) 2

3
20
(d)

12. 0.73 13. 33 14. 3.248 15. 4.21

Exercises 1.2

6.

- 1.2

10. - 2
15. 5

3. - 56

4. 10

(a)

7. - 7.51

8. - 35.52

11. - 7

12. −23

13. 10

(b)

17. 1

14. 1

18. 60 19. −20 20. 9

51
1000

(c) 5

1
20

(d) 11

7
20
3
(e)
5

(a)

4.

7
18

(d) 2

6
11

(g)

7
45

oo
(e) 1.72
4
45

(e)

14. 17.5%

3
28

17
20

3. (a)

15. 41.7%

(b)

7
10

(c) 1

7. $65

179 cm 9. (a) 11.9 (b) 5.3 (c) 19 (d) 3.2 (e) 3.5
(f) 0.24 (g) 0.000 18 (h) 5720 (i) 0.0874 (j) 0.376

15. 402.5 g
19. 573

12. 1152.125 g

16. 41.175 m

13. $10.71

17. $30.92

20. $2898

5 minutes after 1 o’clock.
11

Exercises 1.5
1
64

1.

(a) 500

(b) 145

(c)

(a) 13.7

(b) 1.1

(c) 0.8

(a) a 17

(a) 0.27 (b) 1.09 (c) 0.003 (d) 0.0623

5.

1
(a) 35% (b) 33 %
3

6.

(a) 124% (b) 70%

7.

(a) 0.52;

(d) 1.09; 1

(f)

1
20
7
4. $547.56 5. 714.3 g 6.
24

2.

(g) y 6

3.

13
25

8
11

(c)

3.

4
5

o
(a) 0.4 (b) 1.875 (c) 0.416
(b)

1
8

67
99

oo
(d) 0.68

2.

2.

1
50

o
(c) 0.73

14. 5.9%

5

9. 6.57

16. 3

16
25

(e)

37
495

11. 54.925 mL

5. - 4

Exercises 1.3
1.

7
9

Problem

2. - 11

4
15

(j) 1

13. 77.5%

18. 3.2 m

1

(d) 3

10. $52.50

23. $3.20

24. (a) 7.95 (b) 30.03 (c) 0.37 (d) 5.74 (e) 0.52 25. 0.2

1.

217
990

5
9

Exercises 1.4

9. $8 000 000 10. $34 600 000

11. 844 km

5
8

(c) 1

(b) 7.4

12. 74%

(a) 16.36 (b) 21.87 (c) 8.80 (d) 22.71 (e) - 13.20

4.

(i)

o
10. (a) 0.5
11. (a)

2
9

(b)

oo
(f) 0.15

o
(e) 0.6

3
8

(c)

1
1000

(d) 1

4.

(d) 0.1%

(e) 0.434;

(c) 0.168;
217
500

21
125

(f) 0.1225;

(h) p - 1
5.

49
400

(a) x14

(a) p5q15
(f) x4y10

y

(d) 2.7

(c) a - 4

(i) 4x 10

(d) w

(j) 81y - 8

(o) x -3

(n) p 5

(q) x - 5 y 2 or

(c) 40.5% (d) 127.94%
7
100

(h) x 21

(m) w 10

97
1000

2
(c) 226 %
3

(b) 0.07;

9
100

oo
(d) 0.63

(b) y 0 = 1

(d) 3

2

(e) 2
(e) - 2.6
(e) x 5
(k) a

(p) a - 2 b 3 or

(f) 0.5

(f) p 10
(l)

x 10

b3

y 45

a2

x5

(b) a -7

(c) m4 (d) k10 (e) a -8

(f) x

(g) mn2

(i) 9x22 (j) x21
(b)

a8
8

b
2k 23
(g)
27

(c)

64a 3 b 12

(d) 49a10b2 (e) 8m17

(h) 16y47 (i) a3 (j) 125x - 21 y 18

ANSWERS

6.

4

1
2

7. 324

8. 2

10
27

9. (a) a3b

3

1
25

(b)

-

2

(a) x 2

6.

5

5

(c) x 3

1
2

5.

(d) x 3

(e) x 4

(a) x + x 2 + 2x 2

(b) x

3

7
(b)
32

10. (a) pq r

2 2

14.

1
81

4
11.
9

1
108

15.

1
12.
18

1
12

16.

4
13.
27

5 22

17.

49
3888

18.

2 58

(d) x + x - 1 + 2
7.

Exercises 1.6
1.

2.

3.

(d)

1
1
1
1
1
(b)
(c)
(d)
(e)
(f) 1
4
27
343
10 000
256
1
1
1
1
1
1
(g)
(h)
(i)
(j)
(k)
(l)
(m) 1
7
64
9
32
81
81
1
1
1
1
(n)
(o)
(p)
(q)
(r) 1
36
125
100 000
128
1
1
(s)
(t)
64
64

1.

(e) x

1

- 3x

^ y - 3 h2

3

(e)

3 4 ^ x + y h5

1
2

1

(b)

a - 2b

-

-

3
2

+x

(c)

-

5
2

4

7

] 6a + 1 g4

6

7 9 ] 3x + 8 g2

(a) m - 3

(b) x - 1

-4

(h) 3y

(c) p - 7
−2

3t - 8
(j)
5

2.

]x + 1g
4

(h)

1
5

t
5
x7

(m)

(t)
1

(b)

(c)

6

x
1

(i)

1 y 3

]k - 3g

(d)

1 n 8

(e)

1

(k)

2 x (f)

(g)

1
(l)
8y + z

] x + 1 g6

(o) x5 (p) y10 (q)

^ 3x + 2y h x-y 3x + y 7 o (s)
(t) e x+y 2w - z

(r) ] a + b g2

9

3 m 4

(g) 7.6#10

3.

(a) 3 y

(b) 3 y 2 or _ 3 y i

(c)

(f) 3 6q + r

(g)

2

1

1

3

(a) t 2

(b) y 5

(c) x 2

-

(i) ] x - 2 g

-

2
3

1
2

2a 2
2
y - 1k
3

x

-

3
2

(d)
1

5

] x + 7 g2
1

1

(j)

1

(d) ] 9 - x g 3

(g) ^ 5x - y h

1

(l)

(e) 2 #10

-6

(h) 2.3#10

(c) 4 # 10 - 3

(f) 8#10 - 8
-1

(i) 8.5#10 - 3

(j) 7#10 - 11

4.

(a) 240 000 (b) 9 200 000 (c) 11 000 (d) 0.36
(e) 1.3 (f) 9.0 (g) 16 (h) 320 (i) 2900 (j) 9.1
(a) 6.61

1.305 # 10 10

(b) 0.686

(c) 8.25

(d) 1.30

7. 6.51 # 10 - 10

Exercises 1.9
1.

(a) 7 (b) 5 (c) 6 (d) 0 (e) 2 (f) 11 (g) 6 (h) 24
(i) 25 (j) 125 2. (a) 5 (b) −1 (c) 2 (d) 14 (e) 4
(f) −67 (g) 7 (h) 12 (i) −6 (j) 10 3. (a) 3 (b) 3
(c) 1 (d) 3 (e) 1 4. (a) a (b) - a (c) 0 (d) 3a
(e) −3a (f) 0 (g) a + 1 (h) -a - 1 (i) x - 2
(j) 2 - x
(a) | a + b | = 6
(b) | a + b | = 3
(c) | a + b | = 1
(d) | a + b | = 1
(e) | a + b | = 10

6.

(a)

x2 = | x | = 5

(b)

x2 = | x | = 2

(d)

x2 = | x | = 4

(e)

x2 = | x | = 9

(a) 2.19 (b) 2.60 (c) 1.53 (d) 0.60 (e) 0.90 (f) 0.29

(f) ] 2t + 3 g

-6

(b) 5.5 # 10 - 5

(j) 8 #10 4

(a) 36 000 (b) 27 800 000 (c) 9 250 (d) 6 330 000
(e) 400 000 (f) 0.072 3 (g) 0.000 097
(h) 0.000 000 038 (i) 0.000 007 (j) 0.000 5

2

2.

1

-4

(i) 2 # 10 7

3.

p

(a) 9 (b) 3 (c) 4 (d) 2 (e) 7 (f) 10 (g) 2 (h) 8
(i) 4 (j) 1 (k) 3 (l) 2 (m) 0 (n) 5 (o) 7 (p) 2
1
1
(q) 4 (r) 27 (s)
(t)
2
16

3x - 1

(a) 5.7 # 10 - 2
(d) 6.2 #10

Exercises 1.7

(e)

(h) 1.376 # 10

5.

w

10

1

1

(n)

2

(f) 4.16 # 10 5

4

6.

5 ] a + 3b g
9

1
(j)
4n

8x 3

1

(e) 8.67 # 10 9

2

-7

- 11

(a)

(c) 6.19 # 10 4

5.

2x - 1
(k)
7

2y - 7
5m
(m)
(n) ] 3x + 4 g- 2 (o) ] a + b g- 8
2
3
(p) ] x - 2 g- 1 (q) ^ 5p + 1 h- 3 (r) 2 ] 4t - 9 g- 5

(s)

(b) 1.23#10 6

(g) 9 #10

(d) d −9 (e) d −5 (f) x - 2

1 z- 6
(i) z - 6 or
2
2

(a) 3.8 # 10 3
(d) 1.2 #10 7

(l)

4.

1

(c) p 2 + p - 1 + 2p 2

Exercises 1.8

1
11
1
(a) 1 (b) 16 (c) 1
(d) 1
(e) 1 (f) 125 (g) 1
2
25
3
3
13
19
1
(h) 49 (i) 3
(j) 32 (k) 2
(l) 1 (m) 1
(n) 1
8
3
36
81
5
16
7
(o) 1 (p) 16 (q) - 15
(r) (s) 1 (t)
8
23
25

-6

1.

1
3

2

(a)

(g) 2x

4.

(a)

2

(b) a 3 - b 3

2x + 5 or |a | + | b |= 6 ` | a + b | # | a | + | b |
|a | + | b |= 3 ` | a + b | # | a | + | b |
|a | + | b |= 5 ` | a + b | # | a | + | b |
|a | + | b |= 9 ` | a + b | # | a | + | b |
| a | + | b | = 10 ` | a + b | # | a | + | b |
(c)

x2 = | x | = 3

7.

(a) x + 5 for x 2 - 5 and - x - 5 for x 1 - 5
(b) b - 3 for b 2 3 and 3 - b for x 1 3
(c) a + 4 for a 2 - 4 and - a - 4 for a 1 - 4
(d) 2y - 6 for y 2 3 and 6 - 2y for y 1 3
(e) 3x + 9 for x 2 - 3 and - 3x - 9 for x 1 - 3
(f) 4 - x for x 1 4 and x - 4 for x 2 4
1
1
(g) 2k + 1 for k 2 - and - 2k - 1 for k 1 2
2
2
2
(h) 5x - 2 for x 2 and - 5x + 2 for x 1
5
5
(i) a + b for a 2 - b and - a - b for a 1 - b
(j) p - q for p 2 q and q - p for p 1 q

8.

x = !3

1
^ 5 x + 7 h2
1

(e) ] 4s + 1 g 2
5

(h) ] 3x + 1 g 2
1

1
^ y + 7 h 2 (k) 5 ] x + 4 g 3
2
3
3
4
(m) _ x 2 + 2 i
5

9. !1

10. !1, x ! 2

757

758

Maths In Focus Mathematics Extension 1 Preliminary Course

Test yourself 1
1.

(a)

9
20

(b) 0.14 (c) 0.625
2. (a)

(f) 73.3%
3.

Chapter 2: Algebra and surds

1
49

(b)

157
200
1
(c)
3

(d)

1
5

Exercises 2.1

(e) 1.2%

1.

(a) 8.83 (b) 1.55 (c) 1.12 (d) 342 (e) 0.303 4. (a) 1
(e) - 10 (f) - 1 (g) 4 5. (a) x 9
8x 18
29
(b) 25y 6 (c) a 11 b 6 (d)
(e) 1 6. (a)
27
40
1
1
1
(b) 3
(c) 12 (d) 2
(e) 12
7. (a) 4 (b) 6 (c) 19
7
2
2
1
1
(d)
(e) 4 (f) 3 (g)
(h) 2 (i) 1 (j) 4
7
64
(b) 1 (c) 39 (d) 2

8.

5

30 18

(a) a

(b) x y

(c) p

(g)

1 -3 x 2

36

11

(d) 16b

(d) ] x + 1 g

(b) x - 5 (c) ^ x + y h- 1
(f) 2x - 1

9

4

(e) 8x y

1
4

9. (a) n

1
2

1

a5

(b) 4 n

1
13.
192

12. 1

x+1

(d)

1

(c) ] x + 3 g 6

(b) y - 1

-

3
4

(b) 1.23 # 10 11

1

b 5
(c) c m a x

1
(c)
8

(b)

1
2a + 5

21. (a)

7
9

7

(e) y 3
(b)

41
330

23. 14 500

24. LHS = | -2 + - 5 | = 7, RHS = | -2 | + | -5 | = 7.
So | a + b | # | a | +| b | since 7 # 7.

1.

4

2. 1

4.
9.

18 h

11
18

1
1
53 % 5.
3
16

11.

6. 3.04 # 10

14

51 o , 0. 5
99

3271
7. 83% 8. 1
9990

19. 6x - 6y

15. 0

20. a - 3b

23. m 2 - 6m + 12
26. - 2ab + 10b

11. 9t

16. 5b

12. 10w

17. 11b

21. 4xy + 2y

24. p 2 - 2p - 6
27. 2bc - ac

29. x 3 - 2xy 2 + 3x 2 y + 2y 3

18. - 10x

22. - 6ab 2

25. 8x + 3y

28. 2a 5 - 9x 3 + 1

30. 3x 3 + x 2 - 7x - 6

10b

2. 8xy

3. 10p 2

15ab 6. 14xyz 7. 48abc 8. 12d 2

9.

12a3

10. - 27y3

12. 6a 2 b 3
19. - 14m

11. 32x10

13. - 10a 3 b 2

15. 5a 3 b 3

4. - 6wz

14. 21p 3 q 4

16. - 8n 10 17. k 3 p 3
20. 24x y

11

6

18. 81t 12

3

Exercises 2.3
1.

2. 2

6x

3. 4a 2

4. 8a

5. 4a

y

6.

2

7. 3p

ab
4
1
-2
9.
10. - 3x 3 11. 3a 12.
13.
qs
3y
2
3ab 2
4 7
6
2 a b
2
z b 14.
15.
16. 6p 4 q 17.
18.
4c
2a
3c 2 d
2x 2

8.

19. -

x3 z3
3y

a 13

20.

2b 6

2x - 8

5.

x 2 - 2x 6. 6a 2 - 16ab 7. 2a 2 b + ab 2 8. 5n 2 - 20n

2. 6h + 9

3. - 5a + 10

9.

3x3 y2 + 6x2 y3

10. 4k + 7

3
7

2
14. 6 %
3

1
1
15. when x 2 - 1, when x 1 - 1 16. 0.73 x-1 1-x
18 4.54 19. 4.14 # 10 - 20

20. | a + b | = | a | + | b | when a 2 0, b 2 0 or a 1 0, b 1 0;
| a + b | 1 | a | + | b | when a 2 0, b 1 0 or a 1 0, b 2 0;
` | a + b | # | a + b | for all a, b

12. 4y + 11y

13. - 5b - 6

16. 8h - 19 17. d - 6

2

19. 3x - 9x - 5
2

22. - 7y + 4

14. 8 - 2x

20. 2ab - 2a b + b
2

23. 2 b

4. 2xy + 3x

11. 2t - 17

15. - 3m + 1

10. 1.98

o
12. −24 35 13. - 0.34, 2, 1. 5, 0,

17. 0.6%

14. - x

10. 3k

1.
3. 0.502, 51%,

LHS = 2 ^ 2 k - 1 h + 2 k + 1
= 2k+1 - 2 + 2k+1
= 2:2 k + 1 - 2
= 2 ^ 2k+1 - 1 h
= RHS
` 2 ^ 2k - 1 h + 2k+1 = 2 ^ 2k+1 - 1 h

.

13. - m

9. 0

6. −3r

Exercises 2.4

Challenge exercise 1
278
303

8. −5x

5. 3b

1.

(e)

(d) ] 2x - 3 g- 11

20. (a) 1.3 # 10 - 5
3

1 x-y (j) m

7
14. 689 mL 15. (a) 6 h (b)
12

1

22. (a)

-y

4. 6a

16. $38 640 17. 70% 18. 6.3 # 10 23

(d) 33.3%
19. (a) x 2

(c)

7.

3. z

5.

(i) ] 5x + 3 g 7

(h) x 3

1
] 4t - 7 g4
1
1
(f) 5 a + b (g)
(h) 4 b 3 (i) 3 ] 2x + 3 g4 (j)
3
x x3 11. | a + b | = 2 | a | +| b | = 8 ` | a + b | # | a | + | b |
10. (a)

2. 3a

Exercises 2.2

1

(e) ] a + b g 7
9

7x

24. 5t - 6

18. a 2 - 2a + 4
21. 4x - 1

25. 2a + 26

Exercises 2.5
1.

a 2 + 7a + 10

2. x 2 + 2x - 3

4.

m 2 - 6m + 8

5. x 2 + 7x + 12

7.

2x 2 + x - 6

8. h 2 - 10h + 21

3. 2y 2 + 7y - 15
6. y 2 - 3y - 10
9. x 2 - 25

10. 15a 2 - 17a + 4 11. 8y 2 + 6y - 9 12. xy + 7x - 4y - 28
13. x 3 - 2x 2 + 3x - 6
16. 16 - 49y 2
20. y 2 - 36

14. n 2 - 4

17. a 2 - 4b 2

21. 9a 2 - 1

15. 4x 2 - 9

18. 9x 2 - 16y 2

22. 4z 2 - 49

19. x 2 - 9

ANSWERS

23. x 2 - 2xy + 11x - 18y + 18 24. 2ab + 2b 2 - 7b - 6a + 3

Exercises 2.8

25. x + 8

1.

]x + 4g]2 + bg

4.

]m - 2g]m + 3g

5. ] d - c g ] a + b g 6. ] x + 1 g ^ x 2 + 3 h

7.

] 5a - 3 g ] b + 2 g

8. ^ 2y - x h ^ x + y h

3

26. a - 27

27. a + 18a + 81

3

28. k - 8k + 16

29. x + 4x + 4

2

33. 9a + 24ab + 16b
35. 4a + 4ab + b
2

2

32. 4t 2 - 4t + 1

2

38. a - 2ab + b

30. y - 14y + 49

2

31. 4x 2 + 12x + 9

2

2

34. x - 10xy + 25y

2

2

36. a - b

2

2

39. a + b

2

3

3

10. ] x + 5 g ] x - 1 g

2

37. a + 2ab + b

2

2

40. a - b
3

t + 8t + 16

4.
7.

n 2 + 2n + 1

23. ] x - 2 g ^ 3x 2 - 5 h

5. q 2 + 6q + 9

6. k 2 - 14k + 49

25. ^ y + 7 h ] x - 4 g

9. 9 - 6x + x 2

y 2 + 16y + 64

10. 9y - 6y + 1

11. x + 2xy + y

2

2

13. 16d + 40de + 25e
2

21. 16a 2 - 1

24. x + 10x + 25
4

27. a 2 -

2

2

a2

29. 5 (y - 3) (1 + 2x)

Exercises 2.9

29. ] a + b g2 + 2 ] a + b g c + c 2 = a 2 + 2ab + b 2 + 2ac + 2bc + c 2

1.

]x + 3g]x + 1g

4.

] t + 4 g2

7.

2

28. x 2 - ^ y - 2 h2 = x 2 - y 2 + 4y - 4

1

28. 3 (a + 2b) (a + 3)
30. ] r + 2 g ] rr - 3 g

23. x 4 - 4
4
26. x + 4 + 2 x 2

26. (x - 4) (x 3 - 5)

19. 4a 2 - 9

22. 49 - 9x 2

25. 9a b - 16c

2

2

15. x 2 - 9

18. x 2 - 100

24. ] a - 3b g ] 4 + c g

27. (2x - 3) (2x + 4) = 2 (2x - 3) (x 2 + 2)

12. 9a - 6ab + b

2

17. ] x - 3 g ^ 7 - y h

20. ] a + 3 g ] 2 - b g

2

2

14. t - 16

2

17. r 2 - 36

20. x 2 - 25y 2

2

2

14. ^ a + b h ] ab - 4 g

22. ^ q - 3 h ^ p + q h

3. x - 2x + 1

2. z - 12z + 36

12. (m - 2) (1 - 2y)

2

18. ] d + 3 g ] 4 - e g 19. ] x - 4 g ^ 3 + y h

8. 4b 2 + 20b + 25

1.

2

9. ^ y + 1 h ] a + 1 g

15. ] 5 - x g ] x + 3 g 16. (x + 7) (x 3 - 4)

3

21. (x - 3) (x 2 + 6)

2

3. ] x + 5 g ] x + 2 g

11. (y + 3) (1 + a)

13. ^ x + 5y h ^ 2x - 3y h

2

Exercises 2.6

16. p 2 - 1

2. ^ y - 3 h ] a + b g

]v - 3g]v - 5g

2. ^ y + 4 h ^ y + 3 h

5. ] z + 3 g ] z - 2 g
8. ] t - 3 g

2

3. ] m + 1 g2

6. ] x + 1 g ] x - 6 g
9. ] x + 10 g ] x - 1 g

30. ] x + 1 g2 - 2 ] x + 1 g y + y 2 = x 2 + 2x + 1 - 2xy - 2y + y 2

10. ^ y - 7 h ^ y - 3 h

11. ] m - 6 g ] m - 3 g

12. ^ y + 12 h ^ y - 3 h

13. ] x - 8 g ] x + 3 g

31. 12a

14. ] a - 2 g

32. 32 - z

2

34. x 2 + 3xy + y 2 - 2x

33. 9x + 8x - 3
2

2

37. x

2

15. ] x - 2 g ] x + 16 g

16. ^ y + 4 h ^ y - 9 h

35. 14n 2 - 4

36. x - 12x + 48x - 64
3

2

38. x - 2x y + y
4

2

2

4

17. ] n - 6 g ] n - 4 g 18. ] x - 5 g 2

19. ^ p + 9 h ^ p - 1 h

20. ] k - 2 g ] k - 5 g 21. ] x + 4 g ] x - 3 g

39. 8a + 60a + 150a + 125

22. ] m - 7 g ] m + 1 g 23. ^ q + 10 h ^ q + 2 h

40. 4x + 16x + 15x - 4x - 4

24. ] d - 5 g ] d + 1 g 25. ] l - 9 g ] l - 2 g

Problem

Exercises 2.10

a = 2, b = 7, c = 9, d = 4, e = 3, f = 8, g = 0, h = 6, i = 1

1.

(2a + 1) (a + 5) 2. ^ 5y + 2 h ^ y + 1 h

3.

(3x + 7) (x + 1) 4. (3x + 2) (x + 2) 5. (2b - 3) (b - 1)

6.

(7x - 2) (x - 1) 7. ^ 3y - 1 h ^ y + 2 h

9.

^ 5p - 2 h ^ p + 3 h 10. ] 3x + 5 g ] 2x + 1 g

3

2

4

3

2

Exercises 2.7
2. 5 ] x - 2 g 3. 3 ] m - 3 g 4. 2 ] 4x + 1 g

1.

2^y + 3h

5.

6 ^ 4 - 3y h

9.

3a ] 5 - a g 10. ab ] b + 1 g 11. 2xy ] 2x - 1 g

6. x ] x + 2 g 7. m ] m - 3 g 8. 2y ^ y + 2 h

12. 3mn ^ n 2 + 3 h

13. 2xy ] 4x - z g 14. a ] 6b + 3 - 2a g

15. x ^ 5x - 2 + y h

17. 5b 2 ] b + 3 g

16. q 2 _ 3q 3 - 2 i

18. 3a b ] 2b - a g 19. (m + 5) (x + 7)
2

20. ^ y - 1 h ^ 2 - y h

2

21. (7 + y) (4 - 3x)

22. ] a - 2 g ] 6x + 5 g

23. ] 2t + 1 g ^ x - y h

24. ] 3x - 2 g ] a + 2b - 3c g

25. 3x ] 2x + 3 g
2

28. 4x 2 ] x - 6 g

26. 3q _ pq 2 - 2 i
3

29. 5m 2 n ^ 7mn 3 - 5 h

31. 2rr ] r + h g 32. ] x - 3 g ] x + 2 g
34. - ] a + 1 g

27. 3ab ^ 5a 3 b 2 + 1 h

35. (a 2 + 1) (4ab - 3)

30. 4ab 2 ^ 6ab 3 + 4 h

33. (x + 4) (y 2 + 2)

8. ] 2x + 3 g ] x + 4 g

11. (2y + 1) (y - 6)

12. ] 5x - 1 g ] 2x + 1 g

13. (4t - 1) (2t - 3)

14. (3x + 4) (2x - 3)

15. ^ 6y - 1 h ^ y + 8 h

16. ] 4n - 3 g ] n - 2 g

17. ] 4t - 1 g ] 2t + 5 g 18. ^ 3q + 2 h ^ 4q + 5 h
19. ] 4r - 1 g ] 2r + 6 g = 2 ] 4r - 1 g ] r + 3 g
20. ] 2x - 5 g ] 2x + 3 g

21. ^ 6y - 1 h ^ y - 2 h

22. ^ 2p - 3 h ^ 3p + 2 h

23. (8x + 7) (x + 3)

24. ] 3b - 4 g ] 4b - 9 g

25. (6x + 1) (x - 9)

26. ] 3x + 5 g2

27. ^ 4y + 3 h2

29. ] 6a - 1 g2

30. ] 7m + 6 g2

28. ] 5k - 2 g2

759

760

Maths In Focus Mathematics Extension 1 Preliminary Course

Exercises 2.11
1.

^y - 1h

5.

(x - 6)

9.

] 5x - 4 g2

Exercises 2.14

2. (x + 3)

2

6. ] 2x + 3 g

2

2

2

10. ^ 7y + 1 h2
2

13. ] 5x + 1 g

14. ] 9a - 2 g

2

2

2

12. ] 4k - 3 g

11. ^ 3y - 5 h

2

15. ] 7m + 6 g2

16. d t +

1 n 2

2

17. d x -

2

18. d 3y +

2 n 3

1 n 5

2 2
20. d 5k - n k (a + 2) (a - 2)

2. (x + 3) (x - 3)

4.

]x + 5g]x - 5g

5. (2x + 7) (2x - 7)

7.

(1 + 2z) (1 - 2z) 8. ] 5t + 1 g ] 5t - 1 g 9. ] 3t + 2 g ] 3t - 2 g

3. (y + 1) (y - 1)
6. (4y + 3) (4y - 3)

10. ] 3 + 4x g ] 3 - 4x g

11. (x + 2y) (x - 2y)

12. ^ 6x + y h ^ 6x - y h

13. ] 2a + 3b g ] 2a - 3b g

18. ] z + w + 1 g ] z - w - 1 g

1
1
19. d x + n d x - n
2
2

3

+ 1oe

3

10. 2 ] 3x - 2 g ] x + 2 g 11. ] m - 5 g ] 3 + n g

12. - 7 ] 2x + 1 g

14. ] x - 1 g ] x + 2 g ^ x 2 - 2x + 4 h

13. ^ y + 5 h ^ y + 4 h ^ y - 4 h

19. 3 ] 2 - b g ^ 4 + 2b + b 2 h

18. y (2xy + 1) (2xy - 1)

20. 3 ] 3x - 2 g ] 2x + 5 g 21. 3 ] x - 1 g2
23. z ] z + 3 g2

22. (x + 2) (x + 5) (x - 5)

24. ] x + 1 g ] x - 1 g ] 2x + 3 g ] 2x - 3 g
27. 5x ] 2 - x g ^ 4 + 2x + x 2 h

28. (a + 2) (a - 2) (a + 3) (a - 3)

29. 4k (k + 5) 2

30. 3 (x + 1) (x - 1) (x + 3)

Exercises 2.15

- 1 o 21. ^ x + 2y + 3 h ^ x - 2y + 1 h

25. (a 4 + 1) (a 2 + 1) (a + 1) (a - 1)

x 2 + 4x + 4 = ] x + 2 g2

x 2 - 10x + 25 = ] x - 5 g2

5.

m - 14m + 49 = ] m - 7 g

7.

x 2 + 2x + 1 = ] x + 1 g2

9.

23. _ 3x 3 + 2y i _ 3x 3 - 2y i 24. _ x 2 + 4y 2 i ^ x + 2y h ^ x - 2y h

1.
3.

22. (x 2 + 1) (x 2 - 1) = (x 2 + 1) (x + 1) (x - 1)

2. b 2 - 6b + 9 = ] b - 3 g2

x 2 - 20x + 100 = ] x - 10 g2

4. y 2 + 8y + 16 = ^ y + 4 h2

2

6. q 2 + 18x + 81 = ^ q + 9 h2

2

8. t 2 - 16t + 64 = ] t - 8 g2

10. w 2 + 44w + 484 = ] w + 22 g2

Exercises 2.13
2. ] x + 3 g ^ x 2 - 3x + 9 h

1.

(b - 2) (b 2 + 2b + 4)

3.

]t + 1g^t - t + 1h

5.

(1 - x) (1 + x + x )

7.

(y + 2z) (y 2 - 2yz + 4z 2)

9.

^ 2x + 3y h _ 4x 2 - 6xy + 9y 2 i 10. ] ab - 1 g ^ a 2 b 2 + ab + 1 h

11. x 2 - 32x + 256 = ] x - 16 g2

2

2

6. ^ 2 + 3y h _ 4 - 6y + 9y 2 i

13. x 2 - 7x +

12. d

x x 2 3x
- 3ne +
+ 9o
4
2
2

10 1 100 10
1
13. d
+ ne 2 + o a b ab b 2 a 15. ^ 5xy + 6z h _ 25x y - 30xyz + 36z i
2

15. x 2 + 9x +

81
9 2
= dx + n
4
2

16. y 2 -

17. k 2 -

11k 121
11
n
+
= dk 4
2
16

5y
2

1
1 2
= da + n
4
2

+

25
5 2
= dy - n
4
16

2

16. - 9 ^ a - a + 1 h

20. p 2 - 8pq + 16q 2 = ^ p - 4q h2

2

Exercises 2.16

2

x x x ne1 + + o
9
3
3

18. ^ x + y + 3 h _ y 2 - 3y - xy + 9 + 6x + x 2 i
19. ^ x + y - 1 h _ x 2 + 4x - xy + y 2 - 5y + 7 i
20. (2a + 6 - b) (4a + 24a + 2ab + 6b + b + 36)
2

14. a 2 + a +

3 2
9
= dy + n
4
2

18. x 2 + 6xy + 9y 2 = ^ x + 3y h2 19. a 2 - 4ab + 4b 2 = ] a - 2b g2

14. ^ x + 1 - y h _ x 2 + 2x + 1 + xy + y + y 2 i
2

49
7 2
= dx - n
4
2

8. (x - 5y) (x 2 + 5xy + 25y 2)

11. (10 + 2t) (100 - 20t + 4t 2)

2

12. y 2 + 3y +

4. (a - 4) (a + 4a + 16)

2

17. d 1 -

ab ] 3 + 2ab g ] 3 - 2ab g 9. x ] x + 1 g ] x - 1 g

26. 4a (a + 3) (a - 3)

15. ] 2a + 9b g ] 2a - 9b g
17. (a + b - 3) (a - b + 1)

20. e

8.

25. 2 ] x + 2 g ] x - 2 g ^ x + y h _ x 2 - xy + y 2 i

16. ^ x + 2 + y h ^ x + 2 - y h

y

5 ] a - 1 g2 6. - ] 2x - 3 g ] x - 4 g 7. 3z ] z + 5 g ] z + 4 g

16. x ] x + 2 g ] x - 5 g 17. ] x + 3 g (x - 3) 2

1.

y

5 ^ y - 1 h _ y 2 + y + 1 i 4. 2ab ^ a + 2b) (2a - 1 h

15. ] x + 1 g ^ x 2 - x + 1 h ] x - 1 g ^ x 2 + x + 1 h

Exercises 2.12

14. ^ x + 10y h ^ x - 10y h

2 ] x + 3 g ] x - 3 g 2. 3 ^ p + 3 h ^ p - 4 h

3.

2

8. ] 3a + 2 g

7. ] 4b - 1 g

2

1 2
19. c x + m x 4. (t - 2)

2

1.

5.

3. (m + 5)

2

2

1.

a+2

2. 2t - 1

6.

1 y-4 7.

10.
14.

p+5
3

2 ] b - 2a g a-3 11.

a+1 a+3 p-2
4p - 2p + 1
2

3.

15.

4y + 1
3

s-1 s+3 8.

12.

4.

4
2d - 1
9.

3+y x + 2x + 4

a+b
2a - b

2

5.

x
5x - 2

b2 + b + 1 b+1 13. x - 3

ANSWERS

Exercises 2.17
1.

2.

(a)

(a)

(d)
3.

5x
4

(b)

Exercises 2.20

13y + 3

b
2a - 1

(b)

a+8
12

(d)

^ p - 2 h _ q2 - q + 1 i

ab

a+b+3
(c)
a+b

-x + 2
(b)
x ]x - 1g

(a)

x - 13
6

2 _ 3y 2 + 14y + 13 i

^y + 2h^y + 3h^y - 1h x2 ] x + 2 g

(b)

8 _ y 2 - 3y + 9 i

1. 3 5

10 ] 2b - 1 g

(e)

3p 2 + 5pq - 2q 2

pq ^ p + q h ^ p - q h

10. 4 5

14.

15. 5 7

16.

1.

6.

2.

3. 3 6

15

8. 14

9. 60

16. 28

15y

18. - 2 105

17.

30

25. 2 3
3

31.

30.

2 2

27.

3 10
3

32.

2

1.

(a)

10 + 6

9
2 5

33.

29.

3 5
5

34.

2 2

6

1
2

2
3

35.

5
7

(c) 12 + 8 15

2. 47

3. - 7

3
4

(e) 0.6

4. 375

(m) 10 6 - 120

5. - 196

10. 51.935 11. - 1

8. 284 9. - 40
14.

(k) - 8 + 12 12 = - 8 + 24 3

(d) - 37.7

(c) 48.1

3
4

2.

(f) 15 - 15 + 18 10 - 6 6

(j) 3 6

(f) 10 2

(g) 4 3

(h) 5 3

(i) 4 2

(k) 4 7

(l) 10 3

(m) 8 2

(n) 9 3

(p) 6 3

(q) 3 11

(r) 5 5

(a) 6 3

(b) 20 5

(c) 28 2

(g) 72 5
20
117

176

(h)

98

(h) - 1

(i) - 12

(n) 7 + 2 10

(j) 43

(k) 3

(o) 11 - 4 6

(l) - 241
(p) 25 + 6 14

(r) 27 - 4 35

(d) 4 7

(s) 77 - 12 40 = 77 - 24 10

(t) 53 + 12 10

3.

(h) 30 2

(c)

(o) 4 3 - 12

(a) 10 + 3 6 + 3 5 + 9 3
(b) 10 - 35 - 2 + 14

(q) 57 + 12 15

(d) 5 2

(l) 210 - 14 15

(n) - 10 - 2 2

(c) 2 10 - 6 + 10 15 - 15 6
(d) 12 20 + 18 60 - 8 10 - 12 30 =
24 5 + 36 15 - 8 10 - 12 30

15. 15 16. 10

(c) 2 6

(h) 5 - 5 15

(j) 2 54 + 6 = 6 6 + 6

(e) 6 2

4.

2 5

1

(g) - 6 - 12 6

(i) 6 + 30

(b) 3 7

(g)

28.

8

24.

(f) 5 33 + 3 21

1.

160

1

23. 1

(e) - 6 + 4 18 = - 6 + 12 2

(m) - 6

(f)

22. 4 3

(b) 2 6 - 15

(g) 4

(b)

19. 18

Exercises 2.22

a 2 - 2ab - b 2 + 1
]a + bg]a - bg

Exercises 2.19

18

15. 2

21. 2 6

1

26.

(e) 52 - 13 10

(a)

6. 30

12 = 2 3

14. - 84

18. 23.987 19. 352.47 20. 93 21. 4

3.

10.

5. - 6 6

12. 15 28 = 30 7

20. 30 50 = 150 2

17. 2 3

(f) 8 14

4. 10 14

13. 2 20 = 4 5

- ] 5x + 22 g
(j)
]x + 4g]x - 4g]x + 3g

13. 1838.8

2.

7-5 2

24. - 2 - 2 3

11. 2 48 = 8 3

12. 22.4

(a) 2 3

21.

(d) 5 14 - 2 21

(b) - 6.9

5.5 7. 377

21

7. - 12 55

^x + yh^x - yh

(f) 2.3 (g) - 5.3

17. 13 6

2

20. 5 2 - 2 3

23. 7 6 + 3 5

12. 5 3

2

Exercise 2.21

2]x - 1g
(f)
]x + 1g]x - 3g

y ^x + y + 1h

(a) - 7.1

2

19. 47 3

11.

6. 3 6

25. - 17 5 + 10 2
2x
(d) x+2 Exercises 2.18
1.

5. - 3 5

9. - 4 2

22. - 2 3 - 4 5

^y + 2h^y + 1h

(d)

4. 3 3

8. 8 5

18. - 9 10

x 2 + 10x - 24
3b 2 - 5b - 10
(d)
(e) x
2 ]x - 3g]x - 4g
2b ] b + 1 g
3x - 13
3 - 5x
(a)
(b)
]x - 5g]x - 2g]x + 3g
]x + 2g]x - 2g
(c)

3. 6 3

2

7. - 7 2

(c)

5.

2.

13. - 3

b 2 ^ x + 2y h

a+2
(h)
] a + 1 g2

- 3x + 8
(g)
]x + 2g]x - 2g

4.

(e)

6

]x - 3g]x - 1g
(e)
]x - 5g]x - 2g

^ p + qh^ p - qh + 1 p2 - q2 + 1
=
(e) p+q p+q

(i)

4p + 3

(c)

q+1

x 2 - xy + y 2

5
(a)
x

(c)

15

(a) 18

(d) 19 + 6 2

4.

(a) a = 21, b = 80

5.

(a) a - 1

6.

k = 25

9.

a = 107, b = - 42

(o) 7 5

(e) 16 5

(i) 14 10

(j) 24 5

(d)

128

(e)

75

(i)

363

(j)

1008

(a) x = 45 (b) x = 12 (c) x = 63 (d) x = 50
(e) x = 44 (f) x = 147 (g) x = 304 (h) x = 828
(i) x = 775 (j) x = 960

(b) 108 2

(c) 432 2

(e) 9

(b) a = 19, b = - 7

(b) 2p - 1 - 2 p ^ p - 1 h
7. 2x - 3y - 5 xy

8. a = 17, b = 240

10. 9 + 5 units 2

761

762

Maths In Focus Mathematics Extension 1 Preliminary Course

Exercises 2.23
1.

(a)
(e)
(h)

2.

7
7

8.
6
4

(b)

3+ 6
3

(f)

3 14 - 4 7
14

(c)

2 15
5

(d)

12 - 5 2
2
(i)

6 14
3 14
=
5
10

(g)

(a) 4 3 - 4 2 = 4 ^ 3 - 2 h

(b)

(j)

4 15 - 2 10
35

6 15 - 9 6 + 2 10 - 6
2

3.

So rational
9.

1.

(j)
(l)
4.

(i)

2-1

=

28 - 2 6 - 7 3
13

(b) a = 1, b = 8

8
5
(d) a = - 1 , b = 9
9

=

(k)

+
2+1
2-1

2
2-1

2+1
2-1
^ 2 - 1h^ 2 - 1h

+
+

4
2

(a) 4 (b) 14

7.

3 5 - 2 - 15 - 3
3

#

4 2
2

^ 2 h2 - 1 2
2- 2- 2+1
=
+2 2
2-1
3-2 2
=
+2 2
1
=3-2 2+2 2
=3
So rational
6.

1
1
(c) a = - , b =
2
2

(e) a = 5, b = 32

4

#

10.

2.

2
2

(a) - 2y

(b) a + 4

b+4 b+4 b-4 (c) - 6k 5

5x + 3y

(g) 4 5

(d)

(e) 3a - 8b

15

(b) ] a + 3 g ] a - 1 g (c) 4ab ] b - 2 g

(a) ] x + 6 g ] x - 6 g

(e) 2 ^ 2n - p + 3 h

(d) (y - 3) (5 + x)

(f) (2 - x) (4 + 2x + x 2)
3.

(b) 2x 2 + 5x - 3

(a) 4b - 6

(d) 16x - 24x + 9
(g) 2 6 - 5 3

5.

V = 157.464

(f) - 1 - 7a

(h) 3 3 - 6 + 21 - 2 7

8

(a)

(c) 4m + 17

(e) p 2 - 25

2

4.

2 15 + 2 10 - 2 6 - 3 - 5
2

(a) a = 45, b = 10

5.

4 6+9 3
21

15 30 - 30 5 - 4 3
30

x = -^ 3 + 2h

(f) 6 2

20 12 + 19 6 + 25 3 - 6
19 6 + 65 3 - 6
(g)
=
15
15
6+9 2+2 3
6

2

Test yourself 2

(a) 2 2
(b) - ^ 2 + 6 - 3 2 + 3 3 h = - 2 - 6 + 3 2 - 3 3
22 5 + 14 2
(c)
39
^ 6 6 - 16 - 3 84 + 8 14 h
(d) 10
- 3 6 + 8 + 3 21 - 4 14
=
5
(e) - 4 (f) 4 2

(h)

2

6-4 2
+4 2
9-4#2
6-4 2
=
+4 2
1
=6-4 2+4 2
=6

(c)

(f)

2
3-2 2
8
=
#
+
#
3+2 2
3-2 2
2
2^3 - 2 2 h 8 2
+
=
2
2
32 - ^ 2 2 h
=

-^ 6 + 7 3 h
47

- ^ 2 15 - 4 18 h
- 2 ^ 15 - 6 2 h
=
19
19
- ^ 19 - 8 3 h
8 3 - 19
=
(d)
(e) 6 + 2 + 5 3 + 5 2
13
13

8

+

2

5 + 2 10
5

8 5 + 3 10
20

2
3+2 2

(b)

b 2 ^ a 2 + 3a + 9 h

6. (a) 17

15
] m - 2 g2
(b)

6 15 - 9
17

4x + 5
8. (a) 36 (b) - 2
]x + 3g]x - 2g
1
9. (a)
(b) 8 10. d = 11.25
5
2 3
2+ 6
11. (a)
(b)
15
2
7.

12. (a) 3 6 - 6 - 4 3 + 4 2

(c) 2

(d) 216

(b) 11 + 4 7

(b) 6 ] x - 3 g ] x + 1 g

13. (a) 3 (x - 3) (x + 3)

(c) 5 ^ y + 2 h _ y 2 - 2y + 4 i

14. (a)

x3

(b)

3y 4

15. (a) 99

1
3x - 1

(b) 24 3

16. (a) a 2 - b 2

(b) a 2 + 2ab + b 2

17. (a) ] a - b g2

(b) ] a - b g ^ a 2 + ab + b 2 h

18.

3 3+1
2

20.

21 5 - 46 - 2
7

(c) 16

19. (a)

4b + 3a ab (c) a 2 - 2ab + b 2

(b)

3x - 11
10

(e) 2

ANSWERS

21. (a) 6 2
(f)

(b) - 8 6

m

24. (a)

(d)

3 7
7

6
15

5+1
2

(c)

(e)

x + 10
10

17a - 15
21

1 k-1 (b)

(e)

71
121

20 + 3 15 + 4 10 + 3 6
53
(c)

3 - 2x
(x + 1) (x - 1)

15 - 6 - 15 3 - 15 2
3

(b) n = 175

(d) n = 5547

27. (b), (c)

29. (a), (d)

34. (d)

30. (c)

35. (b)

2.
4.

x2 +

(b) y 4 - 4

4x 2 + 12x + 9 = ] 2x + 3 g2
]a + 1g

a2 - a + 1

10. d

9
35

5. k = 5

5
8

24. y = 1

14. x = - 1

17. t = 8.2

20. x = - 3

21. b = 0.8
2
25. t = - 1
3

7.

(d) ] b - 2 g ] a + 2 g ] a - 2 g y+1 2]x - 1g

8. 2 5

18. x = - 9.5
22. a = - 0.375

12. r = 0.072

16. r = 2.12

19. x = 5.5

9. y 1 = 3

17. r = 10.46

3
4 r

=

3 r
4r

(b) a =

18. x = 1.19

Exercises 3.4
1.

2.

(a) x 2 3
-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

4

1
2

(g) y $ - 2

(k) b 1 - 18

(l) x 2 30

(n) m 2 14
17
14
, b=23
23

4

(a) t 2 7 (b) x $ 3 (c) p 2 - 1 (d) x $ - 2 (e) y 2 - 9

(j) y 1 12

16. x = 2
71
121

14. t = 2.14

20. r = 3.3

-4

(a) 3

2
3

(b) w = 69.66
13. x 1 = - 9

(f) a $ - 1

2x 1
1 2
+ = dx + n
9
3
3

21. s = 2 + 6 3

5. y = 4

(b) y # 4

- 66 6 + 4 2 - 15 + 4 5 - 65 3
13

20. r =

4. a = 41

8. n = 15

11. (a) BMI = 25.39

15. x = ! 2

-4

13. x 3 - 7x 2 + 15x - 9

18.

3. b = 8

7. x = 6.44

(c) h = 1.94

3x + 4
(b)
] 2x - 1 g2

2

400 - 59 5
10

2. l = 122

10. h = 3.7

2 a 2 a
+ nd - n x b x b

12. (a) 8x - 12x + 6x - 1

1
2

4. x = 1

13. x = 14

16. p = 3

r = 6.68

]x - 3g]x + 3g]x - 2g

19. i = 1

12. t = 30

t = 8.5

3x 3 - 6x 2 + 3x + 4xy - 6y

3

17.

11. w = 13
15. x = - 0.4

6.

(a) ] x + 4 g ] x + 9 g

15. x 2 +

4
9

x = 36 7. t = 0.6 8. x = - 3 9. y = - 1.2 10. x = 69

1.

2
3.
or
4
2 2

b b2 b 2 n x + 2 = dx + a 2a
4a

2

14.

2. x = 35 3. y = 4

1

(c) ] 5x + 7 g ^ 25x 2 - 35x + 49 h

11.

1
3

b =3

Exercises 3.3

(b) _ x 2 - 3y i _ x 2 + 2y i = (x + 3 y) (x - 3 y) _ x 2 + 2y i

9.

30. x Z 4.41

2

17 3 + 2 5 + 20
17

6.

29. p = 5

19. q = 22

(c) 8x - 60x + 150x - 125

5.

16. x = 20 17. m = 20 18. x = 4 19. a = - 7 20. y = 3
2
21. b = - 4 22. x = 3 23. a = - 1
24. t = - 4
3
1
25. x = 1.2 26. a = 1.6 27. b =
28. t = 39
8

23. x = 3

(a) 2a 2 b - 8ab 2 + 6a 3
3

2. z = - 5.6 3. y = 1 4. w = 6.7 5. x = 12
1
8. b = 35 9. n = - 16 10. r = 4
6. x = 4 7. y =
15
11. y = 9 12. k = 6 13. d = 2 14. x = 5 15. y = 15

6.

Challenge exercise 2
1.

t = -5

1.

(c) n = 392

28. (d)

33. (a)

1.

Exercises 3.2

(e) n = 1445

32. (b)

Chapter 3: Equations

Exercises 3.1

12 - 2 6
15

31. (c)

(e) 30a 2 b

3

(b) 10 14 - 5 21 - 6 10 + 3 15

(b)

25. (a) n = 48

26. 3

4

(d) 43 (e) 65 - 6 14

(c) 7

(d)

(d)

(g) 2x - 3y

3n 4

22. (a) 2 6 + 4

23. (a)

(c) 2 3

2
3

1
4

(o) b $ 16

(h) x 1 - 2

(i) a # - 6

(m) x # 3

(p) r # - 9

3
4

(q) z 2 8

763

764

Maths In Focus Mathematics Extension 1 Preliminary Course

(r) w 1 2

4
5

(s) x $ 35
2
3

(v) x 2 - 1
3.

(t) t $ - 9

(w) b # - 11

(u) q 2 - 6

(e) y = 1.89 (f) d = ! 2.55 (g) k = ! 4.47 (h) x = 2.22

2
5

(i) y = ! 3.81

1
4

3.

1

3

4

5

6

7

8

0

2

-2

1

2

3

4

5

-1

-2

0

-1

1

2

3

4

1

2

3

0

-1

-2

4

1

2

3

(a) x = ! 5

(b) y = ! 8

4

(f) - 10 # p # 10

(g) x = 0

(i) - 12 1 y 1 12

1
7

(f) a = 2 (g) x = ! 2 (h) b = 9
2
3

(j) b = ! 1

(d) x = !

1
2

(b) y = 5

(c) m = 9

(g) x = 2

(h) x = 2

(a) x = 2

(b) x = 1 (c) x = - 2 (d) n = 2 (e) x = 0
1
(g) y =
(h) x = 2 (i) x = 2 (j) a = 0
3

(a) x = 5, - 9

(b) n = 4, -2

(f) x = 6
8.

(c) a 2 2, a 1 - 2

(h) x $ 9, x # - 6

1
4

1
3

(c) b = 2

(d) No solutions (e) y = - 2
3
1
(h) d = 2 , -1
4
2
(a) x = 2, -

1
2

(d) x = 4, -7

1
3

2
(a) t = 3, -1
5

2
7

(b) y = 3, 2

1
3

1
3
2
3

(c) x =

3
4

(f) n =

1
6

(j) x = 1

1
3

1
2

(h) n =

2
3

1
2

2
3
1
3

(c) k = - 4

(f) x = -

2
3

(g) x = - 4

1
2

(e) m = 0
(j) k = 2

(d) k = -

(b) x = - 1

(a) x = - 1

4
5
1
4

(b) k = - 2

(e) n =

1
18

(f) n = -

(d) n = 3
1
2

(h) x = - 1

7
11

(j) x = 18

(i) x = 1

3
5

(e) d = 4, -5

(i) x = - 1

2
(b) - 1 1 t 1 3
5

(d) x = 5
(i) x = 1

(g) x = 1

10. (a) m =

(j) No solutions

(c) a = - 10, 1

1
3

2
3

(e) x = - 2

(f) x = 7 (g) m = 5, 1

4
, -2
5

(i) y =

(b) x =

(i) k = -

(i) x = ! 12
9.

(b) a = 3, -

1
2

(a) m =

(e) k = -

5
(f) x = 5, -4
7

(e) x = 3, -6

1
1y 12
2

(a) x =

(h) a 2 14, a 1 - 14

(j) 2 # a # 10

5.

2
3

(c) y =

(a) n = 4

7.

(j) b $ 20, b # - 20

(d) 4 # x # 6

4.

(b) a =

6.

5

(e) x 2 6, x 1 - 6

(a) x = 1

1
5

1
1
1
1
(b) x = 6
(c) a =
(d) k =
4
512
81
625
19
1
(e) x =
(f) x = 4 (g) y = 8 (h) n = 7
8
32
127
(i) b = 8 (j) m = 1
216

5

(c) - 4 1 a 1 4

(d) k $ 1, k # - 1

3.

(a) x =

5

Exercises 3.5

(g) - 3

1
2

(h) y = 27

(f) x = 3

0

-2
-1
1
2
(e) 1 y 1 1
6
3

2.

1
2

(g) b = 216

5.

-3

1.

(j) t = 81

(i) x = !

(d) - 3 # y # 5

-3

(f) m = 625

(d) t = 8

(e) n =

4.

(c) 1 1 x 1 4
-3

(c) x = 32

(i) a = 128

(b) - 2 # p 1 5
-3

(b) t = 16

(e) p = 243

(a) 1 1 x 1 7
0

(a) n = 27

(j) y = 3.01

1
7

3
4

1
2

(c) x = 2
(g) x =

4
5

3
8

(d) k = 1

1
2

(h) b = - 3

1
6

(j) m = 5

Puzzle
1.

-3

-2

0

1

2

3

4

(a) x = 3

(b) y = ! 8

(e) p = 10
(i) n = ! 4
2.

(f) x = ! 5

(c) n = ! 2
(g) y = ! 3

16 each time

5

Exercises 3.6
1.

All months have 28 days. Some months have more days as well. 2. 10 3. Bottle $1.05; cork 5 cents

4.

-1

(d) x = ! 2 5
(h) w = 2

(j) q = - 2

(a) p = ! 6.71 (b) x = 4.64 (c) n = 2.99 (d) x = ! 5.92

5. Friday

Exercises 3.7
1.

y = 0, -1

5.

x = -2, -7

2. b = 2, -1
6. q = !3

3. p = 3, -5
7. x = !1

4. t = 0, 5

8. a = 0, -3

ANSWERS

9.

x = 0, - 4

12. y = 1, -1
16. x = 1, 2

10. x = !
1
2

20. x = 3, 4

11. x = -1, -1

3 1
,
4 2

13. b =

1
2

1
2

17. x = 0, 5

10. x 1 2, x 2 2

14. x = 5, -2 15. x = 0,
18. y = - 1, 2

21. m = - 6, 1

23. y = 1, -5, -2

1
3
2
3

19. n = 3, 5

22. x = 0, -1, -2

24. x = 5, -7

25. m = 8, -1

(b) a = ! 7 + 3

(d) x = ! 13 - 1

(c) y = ! 23 + 4

(e) p = ! 44 - 7 = ! 2 11 - 7

(f) x = ! 28 + 5 = ! 2 7 + 5

(g) y = ! 88 - 10 = ! 2 22 - 10 = 2 ^ ! 22 - 5 h
(h) x = ! 2 + 1

2.

(i) n = ! 137 - 12

! 5+3
2

(a) x = 3.45, -1.45

(b) x = - 4.59, -7.41

(c) q = 0.0554, -18.1

(d) x = 4.45, - 0.449

(d) x = 1, - 0.5
(f) n = 0.243, -8.24

(h) x = 0, 7

- 1 ! 17
2

(c) q =

(b) x =

(i) x = 1, - 6

5 ! 13
6

(f) x =

- 11 ! 133
2

7.

11x 11

1
4

3. n # 0, n $ 1

5. n 1 - 1, n 2 1

6. - 5 # n # 3

8. - 4 # x # - 2
1
2

2
5

9. 4 1 x 1 5

11. a 1 - 1, a 2
13. x #
15. - 1

1
3

2
,x $1
3

1
1
#x #2
3

(g) d =

17. x 1 - 4, x 2 4

18. - 1 # a # 1

20. x # - 1, x $ 3

21. 0 1 x 1 2

- 5 ! 73
12
(i) t =

1
2

23. y # - 2, y $

2
1
24. m 1 - 1 , m 2 1
3
2
26. 0 1 x 1

1! 5
2

1
2

4
5

30. x # - 8, x 2 - 5

4
5

25. 1 # x # 1

27. x 1 0, x $

28. y 1 - 1, y 2 -

1
2

29. 3 1 n # 3
31. x 1

1
3

1
2

3
2
,x 2
5
7

1
32. x # 4 , x 2 5
5
2. 0 1 x 1

1
2

3
5. x 1 - , x > 0
5
8. - 3

3. x 1 0, x 2 1

1
2

6. - 2 # b 1 0

1
1 z 1 -3
5

9. 2 1 x # 2

3
4

1
33. x # - 1 , x 2 - 1
4

34. x 1 - 3, x 2 2

Exercises 3.10

2
7

c 1 - 1, c 2 2

22. 1 # a # 1

7 ! 41
4

01m #

2
4
1x 17
3

19. - 2 1 x 1 3

2 ! 32
=1!2 2
2

4.

29. x 1 - 4, -

16. - 4 # y # 3

8 ! 40
4 ! 10
=
6
3

y 2 1, y 1 0

x # - 2, x $ 2

14. b 1 - 3, b 2

- 12 ! 128
-3 ! 2 2
(d) h =
=
8
2
(e) s =

27. x $ 3, - 1 # x 1 2

2. 0 1 y 1 4

10. b # - 2, b $ -

4 ! 28
= 2! 7
2

1.

-3 1 x 1 0

1
12. y 1 - 1 , y 2 2
2

(a) x =

25. x # - 1, 3 1 x # 4

1
,11x #7
2

7.

(b) x = 1, 1.5

(j) y = 2.62, 0.382

(j) x =

1
2
#x 1
2
3

4.

(g) m = - 2, - 5

23. x 2 5, - 3 1 x 1 0

24. m # - 2, - 1 1 m # 6

1.

(e) x = - 0.553, 0.678

1
2
2
19. t # , t 2 2
5
5
3

Exercises 3.11

Exercises 3.9
(c) b = 3.54, - 2.54

1
1 p 1 26
2

8
1 m 1 0 21. x 1 - 5, 0 1 x 1 1
9

30. x #

(j) y = 40.1, - 0.0749

(a) y = - 0.354, - 5.65

17. 4

22. 0 1 n # 2, n $ 4

(h) x = - 0.683, -7.32

(i) a = 0.162, - 6.16

(h) x =

15. y 1 - 2, y 2 - 1

28. n 1 - 1, 3 1 n 1 5

(f) x = 17.7, 6.34

(g) r = 22.3, - 0.314

2.

20. -

26. x # - 2,

(e) b = - 4.26, -11.7

1.

5
1
1x 1
9
2

5
# x 1 -4
9

1
1
13. a 1 - 3 , a 2 - 2
4
2

1
7
1x 11
3
15

18. x # - 1, x 2 -

(a) x = ! 5 - 2

(j) y =

14.

11. - 4

7
16. x # - , x 2 4
8

Exercises 3.8
1.

12. 1

1
6

35. -

3
3
#x 14
5

765

766

Maths In Focus Mathematics Extension 1 Preliminary Course

3.

1.

a = 1, b = 3

4.

x = 6, y = 17

7.

2. x = 2, y = 1

x = - 3, y = 2

10. m = 2, n = 3

5. x = - 10, y = 2
11. w 1 = - 1, w 2 = 5

9. x = 3, y = - 4

15. x = - 1, y = - 4 16. s = 2, t = - 1
18. k = - 4, h = 1

19. v 1 = - 2, v 2 = 4

5.

(a) x = 2

(a) b = 2, -1
(a) A = 36

20. x = 2, y Z 1.41

9.

-1 1 y # 3

1
3

1
4

(b) g = 2,

(b) b = 12

10. (a) x = - 0.298, -6.70

Problem

(b) k 2 + 4k + 4 = ] k + 2 g2

1
(b) x = 4, y = 1 and x = - , y = - 8
2

(b) y =

12. a = 0, b = 4

14. x 1 = 1, x 2 = - 1

17. a = - 2, b = 0

(a) x = - 2, y = 5

6. t = 3, v = 1

8. x = - 64, y = - 39

13. p = - 4, q = 1

4.

7.

3. p = 2, q = - 1

(a) x 2 - 8x + 16 = ] x - 4 g2

6.

Exercises 3.12

1
4

(c) x $ 4, x # 3

8. x =

1
,1
2

(b) y = 4.16, -2.16

(c) n = 0.869, -1.54
11. (a) V = 764.5

Exercises 3.13

(b) r = 2.9

13. x 1 2, x 2 9

23 adults and 16 children.

14. x = 2.4, y = 3.2

(b) r = 3.9

1.

x = 0, y = 0 and x = 1, y = 1

2.

x = 0, y = 0 and x = - 2, y = 4

3.

x = 0, y = 3 and x = 3, y = 0

4.

x = 4, y = - 3 and x = 3, y = - 4

6.

x = 3, y = 9

8.

m = - 4, n = 0 and m = 0, n = - 4

9.

12. x 2 71

16. (a) ii (b) i

(c) ii

x = 1, y = 2 and x = - 1, y = - 2

18. n 2 0, n 1 - 3
5. x = - 1, y = - 3

19. x = - 4

(d) x = 2

(g) - 4 # x # 2

1
1
15. t = - , h =
4
2

(m) No solutions

(k) x =

(e) iii

(s) 2 1 n # 2

5
12
,y =13
13

2
5

2
5

(b) - 3 # n # 0
(f) t $ 1, t # - 2

(i) y 2 2, y 1 - 2

5
6

(l) -

1 3
(n) t = 2 ,
3 5

(p) m # - 3, m $ 2

18. x = 0, y = 0 and x = 1, y = 1 and x = - 1, y = 1
20. x = -

(e) x = 3, -1

(h) x = - 3

(j) x # - 1, x $ 1

17. x = 0, y = 0 and x = - 2, y = - 8 and x = 3, y = 27
3
1
,y =2
4
2

21. (a) y 2 3

12. x = 0, y = 1

16. x = 2, y = 0

19. x =

(d) iii

1
3

20. x = - 2

(c) x = 2

10. x = 0, y = 0 and x = 1, y = 1
13. x = 1, y = 5 and x = 4, y = 11
1
14. x = , y = 4 and x = - 1, y = - 1
4

15. (a) V = 2100

17. a = 3, b = 2, c = - 4

7. t = - 2, x = 4 and t = 1, x = 1

11. x = 2, y = 1 and x = - 1, y = - 2

1
4

1
#b #2
2

(o) - 1 1 x 1 3

(q) t 1 - 1, t 2 0

(t) -

(r) 1 1 y 1 3

1
1
1x #
5
2

Challenge exercise 3

Exercises 3.14

1.
2. a = - 2, b = - 1, c = 2

y =1

4.

x = 2.56, -1.56

2. x 1 - a, x 2 a

3. a = 3, b = !2

1.

x = - 2, y = - 8, z = - 1

3.

a = - 4, b = 2, c = 7

4. a = 1, b = 2, c = - 3

6.

5.

x = 5, y = 0, z = - 2

6. x = 0, y = - 5, z = 4

] x + 3 g ] x - 3 g ] x - 2 g ^ x 2 + 2x + 4 h; x = ! 3, 2

7.

7.

p = - 3, q = 7, r = 4

8. x = 1, y = - 1, z = 2

x = 1, y = 2 and x = - 1, y = 0

8.

9.

h = - 3, j = 2, k = - 4

b = 4; x = ! 17 + 4 Z 8.12, - 0.123

10. a = 3, b = - 1, c = - 2

10. - 1 1 t 1 1

Test yourself 3

13. r = 2.31

1.

16. y # - 2,

2.

(a) b = 10

(b) a = - 116 (c) x = - 7
1
(d) x # - 4 , x 2 - 3 (e) p # 4
3
(a) A = 1262.48

(b) P = 8558.59

18. x =

5. y # - 2, 0 1 y # 3

11. - 3 # x # 8

14. No solutions
1
2
#y 1
2
3

2 ^ 4 ! 10 h
3

20. y 1 -1, y 2

3
5

9. x = ! 1
1
12. x =
4

15. x = ! b + a 2 + a

17. P = 2247.36

19. x 1 - 4, - 2.2 1 x 1 0.7

ANSWERS

Chapter 4: Geometry 1

10. +AEB + +BEC + +CED
= 50 - 8y + 5y - 20 + 3y + 60
= 90c

Exercises 4.1
1.

4.

7.

So +AED is a right angle.

(a) y = 47c (b) x = 39c (c) m = 145c (d) y = 60c
(e) b = 101c (f) x = 36c (g) a = 60c (h) x = 45c
(i) y = 40c (j) x = 80c 2. (a) 121c (b) 72c 29l
(c) 134c 48l 3. (a) 42c (b) 55c 37l (c) 73c 3l
(a) (i) 47c (ii) 137c (b) (i) 9c (ii) 99c (c) (i) 63c
(ii) 153c (d) (i) 35c (ii) 125c (e) (i) 52c (ii)142c
(f) (i) 15c7l (ii) 105c7l (g) (i) 47c36l (ii) 137c36l l l l l
(h) (i) 72c21 (ii)162c21 (i) (i) 26c11 (ii) 116c11 l l
(j) (i) 38c51 (ii) 128c51 5. (a) x = 49c (b) 41c
(c) 131c 6. (a) y = 15c, x = z = 165c
(b) x = 142c, y = 48c, z = 28c
(c) a = 43c, b = 137c, c = 101c
(d) a = 97c, b = d = 41c c = 42c
,
(e) a = 68c b = 152c c = 28c (f) a = 10c, b = 150c
,
,
8x - 10 + 2x - 10 + x + 10 + 7x + 10 = 360
(angle of revolution)

18x = 360 x = 20
+ABE = 8x - 10
= 8 (20) - 10
= 150c
+EBC = 2x - 10
= 2 (20) - 10
= 30c
+ABE + +EBC = 150c + 30c
= 180c
` +ABC is a straight angle
+DBC = 7x + 10
= 7 (20) + 10
= 150c
+DBC + +EBC = 150c + 30c
= 180c
` +DBE is a straight angle
` AC and DE are straight lines
8.

+DFB = 180c - (180 - x) c
(+AFB is a straight angle)

=x
` +AFC = x

(vertically opposite angles)

+CFE = 180c - (x + 180c - 2x)
(+AFB is a straight angle)

=x
` +AFC = +CFE
` CD bisects +AFE
9.

+ABD + +DBC
= 110 - 3x + 3x + 70
= 180c
So +ABC is a straight angle.
AC is a straight line.

Exercises 4.2
1.

(a) a = b = e = f = 148c , c = d = g = 32c
(b) x = z = 70c , y = 110c
(c) x = 55c , y = 36c , z = 89c

(d) y = 125c , x = z = 55c

(e) n = e = g = a = c = z = x = 98c, o = m = h = f = b = d = y = w = 82c
(f) a = 95c , b = 85c , c = 32c
(g) a = 27c , b = 72c , c = 81c
(h) x = 56c , y = 124c , z = a = 116c , b = 64c
(i) x = 61c
2.

(a)

(j) y = 37c

+CGF = 180c - 121c

(FGH is a straight angle)

= 59c
` +BFG = +CGF = 59c
These are equal alternate angles.
` AB < CD
(b) +BAC = 360c - 292c = 68c
(angle of revolution)

` +BAC + +DCA = 68c + 112c
= 180c
These are supplementary cointerior angles.
` AB < CD
(c) +BCD = 180 - 76
(+BCE is a straight angle)
= 104c
+ABC = +BCD = 104c
These are equal alternate angles.
` AB ; CD
(d) +CEF = 180 - 128
(+CED is a straight angle)
= 52c
+CEF = +ABE = 52c
These are equal corresponding angles.
`AB ; CD
(e) +CFH = 180 - ] 23 + 115 g (+EFG is a straight angle)
= 42c
` BFD = 42c (vertically opposite angles)
+
+ABF + +BFD = 138c + 42c
= 180c
These are supplementary cointerior angles.
` AB ; CD

767

768

Maths In Focus Mathematics Extension 1 Preliminary Course

Exercises 4.3
1.

(a) x = 60c

(b) y = 36c

(c) m = 71c

(e) x = 30c

(f) x = 20c

(g) x = 67c

(d) x = 37c
(h) a = 73c

10. +OQP = 180 - ] 75 + 73 g (angle sum of triangle)
= 32c
` +MNO = +OQP = 32c
These are equal alternate angles.

(i) a = 75c , b = 27c , c = 46c

` MN ; QP

(j) a = 36c , b = 126c , c = 23c
(k) x = 67c , y = z = 59c , w = 121c
2.

Exercises 4.4

All angles are equal. Let them be x.
(angle sum of D)
Then x + x + x = 180
3x = 180 x = 60

1.

(a) Yes

4.

(given)
(given)

So all angles in an equilateral triangle are 60c.
3.

AB = EF = 5cm
BC = DF = 6 cm
AC = DE = 8 cm

(given)

] 90 - x g c

` D ABC / DDEF

(SSS)

(b)Yes

(vertically opposite angles)
+ACB = 50c
+ABC = 180c - (50c + 45c) (angle sum of D)
= 85c
` +DEC = +ABC = 85c
These are equal alternate angles.

XY = BC = 4.7 m

(given)

+XYZ = +BCA = 110c (given)

5.

YZ = AC = 2.3 m

(given)

` AB < DE

` D XYZ / DABC

(SAS)

+ACB = 180c - 124c
= 56c
+CBA + 68c = 124c
+CBA = 124c - 68c
= 56c
` +CBA = +ACB = 56c
` D ABC is isosceles

(c) No

6.

(a) x = 64c

(d) Yes

(exterior angle of D)

+PQR = +SUT = 49c
+PRQ = +STU = 52c

(b) x = 64c , y = 57c

+HJI = 180c - (35c + 25c)
= 120c
+IJL = 180c - 120c
= 60c
+JIL = 180c - (90c + 30c)
= 60c
+ILJ = 180 - (60c + 60c)
= 60c

2.
(angle sum of D HJI)

(angle sum of D IKL)
(angle sum of D JIL)

(given)
(d) +Y = +T = 90c
(given)
+Z = +S = 35c
(given)
XY = TR = 1.3
` by AAS, D XYZ / D STR

(angle sum of D JKL)

(given)
(e) BC = DE = 4
(given)
+C = +E = 90c
(given)
AC = EF = 7
` by SAS, D ABC / D DEF

BC = BD

` AB ; ED

(given)
(a) AB = KL = 4
(given)
+B = +L = 38c
(given)
BC = JL = 5
` by SAS, D ABC / D JKL

(given)
(c) MN = QR = 8
(given)
NO = PR = 8
(given)
MO = PQ = 5
` by SSS, D MNO / D PQR

(KJI is a straight angle)

` BDC = 46c (base angles of isosceles triangle)
+
+CBD = 180 - 2 # 46
= 88c
` CBD = +BDE = 88c
+
These are equal alternate angles.

(AAS)

(given)
(b) +Z = +B = 90c
(given)
XY = AC = 7
(given)
YZ = BC = 2
` by RHS, D XYZ / D ABC

(HJL is a straight angle)

` +JLK = +JKL = 30°
` D JKL is isosceles
9.

(given)

(e) No

(c) x = 63c

Since +IJL = +JIL = +ILJ = 60c,
D IJL is equilateral
+KJL = 180c - 60c
= 120c
+JLK = 180c - (30c + 120c)
= 30c

(given)

`DPQR / DSTU

(d) a = 29c , b = 70c
8.

(given)

QR = TU = 8 cm

y = 38c

7.

(DCB is a straight angle)

3.

(a)

+B = +C
(base angles of isosceles D)
+BDA = +CDA = 90c (given)
AD is common
` by AAS, D ABD / D ACD

ANSWERS

(b) ` BD = DC (corresponding sides in congruent Ds)
` AD bisects BC
4.

But +OBA + +OBC = 180c

+ABD = +BDC

OB is perpendicular to AC.

(corresponding sides in congruent Ds)

5.

OA = OC

(similarly)

10. (a) AD = BC
+ADC = +BCD = 90c
DC is common
`DADC / DBCD
(b) AC = BD

+AOB = +COD

(SAS)

(b) AB = CD

1.

(corresponding sides in congruent

`DABC / DADC

(corresponding angles in congruent

+BAC = +EDC
+ABC = +DEC
+ACB = +ECD

4.

(equal radii)

OB is common
+AOB = +COB = 90c (given)
`DOAB / DOBC

(SAS)

(b) +OCB = +OBC

(base angles of OBC, an isosceles right angled triangle)
(angle sum of triangle)

5.

So +OCB = +OBC = 45c
Similarly +OBA = 45c
` +OBA + +OBC = 45c + 45c = 90c
So +ABC is right angled
(a) +AEF = +BDC = 90c

(given)

AF = BC

(given)

FE = CD

(given)

`DAFE / DBCD

(RHS)

(b) +AFE = +BCD

(corresponding angles in

(a) OA = OC

(alternate angles, AB < ED)
(similarly)
(vertically opposite angles)

(given)
+GFE = +EFD
1.5
GF o =
= 0.5
EF
2.7
2.7
EF o =
= 0.5
DF
4.86
GF
EF
`
=
EF
DF
Since two pairs of sides are in proportion and their included angles are equal, then DDEF ||| DFGE

1.3
AB
=
= 0.714
DE
1.82
4.2
AC
=
= 0.714
DF
5.88
4.9
BC
=
= 0.714
EF
6.86
AC
BC
AB
=
=
`
DE
DF
EF
Since three pairs of sides are in proportion,
D ABC ||| D DEF y = 41c

6.

congruent triangles)

9.

(e) b = 4.5
(g) p = 9.7

` since 3 pairs of angles are equal, DABC ||| DCDE

triangles)

8.

(c) m = 6.6

a = 1.81, b = 5.83

(SSS)

(b) +ABC = +ADC

But +OCB + +OBC = 90c

(b) x = 4.4

3.

(given)

(a) OA = OC

(corresponding sides in congruent

(f) a = 115c , x = 19c , y = 3.2

AC is common

7.

(a) x = 15.1

2.

(given)

BC = DC

(SAS)

(d) a = 76c , i = 23c , b = 81c

triangles)

(a) AB = AD

(given)

Exercises 4.5

(vertically opposite angles)

`DAOB / DCOD

6.

(given)

triangles)

(equal radii)

OB = OD

(a)

So +OBA = +OBC = 90c

(alternate angles, AB < CD)

(alternate angles, AD < BC)
+ADB = +DBC
BD is common
` by AAS, D ABD / D CDB
` AD = BC

(ABC is a straight angle)

(equal radii)

OB is common

(a) OA = OB
OC = OD
OA
OB
`
=
OD
OC
+AOB = +COD

(equal radii)
(similarly)

(vertically opposite angles)

AB = BC

(given)

Since two pairs of sides are in proportion and their included angles are equal, 3 OAB ||| 3 OCD

`DOAB / DOBC

(SSS)

(b) AB = 5.21 cm

(b) +OBA = +OBC

(corresponding angles in congruent triangles)

7.

(a) +A is common
+ABC = +ADE
+ACB = +AED

(corresponding angles, BC < DE)
(similarly)

769

770

Maths In Focus Mathematics Extension 1 Preliminary Course

6.

` since 3 pairs of angles are equal, D ABC ||| D ADE
(b) x = 2.17, y = 2.25
8.

+ABF = +BEC
+CBE = +BFA
` +C = +A

YZ 2 = XY 2 = 1, XZ 2 = 2
YZ 2 + XY 2 = 1 + 1
=2
= XZ 2
` D XYZ is right angled

(alternate angles, AB z CD)
(similarly, BC z AD)
(angle sum of Ds)

` since 3 pairs of angles are equal, D ABF ||| DCEB
9.

+A is common
1.2
AD
=
= 0.4
AB
3
0.8
AE
=
= 0.4
AC
2
AD
AE
`
=
AB
AC
Since two pairs of sides are in proportion and their included angles are equal, D AED ||| D ABC, m = 4.25

AB
10.
CD
BC
AC
AC
AD
AB
`
CD

=
=
=
=

XY = YZ = 1
` D XYZ is isosceles

7.

AC 2 = AB 2 + BC 2
2
2 2 = ^ 3 h + BC 2
4
1
`1
AC

8.

2
= 0.769
2.6
3
= 0.769
3.9
3.9
= 0.769
5.07
BC
AC
=
AD
AC

= 3 + BC 2
= BC 2
= BC
=2
=2#1
= 2BC

(a) AC = 5
(b) AC 2 = 25, CD 2 = 144,
AD 2 = 169
AC 2 + CD 2 = 25 + 144
= 169
= AD 2
` D ACD has a right angle at +ACD
` AC is perpendicular to DC

9.

D ABC ||| D ACD, x = 109c, y = 47c

11. d 2 = ] 20 - 3t g 2 + ] 15 - 2t g 2
= 400 - 120t + 9t 2 + 225 - 60t + 4t 2
= 13t 2 - 180t + 625

11. (a) x = 7.8

(b) m = 4.0, p = 7.2

(d) x = 6.2, y = 4.4
AB
AD
12. (a)
=
DE
BC
AD
AF
Also
=
DE
FG
AB
AF
`
=
BC
FG
(c)

(c) x = 6.5

(e) x = 1.4, y = 9.2

Also
`

16. 4.3 m

14. y = 0.98

(a) x = 6.4

2.

(a) p =

3.

s = 6.2 m

5.

AB 2 = 81, CB 2 = 144, CA 2 = 225
AB 2 + CB 2 = 81 + 144
= 225
= CA 2
` D ABC is right angled

61

(c) b = 5.7

(b) t =

(c) x =

58

15. 134.6 cm

17. 42.7 cm

20. (a) BC 2 = 6 2 - 4 2
= 20
BC = 20
AO = 6 cm
(equal radii)
So AC 2 = 6 2 - 4 2
= 20
AC = 20
Since BC = AC, OC bisects AB
(b) +OCA = +OCB = 90c
(given)
OA = OB
(equal radii)
OC is common
` DOAC / DOBC
(RHS)
So AC = BC (corresponding sides in congruent triangles)
` OC bisects AB

(d) m = 6.6
65

14. 12.6 m

19. No. The diagonal of the boot is the longest available space and it is only 1.4 m.

15. x = 3.19, y = 1.64

(b) y = 6.6

13. 683 m

18. 1.3 + 1.1 2 = 2.9 and 1.5 2 = 2.25
1.3 2 + 1.1 2 ! 1.5 2 so the triangle is not right angled
` the property is not a rectangle

Exercises 4.6
1.

10.

2

BD
AD
=
AE
CE
AD
DF
Also
=
AE
EG
BD
DF
`
=
CE
EG

13. a = 4.8, b = 6.9

3b

12. 1471 mm

AB
AD
=
AE
AC
AD
AF
=
AE
AG
AB
AF
=
AC
AG

(b)

AB =

x2 + y2 x Since three pairs of sides are in proportion,

(d) y =

33

4. CE = 15.3 cm

Exercises 4.7
1.

(a) x = 94c (b) y = 104c (c) x = 111c (d) x = 60c
(e) y = 72c (f) x = 102°, y = 51° (g) x = 43°, y = 47°

ANSWERS

2.

9.

D ABE is isosceles.
` +B = +E = 76c
(base +s equal)
+CBE = +DEB = 180c - 76c
= 104c (straight +s)
+D + 62c + 104c + 104c = 360c (angle sum of quadrilateral)
+D + 270c = 360c
+D = 90c
` CD is perpendicular to AD`

3.

(a)

+D = 180c - x
(+A and +D cointerior angles, AB < DC)

+C = 180c - (180c - x)

(+C and +D cointerior angles, AD < BC)

= 180c - 180c + x
=x
`+A = +C = x
+B = 180c - x (+B and +C cointerior angles, AB < DC)
`+B = +D = 180c - x
(b) Angle sum = x + x + 180c - x + 180c - x
= 360c
4.

a = 150c , b = 74c

5.

(a) a = 5 m, b = 3 m, x = z = 108c, y = 72c
(b) x = 53c, y = 56c, z = 71c
(c) x = y = 5 cm, a = b = 68c
(d) a = 121c, b = 52c, i = 77c
(e) x = 60c (f) x = 3, y = 7

6.

+ADB = +CDB
+CDB = +ABD
+ADB = +DBC
` +ABD = +DBC
` BD bisects +ABC

7.

(a) AD = BC = 3.8 cm
AB = DC = 5.3 cm

(BD bisects +ADC)
(alternate angles, AB < DC)
(alternate angles, AD < BC)

(given)
(given)

Since two pairs of opposite sides are equal, ABCD is a parallelogram. (b) AB = DC = 7cm
(given)
AB < DC
(given)
Since one pair of opposite sides is both equal and parallel, ABCD is a parallelogram.
(c) +X + +M = 54c + 126c
= 180c
These are supplementary cointerior angles.
` XY < MN
Also, XM < YN

(given)

` XMNY is a parallelogram
(d) AE = EC = 5 cm
DE = EB = 6 cm

(given)
(given)

Since the diagonals bisect each other, ABCD is a parallelogram. 8.

(a) x = 5 cm, i = 66c (b) a = 90c, b = 25c, c = 65c
(c) x = 3 cm, y = 5 cm (d) x = 58c, y = 39c
(e) x = 12 cm

6.4 cm

11. 4 2 cm

10. +ECB = 59c, +EDC = 31c, +ADE = 59c
12. x = y = 57c

Exercises 4.8
1.

(a) 540c (b) 720c (c) 1080c (d) 1440c (e) 1800c
(f) 2880c 2. (a) 108c (b) 135c (c) 150c (d) 162c
(e) 156c 3. (a) 60c (b) 36c (c) 45c (d) 24c

4.

128c34l 5. (a) 13

8.

2340c

(b) 152c18l 6. 16

7. 3240c

9. 168c23l

10. Sum = 145n = (n - 2) # 180c
145n = 180n - 360
= 35n
10.3 = n
But n must be a positive integer.
` no polygon has interior angles of 145c.
11. (a) 9

(b) 12

(c) 8

(d) 10

(e) 30

12. (a) ABCDEF is a regular hexagon.
AF = BC
(equal sides)
FE = CD
(equal sides)
+AFE = +BCD
(equal interior angles)
` D AFE / D BCD
(SAS)

S = ] n - 2 g # 180c
= (6 - 2) # 180c
= 720c
720c
+AFE =
6
= 120c
Since AF = FE, triangle AFE is isosceles.
So +FEA = +FAE
(base angles in isosceles triangle)
180 - 120c
` +FEA =
(angle sum of triangle)
2
= 30c
+AED = 120 - 30c
= 90c
Similarly, +BDE = 90c
(b)

So +AED + +BDE = 180c
These are supplementary cointerior angles
`AE < BD
13. A regular octagon has equal sides and angles.
AH = AB
(equal sides)
GH = BC
(equal sides)
+AHG = +ABC
(equal interior angles)
` D AHG / D ABC
(SAS)
So AG = AC
(corresponding sides in congruent triangles)

S = ] n - 2 g # 180c
= (8 - 2) # 180c
= 1080c
1080c
` +AHG =
8
= 135c
+HGA = +HAG

(base angles in isosceles triangle)

771

772

Maths In Focus Mathematics Extension 1 Preliminary Course

180 - 135c
(angle sum of triangle)
2
= 22c30l
+GAC = 135 - 2 # 22c30l
= 90c
We can similarly prove all interior angles are 90c and adjacent sides equal.
So ACEG is a square.
`+HAG =

2.

3.

118.28 cm2

4.

(common)
(a) +DAE = +BAC
(corresponding angles, DE < BC)
+ADE = +ABC
(similarly)
+AED = +ACB
` D ABC and D ADE are similar (AAA)

] 5 - 2 g # 180c
5
= 108c

(b) x = 3.1 cm, y = 5.2 cm
162c

8.

(a) AB = AD
BC = DC

(adjacent sides in kite)
(similarly)

AC is common
` Δ ABC and Δ ADC are congruent (SSS)
(b)

AO = CO
BO = DO
+AOB = +COD

(equal radii)
(similarly)
(vertically opposite angles)

` Δ AOB and Δ COD are congruent (SAS)
9.

11.

73.5 cm2

AF
AD
=
AE
AG
AD
AB
=
AE
AC
AF
AB
`
=
AG
AC

12. (a) AB = AC
+B = +C
BD = DC

Exercises 4.9
1.

3.

(a) 42.88 cm 2 (b) 29.5 m 2 (c) 32.5 cm 2 (d) 14.32 m 2
(e) 100.53 cm 2 4. (a) 25 m 2 (b) 101.85 cm 2
(c) 29.4 m 2 (d) 10.39 cm 2 (e) 45 cm 2

5.

7 51 + 98 = 7 ^ 51 + 14 h cm 2

7.

$621.08

9.

(b) 89 m 2

So AD and BC are perpendicular.
13.

+ACB = 68c
+CAD = 68c - 34c
= 34c
` ˚+CAD = +ADC = 34c
So Δ ACD is isosceles

14.

(a) x = 43c, y = 137c, z = 147c (b) x = 36c
(c) a = 79c, b = 101c, c = 48c (d) x = 120c
(e) r = 7.2 cm (f) x = 5.6 cm, y = 8.5 cm (g) i = 45c

(given)
(base +s of isosceles D)
(AD bisects BC, given)

So +ADB = +ADC = 90c

(c) 10.5 m

Test yourself 4

(similarly)

(b) +ADB = +ADC
(corresponding +s in congruent Ds)
(straight +)
But + ADB + +ADC = 180c

(a) 48 cm (b) 27 cm 10. 12w units 2

6. 22.97 cm 2

(equal ratios on intercepts)

` D ABD / D ACD ] SAS g

(a) 26.35 m 2 (b) 21.855 cm 2 (c) 18.75 mm 2 (d) 45 m 2
(e) 57 cm 2 (f) 81 m 2 (g) 28.27 cm 2 2. 4.83 m 2

1.

6. 1020.7 cm3 7. 36 m

5.

2
10. 6 2 + ^ 2 7 h = 36 + 28 = 64 = 8 2
` ΔABC is right angled (Pythagoras)

360 p (b) Each interior angle:
360
180 p
180p 360
=
p p 180p - 360
=
p
180 ^ p - 2 h
=
p

15. (a)

8. (a) 161.665 m 2

(vertically opposite +HGB)

So +AGF = +CFE = i
These are equal corresponding +s.
` AB < CD

14. +EDC =

ED = CD
(equal sides in regular pentagon)
So EDC is an isosceles triangle.
`+DEC = +ECD
(base angles in isosceles triangle)
180 - 108c
+DEC =
(angle sum of triangle)
2
= 36c
+AEC = 108 - 36c
= 72c
Similarly, using triangle ABC, we can prove that
+EAC = 72c
So EAC is an isosceles triangle.
(Alternatively you could prove EDC and ABC congruent triangles and then AC = EC are corresponding sides in congruent triangles.)

+AGF = i

(base +s of isosceles D)
(exterior + of D)

^ base +s equal h

ANSWERS

+DAC = +ACB
+BAC = +ACD

(alternate +s, AD < BC)
(alternate +s, AB < DC)

7.

AC is common
` D ABC / D ADC (AAS)
(corresponding sides in congruent Ds)
`
AB = DC
Similarly, AD = BC
` opposite sides are equal
15. (a) 24 cm2 (b) 5 cm

Let ABCD be a square with diagonals AC and BD and
+D = 90c
(adjacent sides of square)
AD = DC
` D ADC is isosceles
(base angles of isosceles D)
`+DAC = +DCA
(angle sum of D)
+DAC + +DCA = 90°
`
+DAC = +DCA = 45°
Similarly, +BAC = +BCA = 45°

16. 9

17. +BFG + +FGD = 109c - 3x + 3x + 71c
= 180c
These are supplementary cointerior +s.
` AB < CD
18. 57 cm2

(other angles can be proved similarly)

19. +ACB = 180c - ] +A + +B g
= 180c - x - y
+ACD = 180c - +ACB z = 180c - (180c - x - y)
= 180c - 180c + x + y
=x+y
20. (a)

+A
AC
EF
AB
DE
AC
`
EF

= +E
2.97
=
= 1.1
2.7
3.96
=
= 1.1
3.6
AB
=
DE

(+sum of D)
(straight +)

8.

^ given h

Let ABCD be a kite
(given)
AD = AB
(given)
DC = BC

So Δ ABC and Δ DEF are similar (two sides in proportion, included +s equal).
(b) x = 4.3 cm

AC is common
` by SSS, D ADC / D ABC
`
+DAC = +BAC

Challenge exercise 4
1.

94c

2. x = 75c , y = 46c , z = 29c

4.

+BAD = +DBC
+ABD = +BDC
` +ADB = +DCB

(corresponding angles in congruent Ds)
(given)
(found)

3. 1620c 32c 44l
,

AD = AB
+DAE = +BAE

(given)
(alternate angles, AB < DC)
(angle sum of D)

AE is common
` by SAS, D ADE / D ABE
` +DEA = +BEA
(corresponding angles in congruent Ds)
But +DEA + +BEA = 180c
(DEB is a straight angle)
` +DEA = +BEA = 90c
` the diagonals are perpendicular

` since 3 pairs of angles are equal,
D ABD < D BCD
;
d = 6.74 cm
5.

AB = DC
(given)
+A + +D = 131c + 49c
= 180c
+A and +D are supplementary cointerior angles
` AB < DC
Since one pair of opposite sides are both parallel and equal, ABCD is a parallelogram.

6.

27.36 m 2

9.

(exterior angle of D MNZ)
+MNY + 84c = (15c + 112c)
`
+MNY = 43c
(exterior angle of D XYZ)
+XYZ + 69c = 112c
`
+XYZ = 43c
`
+MNY = +XYZ = 43c
These are equal corresponding angles.
` MN < XY

10. x = 2.12 m

11. (a) 6 m 2

12. x = 28.7 cm, y = 3.8 cm

(b) 10 + 2 5 = 2 ^ 5 + 5 h m
13. x = 7.40 m, y = 4.19 m

773

774

Maths In Focus Mathematics Extension 1 Preliminary Course

14. (a)

(adjacent sides in square)
AB = BC
+ABE = +CBE = 45
(diagonals in square make 45c with sides)

34. x = 22c, y = 29c, w = z = 90c 35. 56.7 cm 2
36. a - 21 b 10 =

EB is common.

b 10 a 21

37. x 2 6, x 1 -2

2
5

1
8

38.

` by SAS, D ABE / DCBE
`
AE = CE (corresponding sides in congruent Ds)

39. - x - 7

Since AB = BC and AE = CE, ABCE is a kite.

43. Given diagonal AC in rhombus ABCD:

40. x =

1
4

41. x # -3, x $ 3

42.

1
6

(adjacent sides in rhombus)
AB = BC
(alternate +s, AD < BC)
+DAC = +ACB
(base +s of isosceles D ABC)
+BAC = +ACB
` +DAC = +BAC
` diagonal AC bisects the angle it meets.
Similarly, diagonal BD bisects the angle it meets.

44. ] x + 3 g-1 45. x 3 + 6x 2 + 12x + 8 46.
(b) BD =

x2 + x2

=
=

2x 2
2x

48. x = 98c, y = 41c

1
BD
2
2x
= units 2

DE =

51. (a) 12x - 8y

2. 2 ^ 5 + y h ^ x - y h

p =9

25 + 5 2
5.
23

(b) x 3

7.

x=

9.

(given)
+ABC = +EDC = 90°
(vertically opposite angles)
+ACB = +ECD
(given)
AB = ED
` by AAS D ABC / DEDC
(corresponding sides in congruent triangles)
` AC = EC
` D ACE is isosceles

10. 231.3

14. 3 10 - 4

6. x 3 + 2x 2 - 16x + 3

2 x-3 11. - 3

12. 135c

13. 7.33 # 10 - 2

15. 3.04 16. x + 3

17. x = 1.78, -0.281

52. x = 2.7, y = 3.1

21. x =

4 ! 12
=2! 3
2

28.

26. 7.02 cm

6 15 + 2 6
43

22.

1
49

24. x = 2, y = -1

27. ] 2x - 1 g ^ 4x 2 + 2x + 1 h
29. 7

(d) 3 2 + 1

53. x = 25

54. r =

2
3

r

cm

57.

2
5

58. 5%

61. 9xy y

59. 2.2 # 10 8 kmh -1

60. k = 20

62. 147c 16l 63. 5.57 m 2

64. (a) 5 ] a + 2b - 2 g ^ a 2 - 4a - 2ab + 4b 2 + 4b + 4 h
(b) ] 3a + 4b g ] a - 6b + 2c g

23. x = 4, y = 11 or x = -1, y = - 4
25. 7

x-3 x 2 - 3x + 9

56. Let +DEA = x
(base +s of isosceles D)
Then +EAD = x
+CDA = x + x (exterior + of DEAD)
= 2x
`
+ABC = 2x (opposite +s of < gram are equal)
`
+ABC = 2+DEA

65. - 1
7
15

3x + 2

55. 17.3 cm

18. r = 1.55 19. x 2 1

20.

1

50.

4

3. (a) x - 1

6y - 10

8.

(c)

47. x = 53c

y7
- ]x + 5g
11 3
(f)
(g) x - 14 y 7 z -11 = 14 11
]x + 1g]x - 1g
6
x z
3
1
(h)
(i) 8 5 (j) 13
2
5a ] a + b g ] 1 + 2b g

4.

2
7

(b) 2 31

2 17

(e)

Practice assessment task set 1
1.

49. 0 1 x 1 5

54

30. $643.08 31. 1.1

32. -2 10 + 3 5 - 2 2 + 3

66.

3
1
#x 15
4
8

BC < AD
(ABCD is a < gram)
BC < FE
(BCEF is a < gram)
` AD < FE
Also BC = AD ^ opposite sides of < gram h
BC = FE
^ similarly h
` AD = FE
Since AD and FE are both parallel and equal, AFED is a parallelogram. 67. b = 11.95 m
33. $83.57

68. (a)

34 cm

(b) 30 cm2

ANSWERS

69.

18 3 + 31 2 - 25 5
75

70. 20 71. 32 m

(g) x-intercepts 3, 5, y-intercept 15

72. BD bisects AC
So AD = DC
+BDC = +BDA = 90c (given)
BD is common
` DBAD / DBCD
(SAS)
` AB = CB
(corresponding sides in congruent

(h) x-intercept - 3 5 , y-intercept 5
(i) x-intercept -3, no y-intercept
(j) x-intercept !3, y-intercept 9
2.

triangles)

3.

So triangle ABC is isosceles
73.

x2 + y2
2

79. (d)

74. (b)

75. (c)

76. (a) 77. (b)

78. (b)

4.

Chapter 5: Functions and graphs
5.

Exercises 5.1
Yes

2. No

3. No

8.

Yes

9. Yes

4. Yes

10. No

5. Yes

11. Yes

6. Yes

12. No

7. No

6.

13. Yes

14. No 15. Yes

7.

Exercises 5.2
1.

f ] 1 g = 4, f ] -3 g = 0

3.

f ] 5 g = -25, f ] -1 g = -1, f ] 3 g = -9, f ] -2 g = -4

5.

-35

6. x = 9

2. h ] 0 g = -2, h ] 2 g = 2, h ] -4 g = 14

7. x = !5

8. x = -3

4. 14

9. z = 1, -4

8.

10. f ^ p h = 2p - 9, f ] x + h g = 2x + 2h - 9
11. g ] x - 1 g = x 2 + 2

12. f ] k g = ] k - 1 g ^ k 2 + k + 1 h

13. t = -1; t = 2, -4

14. 0

9.

15. f ] 5 g = 125, f ] 1 g = 1, f ] -1 g = -1

18. 7

f ] - x g = - x = -f ] x g
` odd function f ] - x g = ] - x g2 - 1
= x2 - 1
= f (x)
` even function f ] -x g = 4 ] -x g - ] -x g 3
= - 4x + x 3
= - ^ 4x - x 3 h
= - f ]xg
` odd function f ] -x g = ] -x g 4 + ] -x g 2
= x4 + x2
= f ]xg
` even function f ]xg - f ]- xg = 0
(a) Odd (b) Neither (c) Even (d) Neither (e) Neither

(b) Yes, when n is odd (1, 3, 5, …)

12. (a) (i) x 2 0

21. f ] x + h g - f ] x g = 2xh + h 2 - 5h

(ii) x 1 0

(iii) Even

(b) (i) x 1 2

(ii) x 2 2

(iii) Neither

(c) (i) -2 1 x 1 2
(d) (i) All real x ! 0

22. 4x + 2h + 1

25. (a) 2 (b) 0

Exercises 5.3
2
, y-intercept -2
3
(b) x-intercept -10, y-intercept 4
(c) x-intercept 12, y-intercept 4
(d) x-intercepts 0, -3, y-intercept 0
(e) x-intercepts !2, y-intercept -4
(f) x-intercepts -2, -3, y-intercept 6
(a) x-intercept

g ] - x g = ] - x g + 3 ] - x g4 - 2 ] - x g 2
= x 8 + 3x 4 - 2 x 2
= g (x)
` even function

11. (a) No value of n

20. (a) 3 (b) x - 3 = 3 - 3 = 0
Denominator cannot be 0 so the function doesn’t exist for x = 3. (c) 4

1.

(d) Neither odd nor even

8

(b) Odd values i.e. n = 1, 3, 5, f

19. -28

23. 5] x - c g 24. 3k 2 + 5

(b) 7 f ] x g A 2 = x 6 + 2x 3 + 1

10. (a) Even values i.e. n = 2, 4, 6, f

16. f ] 2 g - f ] -2 g + f ] -1 g = 0 - 4 + 1 = -3
17. 10

(a) f ^ x 2 h = x 6 + 1

(c) f ] - x g = - x 3 + 1

80. (d)

1.

f ] -x g = ] -x g 2- 2
= x2 - 2
= f (x)
` even function

(c) n 4 + n 2 + 2

(e) (i) None

(ii) x 1 -2, x 2 2
(ii) None

(ii) All real x

(iii) Odd

(iii) Neither

Exercises 5.4
1.

(iii) Neither

(a) x-intercept 2, y-intercept -2
1
(b) x-intercept -1 , y-intercept 3
2
1
(c) x-intercept , y-intercept 1
2
(d) x-intercept -3, y-intercept 3
2
1
(e) x-intercept , y-intercept 3
3

775

776

Maths In Focus Mathematics Extension 1 Preliminary Course

2.

(a)

y

(e)
5

5
4
3
2
1

4
3
2
1
1

-4 -3 -2 -1
-1

2

3 4

-2
-3
-4
-5

2 3 4

x

y

(f)

y

(b)

1
21

-4 -3 -2 -1
-1
-2
-3
-4
-5

5
4
3
2
1

5
4
3
2
1
-4 -3 -2 -1
-1

1

2 3

-4 -3 -2 -1
-1
-2
-3
-4
-5

x

4

-2
-3

x

1 2 3 4

-4
-5

5
4
3
2
2
- 1

y

(c)
5
4
3

3

2

-4 -3 -2 -1
-1
-2
-3
-4
-5

1
-4 -3 -2 -1
-1

1

2

3

x

4

-2
-3
-4

x

5
4
3
2
1

y
5
4
3
2
1
-4 -3 -2 -1
-1
-2
-3
-4
-5

1 2 3 4

y

(h)

-5
(d)

y

(g)

1 2 3 4

x

-4 -3 -2 -1
-1
-2
-3
-4
-5

1 2 3 4

x

ANSWERS

Exercises 5.5

y

(i)

1.

(a) x-intercepts 0, -2, y-intercept 0
(b) x-intercepts 0, 3, y-intercept 0
(c) x-intercepts !1, y-intercept -1
(d) x-intercepts -1, 2, y-intercept -2
(e) x-intercepts 1, 8, y-intercept 8

2.

5

(a)

4
3
2
1
1

-4 -3 -2 -1
-1

2

3

4

x

6
5
4
3
2
1

-2
-3
-4
-5
y

(j)

y

-4 -3 -2 -1
-1
-2
-3
-4
-5

5
4
3
2
1
111
2

-4 -3 -2 -1
-1

2 3

4

y

(b)

x

6

-2

4

-4

3

-5

4.

5

-3

3.

2
1

(a) " all real x ,, " all real y , (b) " all real x ,, " y: y = 2 ,
(c) ! x: x = -4 +, " all real y , (d) ! x: x = 2 +, " all real y ,
(e) ! all real x +, " y: y = 3 ,
(a) Neither

(b) Even

5.

(c) Neither

(d) Odd

-4 -3 -2 -1
-1

2
1

-4
-5

4

x

5

-3

y

(c)

3

-3

3

-4

4

-2

2

-5

5

-4 -3 -2 -1
-1

1

-2

(e) Odd

y

(3, -1)

x

1 2 3 4 5

111 2
2

3

4

x

6
5
4
3
2
1
-4 -3 -2 -1
-1
-2
-3
-4
-5

1 2 3 4

5

x

777

778

Maths In Focus Mathematics Extension 1 Preliminary Course

y

(d)
6
5
4
3
2
1

5
4
3
2
1

1 2 3 4

-4 -3 -2 -1
-1

5

-4 -3 -2 -1
-1
-2
-3
-4
-5
-6

x

-2
-3
-4
-5
y

(e)

1 2 3 4

x

5

y

(i)
5
4
3
2
1

6
5
4
3
2
1
-4 -3 -2 -1
-1
-2
-3
-4
-5

1 2 3 4

5

111 2 3 4
2

-4 -3 -2 -1
-1
-2

x

5

1 2 3 4

5

x

-3
-4
-5
-6
y

(f)

y

(h)

y

(j)

12
10
8
6
4
2

5
4
3
2
1

1 2

-4 -3 -2 -1
-2
-4
-6
-8

3 4

5

-4 -3 -2 -1
-1
-2
-3
-4

x

x

-5
-6

-10
3.

5
4
3

(a) (i) x-intercepts 3, 4, y-intercept 12 (ii) {all real x},
1
( y: y $ - 2
4
(b) (i) x-intercepts 0, -4, y-intercept 0 (ii) {all real x},
" y: y $ -4 ,

2
1

(c) (i) x-intercepts -2, 4, y-intercept -8
" y: y $ - 9 ,

y

(g)

-4 -3 -2 -1
-1
-2
-3
-4
-5
-6

1 2 3 4

5

(ii) {all real x},

(d) (i) x-intercept 3, y-intercept 9 (ii) {all real x}, " y: y $ 0 ,

x

(e) (i) x-intercepts ! 2, y-intercept 4
" y: y # 4 ,
4.

(a) {all real x}, " y: y $ -5 ,

(ii) {all real x},

(b) {all real x}, " y: y $ - 9 ,

ANSWERS

1
(c) {all real x}, ( y: y $ -2 2
4

(d) {all real x}, " y: y # 0 ,

(e) {all real x}, " y: y $ 0 ,
5.

(a) 0 # y # 9

6.

5
4

(b) 0 # y # 4

(c) -1 # y # 24
1
(e) -18 # y # 2
4

(d) -4 # y # 21

(a) (i) x 2 0 (ii) x 1 0

3
2
1

(b) (i) x 1 0 (ii) x 2 0

(c) (i) x 2 0 (ii) x 1 0 (d) (i) x 1 2 (ii) x 2 2
(e) (i) x 2 -5 (ii) x 1 -5
7.

8.

y

(c)

1

2

3

4

5

1

2

3

4

5

1

-4 -3 -2 -1
-1

2

3

4

5

1

2

3

4

5

-2

f ] -x g = - ] -x g 2
= -x2
= f (x)
` even

-3
-4
-5

(a) Even (b) Even (c) Even (d) Neither
(e) Neither (f) Even (g) Neither
(h) Neither (i) Neither (j) Neither

y

(d)
5
4
3

Exercises 5.6
1.

2.

2

(a) x-intercept 0, y-intercept 0
(b) No x-intercepts, y-intercept 7
(c) x-intercepts ! 2, y-intercept -2
(d) x-intercept 0, y-intercept 0
(e) x-intercepts ! 3, y-intercept 3
(f) x-intercept -6, y-intercept 6
2
(g) x-intercept , y-intercept 2
3
4
(h) x-intercept - , y-intercept 4
5
1
(i) x-intercept , y-intercept 1
7
(j) No x-intercepts, y-intercept 9

1

-4 -3 -2 -1
-1
-2
-3
-4
-5

y

(e)
5
4

y

(a)

3

5

2

4

1

3

-4 -3 -2 -1
-1
-2

2
1
-4 -3 -2 -1
-1

1

2

3

4

5

-4
-5

-3

(f)

-4

y
5

-5

4

y

3
2

5
4
3
2
1
-4 -3 -2 -1
-1
-2
-3
-4
-5

x

-3

x

-2

(b)

x

1
-4 -3 -2 -1
-1

1 2 3 4 5

x

-2
-3
-4
-5

x

779

780

Maths In Focus Mathematics Extension 1 Preliminary Course

y

(g)

3.

5
4
3
2

(a) {all real x}, " y: y $ 0 ,
(b) {all real x}, " y: y $ -8 ,
(c) {all real x}, " y: y $ 0 ,
(d) {all real x}, " y: y $ -3 ,
(e) {all real x}, " y: y # 0 ,

4.
1

-4 -3 -2 -1
-1
-2

2

3

4

(a) (i) x 2 2 (ii) x 1 2 (b) (i) x 2 0 (ii) x 1 0
1
1
(d) (i) x 2 0 (ii) x 1 0
(c) (i) x 2 1 (ii) x 1 1
2
2
(e) (i) x 1 0 (ii) x 2 0

5.

1

(a) 0 # y # 2

x

5

-3

(b) - 8 # y # -4

(d) 0 # y # 11

-4
-5

6.

(a) x 2 -3
(e) x 1 -2

(b) x 1 0

7.

(a) x = !3

(b) x 2 1, x 1 -1

y

(h)
5

(c) 0 # y # 6

(e) -1 # y # 0
(c) x 2 9

(d) x 2 2

(c) -2 # x # 2

(d) x = -1, -3 (e) x = 3 (f) x = 1, 2 (g) -3 1 x 1 5

4

(h) - 4 # x # 2

(j) x # 2, x $ 4
1
(k) - 4 # x # 1 (l) x # 0, x $ 1 (m) x = 2, 2
(n) No solutions (o) x = 0 (p) x = 1 (q) x = 0, -2
1
(t) x = 0, 6
(r) No solutions (s) x =
3

3
2
1
1

-4 -3 -2 -1
-1

2

3

4

x

5

-2
-3

Exercises 5.7

-4

1.

(i) x 2 4, x 1 0

-5

(a) (i) {all real x: x ! 0}, {all real y: y ! 0} (ii) no y-intercept y (iii) y (i)

5

5

4

4

3

3

2

2

1

1
1

-4 -3 -2 -1
-1

2

3

4

x

5

1

-4 -3 -2 -1
-1

-2

2

3

x

4

-2

-3
-4

-3

-5

-4
-5

y

(j)

(b) (i) {all real x: x ! 0}, {all real y: y ! 0}
(ii) no y-intercept

5
4

y

(iii)

3
2

2

1
-4 -3 -2 -1
-1

1

2

3

4

5

x

1

-2
-3
-4
-5

-2

1

-1
-1

-2

2

x

ANSWERS

(c) (i) {all real x: x ! -1}, {all real y: y ! 0} (ii) 1 y (iii)

y

(iii)
5
4

2

3
2

1

1

-2

-1

1

x

2

-4 -3 -2 -1
-1

1

2 3

4

5

x

-2

-1

-3
-4

-2

-5

1
(d) (i) {all real x: x ! 2}, {all real y: y ! 0} (ii) -1
2

(g) (i) {all real x: x ! 1}, {all real y: y ! 0} (ii) -4

y

(iii)

y

(iii)

5
4

5

3

4

2

3

1

2

-4 -3 -2 -1
-1

1 2

3

4

1

x

5

-2

-4 -3 -2 -1
-1

-3
-4

-3

-5

x

-2
-4

(e) (i) {all real x: x ! -2}, {all real y: y ! 0} (ii)

2

3

4

5

-5

1
6

(h) (i) {all real x: x ! -1}, {all real y: y ! 0} (ii) -2

y

(iii)

1

y

(iii)
2

5
4

1

3

-2

1

-1

2

-1

2
1

-4 -3 -2 -1
-1

-2
(f) (i) {all real x: x ! 3}, {all real y: y ! 0} (ii)

x

-2
2
3

-3
-4
-5

1

2

3

4

5

x

781

782

Maths In Focus Mathematics Extension 1 Preliminary Course

(i) (i) ' all real x: x !

1
2
1, {all real y: y ! 0} (ii) 2
3

Exercises 5.8
1.

y

(iii)

y

(a) (i)

2

3

1

1
2

-1

-2

-

-1

1

2

x

3

-3

x

2
3

-3
-2
(ii) ! x: -3 # x # 3 +, " y: -3 # y # 3 ,
(j) (i) {all real x: x ! -2}, {all real y: y ! 0} (ii) -3

y

(b) (i) y (iii)

4

5
4
3
2
1

-4 -3 -2 -1
-1

1

2

3

4

5

x

4

-4 x -2
-4

-3
-4
-5

2.

(ii) ! x: -4 # x # 4 +, " y: -4 # y # 4 ,

f ] -x g =

2
-x
2
=x
= - f (x)
` odd function

5
4
3

4.

(a)

1
#y #1
9

(b)

(d)

3.

y

(c) (i)

1
#y #1
3

3
#y #3
7

(e) - 2 # y # -

(a) 1 # x # 3

(b) 1 # x # 4

(d) 1 # x # 4

(e) 1 # x # 2

(c) -2

1
1
#y #2
2

1
8

(c) - 6 # x # 0

2

(2, 1)

1
-4 -3 -2 -1
-1
-2
-3
-4
-5

1

2

3

4

x

ANSWERS

(ii) ! x: 0 # x # 4 +, " y: -1 # y # 3 ,

(iii) ! x: -5 # x # 5 +, " y: -5 # y # 0 ,

y

(d) (i)

(b) (i) Above x-axis y (ii)
5
4
3
1

2
1
-4 -3 -2 -1
-1

1

2

3

x

4

-2

x

1

-1

-3
(iii) ! x: -1 # x # 1 +, " y: 0 # y # 1 ,

-4
-5

(c) (i) Above x-axis

(ii) ! x: -4 # x # 2 +, " y: -3 # y # 3 ,

y

(ii)

y

(e) (i)

6

5
4
3
2
(-2, 1)

6

-6

x

1
1

-4 -3 -2 -1
-1

2

3

x

4

(iii) ! x: -6 # x # 6 +, " y: 0 # y # 6 ,
(d) (i) Below x-axis

-2

y

(ii)

(ii) ! x: -3 # x # -1 +, " y : 0 # y # 2 ,
2.

(a) (i) Below x-axis
(ii)

y

8

-8

-8

5

-5

-5

x

(iii) ! x: -8 # x # 8 +, " y: -8 # y # 0 ,

x

783

784

Maths In Focus Mathematics Extension 1 Preliminary Course

6.

(e) (i) Below x-axis y (ii)

(a) {y: - 9 # y # 3}
(b) {y: 0 # y # 9} (c) {y: -8 # y # 1}
1
(d) ' y: # y # 1 1 (e) {y: 0 # y # 4}
5
(f) {y: -1 # y # 15} (g) {y: -1 # y # 0}
(h) " y: - 1 # y # 8 , (i) {y: - 4 # y # 21}
1
(j) ' y: - 6 # y # 6 1
4

7

- 7

x

7.

(a) {all real x: x ! -1}
(b) x-intercept: y = 0
3
0= x+1 0=3
This is impossible so there is no x-intercept
(c) {all real y: y ! 0}

8.

(a) {all real x: x ! 0}

(b) {all real y: y ! !1}

9.

(a)

y

- 7
(iii) " x: - 7 # x #
3.

7 , , # y: - 7 # y # 0 -

(a) Radius 10, centre (0, 0) (b) Radius

5 , centre (0, 0)

25

(c) Radius 4, centre (4, 5) (d) Radius 7, centre (5, -6)
(e) Radius 9, centre (0, 3)
4.

20
15
10

(a) x 2 + y 2 = 16
(b) x - 6x + y - 4y - 12 = 0
(c) x 2 + 2x + y 2 - 10y + 17 = 0
(d) x 2 - 4x + y 2 - 6y - 23 = 0
(e) x 2 + 8x + y 2 - 4y - 5 = 0
(f) x 2 + y 2 + 4y + 3 = 0
(g) x 2 - 8x + y 2 - 4y - 29 = 0
(h) x 2 + 6x + y 2 + 8y - 56 = 0
(i) x 2 + 4x + y 2 - 1 = 0
(j) x 2 + 8x + y 2 + 14y + 62 = 0
2

2

5

-4 -3 -2 -1
-5

1

2

3

4

1

2

3

4

x

5

-10
-15
y

(b)
8

Exercises 5.9

6

1.

4

2.

3.

5.

(a) {all real x}, {all real y} (b) {all real x}, {y: y = -4}
(c) {x: x = 3}, {all real y} (d) {all real x}, {y: y $ -1}
1
(e) {all real x}, {all real y} (f) {all real x}, ' y: y # 12 1
4
(g) {x: -8 # x # 8}, {y: -8 # y # 8}
(h) {all real t: t ! 4}, {all real f (t): f (t) ! 0}
(i) {all real z: z ! 0}, {all real g ^ z h: g ^ z h ! 5}
(j) {all real x}, {y: y $ 0}
(a) {x: x $ 0}, {y: y $ 0} (b) {x: x $ 2}, {y: y $ 0}
(c) {all real x}, {y: y $ 0} (d) {all real x}, {y: y $ -2}
1
(e) ' x: x $ -2 1, {y: y # 0}
2
(f) {all real x}, {y: y # 5} (g) {all real x}, {y: y 2 0}
(h) {all real x}, {y: y 1 0}
(i) {all real x: x ! 0}, {all real y: y ! 1}
(j) {all real x: x ! 0}, {all real y: y ! 2}
(a) x = 0, 5 (b) x = -3, 1, 2 (c) x = 0, 2, 4
(d) x = 0, ! 4 (e) x = !7 4. (a) -1 # x # 1
(b) {x: -1 # x # 1}
(a) {x: x # - 1, x $ 2}

(b) {t: t # - 6, t $ 0}

2

-4 -3 -2 -1
-2

x

-4
-6
-8 y (c)
25
20
15
10
5

-4 -3 -2 -1
-5
-10
-15

1

2

3

4

5

x

ANSWERS

y

(d)

(g)

y

8
6

3

4

2

2
1

-4 -3 -2 -1
-2

2

3

4

1

x

-4

x

1

-1
-1

-6
-8

10. (a) " x: x $ 1 , " y: y $ 0 , y (b) y (e)

2
1

8
6

-1

4

1

2

2
1

-4 -3 -2 -1
-2

2

3

4

x

x

3

y

11.
6

-4

5

-6

4

-8

3
2
1

-1

y

(f)

1

x

12. (a) (i) {all real x}, {all real y} (ii) All x (iii) None
(b) (i) {all real x}, " y: y 2 -2 , (ii) x 2 0 (iii) x 1 0
(c) (i) {all real x: x ! 0}, {all real y: y ! 0} (ii) None
(iii) All x ! 0
(d) (i) {all real x}, {all real y} (ii) All x (iii) None
(e) (i) {all real x}, " y: y 2 0 , (ii) All x (iii) None
13. (a) - 2 # x # 2 (b) (i) {x: - 2 # x # 2}, { y: 0 # y # 2}
(ii) {x: - 2 # x # 2}, { y: - 2 # y # 0}

10

-10

-1

10

x

Exercises 5.10
1.

-10

(b) -10 (c) 8 (d) 3 (e) 3 (f) 75
1
(j) 1 (k) - 7 (l) x 2 - 3x
(h) - 6 (i)
4
(a) 21

(m) 2x 3 + 3x - 5
2.

(g) 0

(n) 3c 2

(a) Continuous (b) Discontinuous at x = - 1
(c) Continuous (d) Continuous (e) Discontinuous at x = !2

785

786

Maths In Focus Mathematics Extension 1 Preliminary Course

3.

5.

(a)

(a)

(b)

(b)

(c)

(c)

(d)

Exercises 5.11
1.

(a) 0 (b) 0 (c) 0 (d) 2 (e) 1
(h) 0 (i) 5x (j) 3

2.

(a) RHS = 1 +
=

(f) 6 (g)

3
1
+ 2 x x x2 + x + 3

x2
= LHS
(b) 1 from above (c) 1 from below
3.

(a) 2 from below (b) 2 from above

4.

(a)

x
3

(b)

5x 2
4

2
3

(e)

ANSWERS

(f)

7.

21x #2

9.

x#

2
5

2
,x 21
3

8. x 1 - 6, x 2 - 3
10. - 2

2
# x 1 -2
3

Exercises 5.13
1.

y

(a)
6

(g)

5
4
3
2
1
1

-4 -3 -2 -1
-1

2

3

4

x

-2

(h)

-3
-4

y

(b)
6
5

(i)

4
3
2
1
1

-4 -3 -2 -1
-1

2

3

4

1

2

3

4

x

-2
(j)

-3
-4
y

(c)
6
5
4
3
2
1

Exercises 5.12
1.

-

1
1x 10
2

2. 0 1 x 1

1
3

4.

-

1
#x 10
2

5. 1 1 x 1 1

3. 0 1 x # 1
1
3

6. x $ -1, x 1 - 2

-4 -3 -2 -1
-1
-2
-3
-4

x

787

788

Maths In Focus Mathematics Extension 1 Preliminary Course

y

(d)

y

(g)

6

6

5

5

4

4

3

x+y = 1

2

3
2
1

1

-4 -3 -2 -1
-1

2

1

3

x

4

1

-2

4

2

3

4

x

-3

-4

3

-2

-3

2

1

-4 -3 -2 -1
-1

-4 y (e)

y

(h)

6

6

y = x +1

5

5

4

4

3

3

2

2

1

1
1

-4 -3 -2 -1
-1

2 3

x

4

-4 -3 -2 -1
-1

-2

-2

-3

-3

-4

x

-4
3x - y - 6 = 0

-5

y

(f)

-6

6

y

(i)

5

y = 2x -3

4

6

3

5

2

4

1

-4 -3 -2 -1
-1
-2
-3

1

2

3

4

3

x x + 2y - 2 = 0

2
1

-4 -3 -2 -1
-1
-2
-3
-4
-5
-6

1

2

3

4

x

ANSWERS

y

(j)

y

(c)

6
1

5
4
3
2
1

-4 -3 -2 -1
-1

1

2

3

x

1

-1 x 4

-2

-1

-3
-4
-5

x=

-6
2.

(a) x 2 -3
(e) y $ 2

3.

(b) y $ -2

1
2

y

(d)
5

(d) y 2 x 2 - 4

(c) y $ x + 1

y=x2

4

x

3

y

(a)

2
1

5
4

-4 -3 -2 -1

y = x2 - 1

3

-1

2

3

4

5

3

4

x

-2

2

-3

1

-4 -3 -2 -1
-1

1

1

2

3

4

5

-4

x

-5

-2

y

(e)

-3
-4

8

-5

6
4

y

(b)

2

-4 -3 -2 -1
-2

3

-4 y = x3

-3

3

-3

x
4.

(a) y 1 3x - 2
(b) y 2 x 2 + 2
(c) x 2 + y 2 1 49
(d) x 2 + y 2 2 81
(e) x 1 5, y 2 2

-6
-8

1

2

x

789

790

Maths In Focus Mathematics Extension 1 Preliminary Course

5.

y

(a)

y

(b)

5

6

4

5

3

4

2

3
2

1
1

-4 -3 -2 -1
-1

2

3

4

x

y=x -3

1

-4

-2

1

-3 -2 -1
-1

2

3

x

4

-2
-3

y

(b)

-4

5

-5

4

-6

3
2

y

(c)

1

-4 -3 -2 -1
-1

1

2

3

4

6

x

5

y = 3x – 5

4

-2

3
2

y

(c)

1

5
4

-4 -3

3

1

-1
-1

2

3

4

x

-2

2

-3

1

-5 -4 -3 -2 -1
-1

1

2

3

4

-4

x

-5
-6

-2
6.

-2

y

(d)

y

(a)

6

6

5

5
4

3

3

2

2

1

1

-4 -3 -2 -1
-1
-2
-3
-4

y=x+1

4

1

2

3

4

x

-4

-3

-2 -1
-1
-2
-3
-4
-5
-6

1

2

3

4

y=3–x

x

ANSWERS

y

(e)

y

(h) x = -2

3

8

y = x3

6

y=3

4
2

y=1

-3

-4 -3 -2 -1
-2

x

3

1

2

3

x

4

-4
-6
-8

-3

y

(f)

y

(i)

2

1

1
1

-2

-1

x

2

-2

x

1

-1

-1

x=–1 y (g)

y

(j)
5

6

4

5

3

y=4

4

2

y = x2

3

1

-4 -3 -2 -1
-1

x - y = -1

2
1

2

3

4

5

x

x-y=2

1

-2

-4 -3 -2 -1
-1

-3

-2

-4

-3

-5

-4
-5
-6

1

2

3

4

x

791

792

Maths In Focus Mathematics Extension 1 Preliminary Course

7.

y

(a)

y

(d)

y = x2
5
4

2

3
2

1

1

-4 -3 -2 -1
-1

1

2

3

4

x

5

1

-1

2

3

x

4

2 y= x

-2

-2

-3
-4
-5
(e)

y

y

(b)
8

y = x3

2

6
4

y=1

1

2
1

-4 -3 -2 -1
-2

2

3

x

4

-4 y= -4

-3 -2

-1

1

2

3

x

4

-1

1 x+2 -2

-6
-8
8. y (c)

(a)

y y = x2

y=5

5

2

4
3

2

1

-2

2

1

x
-4 -3 -2 -1

-1

1

2

3

-2
-3

-2

-4 x=1 -5

x=2

4

5

x

ANSWERS

(e)

y

(b)

y

6

6

5

y = |x|

5

4

4

3

3

2

2

1

1

y=3

x
-4 - 3 - 2 - 1
-1
-2

1

2

3

x
-4 -3 -2 -1
-1

4

y = -1

-3

2

-3

-5

3

4

x=2

Test yourself 5

-6

1.

(a) f ] - 2 g = 6

2.

y

(c)

1

-2

x=3

-4 y=x-2 793

(b) f ] a g = a 2 - 3a - 4

(a)

(c) x = 4, -1

y = 2x + 1

6
5
4
3
2

2x - 3y = 6

1

(b)

x

-4 -3 -2 -1
-1
-2

1

2

3

4

-3
-4
-5
-6
(c) y (d)

3

y=2

(d)

-3

3

x

(e) x = -3

Answer S1-S5.indd 793

-3

8/11/09 11:31:52 AM

794

Maths In Focus Mathematics Extension 1 Preliminary Course

8.

(f)

9.
(g)

(h)
10.

3.

4.

1
4
(b) Domain: all real x; range: all real y
(c) Domain: - 1 # x # 1; range: - 1 # y # 1
(d) Domain: - 1 # x # 1; range: 0 # y # 1
(e) Domain: - 1 # x # 1; range: - 1 # y # 0
(f) Domain: all real x ! 0; range: all real y ! 0
(g) Domain: all real x; range: all real y
(h) Domain: all real x; range: y $ 0
(a) Domain: all real x; range: y $ - 6

15

5. (a) 4 (b) 5

(c) 9

(d) 3

11. (a) y # 3

(b) y 2 x + 2

(c) y $ - x 2, y # 0

12. (a) Domain: all real x ! 3, range: all real y ! 0
(b)

(e) 2

6.

13. (a)

7.

(b) (i) x = 2, -4 (ii) - 4 1 x 1 2 (iii) x 2 2, x 1 - 4

ANSWERS

14. (a) 2

(b) x = 3

2
3

1
3

(c) 1

y

(b)

15. (a) x-intercept -10, y-intercept 4
(b) x-intercepts - 2, 7, y-intercept -14 y 16. (a) i (b) iii (c) ii
17. (a) 4

(b)

2
5

(c) - 1

(d) i
1
2

(e) iii

(d) 3
-1

18.

x

1

y

(c)

19. (a) Domain: x $ 2, range: y $ 0

2

(b)

y

(d) f (x) = x 4 3x 2 1 f ( x) = ] - x g4 3 ] x g2
= x 4 3x 2 1
3x
= f (x)
So f ] x g is even.

x

4

-4

20. (a)

1
1
x

f (x) = x 3 x f ( x) = ] - x g3 ( )
= - x3 + x
= -( 3
)
= - f (x)
So f ] x g is odd.
(b)

y

(e)

21. (a) a y

2

1

1 x x
-4 -3 -2 -1
-1
4

-2

1

2

3

4

5

795

796

Maths In Focus Mathematics Extension 1 Preliminary Course

6.

1.

f ] 3 g = 9, f ] -4 g = 16, f ] 0 g = 1

7.

Challenge exercise 5

Domain: all real x ! ! 1; range: y # - 1, y 2 0

2 b=- ,3
3

2.

y

3.

8.

-2

2

x

9.

Domain: x $ 0; range: y $ 0

10. x = 0, 3, - 2

11.

4.

12. h ] 2 g + h ] -1 g - h ] 0 g = - 3 + 0 - ] -1 g = - 2
5.

ANSWERS

13.

18.

14.

19.

15. f ^ (-a) h = 2 (-a ) - 1
= 2a 2 - 1
= f (a 2)
2

16. x =

17. (a)

20. Domain: x $ 3; range: y $ 0 21. Domain: - 2 # x # 2

2

22.

1 ! 41
4

1 x+3 2]x + 3g
1
=
+
x+3 x+3 2x + 6 + 1
=
x+3
2x + 7
=
x+3
= LHS
2x + 7
1
=2+
`
x+3 x+3 RHS = 2 +

23. (a) 0
(b)

(b) Domain: all real x ! - 3; range: all real y ! 2
(c)
24.

797

798

Maths In Focus Mathematics Extension 1 Preliminary Course

5.

Exercises 6.1 cos i =

2.

3
5
4 sin b = , cot b = , sec b =
5
4
3

3.

sin b =

4.

cos x =

5
, tan x =
9

5.

cos i =

3
4
, sin i =
5
5

6.

5
5
3 tan i =
, sec i = , sin i =
2
2
3

7.

cos i =

35
, tan i =
6

8.

tan i =

51
51
, sin i =
7
10

9.

(a)

2

10. (a)

3

7
74

(a) x = 6.3 (b) y = 5.6 (c) b = 3.9 (d) x = 5.6
(e) m = 2.9 (f) x = 13.5 (g) y = 10.0 (h) p = 3.3
(i) x = 5.1 (j) t = 28.3 (k) x = 3.3 cm (l) x = 2.9 cm
(m) x = 20.7 cm (n) x = 20.5 mm (o) y = 4.4 m
(p) k = 20.6 cm (q) h = 17.3 m (r) d = 1.2 m
(s) x = 17.4 cm (t) b = 163.2 m
1.6 m

5.

(a) 18.4 cm

7.

47.4 mm 8. 20.3 m
(c) 9.0 cm

5
74

56
, cosec x =
5

9
56

3. 20.3 cm

10. (a) 6.8 cm

35

(b) 13.8 cm

6. 10 cm and 10.5 cm

9. (a) 7.4 cm

(b) 6.6 cm

(b) 6.5 cm

1.

(a) x = 39c 48l (b) a = 35c 06l (c) i = 37c 59l
(d) a = 50c 37l (e) a = 38c 54l (f) b = 50c 42l l (g) x = 44c 50l (h) i = 30c 51 (i) a = 29c 43l
(j) i = 45c 37l (k) a = 57c 43l (l) i = 43c 22l
(m) i = 37c 38l (n) i = 64c 37l (o) b = 66c 16l
(p) a = 29c 56l (q) i = 54c 37l (r) a = 35c 58l
(s) i = 59° 2l (t) c = 56c 59l

2.

37c 57l 3. 22c 14l

3
1
1
, cos 30c =
, tan 30c =
2
2
3
3

6.

(a) 11.4 cm

13. tan 48c = cot 42c = 1.11

14. (a) 2 cos 61c or 2 sin 29c

8.

(a) 13 m

(e) 2

15. x = 80c

16. y = 22c

19. t = 20c

11. 38 cm

Exercises 6.4

3
1
, cos 60c = , tan 60c =
2
2

(d) 1

4. 13.9 m

1

12. sec 82c = cosec 8c = 7.19

(c) 0

(e) 1.393

1.

11. sin 67c = cos 23c = 0.92

(b) 0

(d) 0.928

Exercises 6.3

(b) 45c
1
1
(c) sin 45c =
, cos 45c =
, tan 45c = 1
2
2

(c) sin 60c =

(c) 0.339

2.

7
, cos b =
5

, tan b =

(b) sin 30c =

(a) 17c 20l (b) 34c 20l (c) 34c 12l

(b) 0.697

(d) 46c 34l (e) 79c 10l

5
12
12
, sin i =
, tan i =
5
13
13

1.

(a) 0.635

6.

Chapter 6: Trigonometry

4. 36c52l 5. 50c

(b) 37c 52l 7. a = 31c 58l, b = 45c 44l

(b) 65c 17l 9. (a) 11c 19l (b) 26 cm

10. 4.96 cm and 17.3 cm

17. p = 31c

18. b = 25c

20. k = 15c

11. (a) 12.9 m

(b) 56c 34l

Exercises 6.5
1.

(a)

North

Exercises 6.2
1.

(a) 47c

2.

(a) 47c 13l (b) 81c 46l (c) 19c 26l

(b) 82c

(c) 19c

(d) 77c

(e) 52c

(d) 76c 37l (e) 52c 30l
3.

(b) 65.5c

(d) 68.35c
4.

(a) 77.75c

(c) 24.85c

(e) 82.517c

(a) 59c 32l (b) 72c 14l (c) 85c 53l
(d) 46c 54l (e) 73c 13l

Beach house 100c

Boat

ANSWERS

North

(b)

(f) North

Farmhouse

Jamie

12c

Campsite

Dam
(g)

320c

North

North

(c)

House 160c

Jetty

200c

Mohammed
(h)

North

Seagull
(d) North

Alistair
Mine shaft
80c
Town
50c

(i)

Bus stop

Yvonne

North

North

(e)

Plane

349c

B Hill
285c

School

799

800

Maths In Focus Mathematics Extension 1 Preliminary Course

North

(j)

4.

(a) 2nd

6.

(a) 1st
(e) -

8.

Boat ramp
Island

280c

2.

(a) 248c

3.

080c

7.

4. 210c 5. 160c 6. 10.4 m

12. 1.8 km

3
2

1
2

13. 12 m 14. 242c

15. 035c

25. 198 m 26. 4.8 km 27. 9.2 m 28. 217c

3+1
2

(g) 1

1
4

6+ 2
=
4

(h)

(j) - ^ 2 + 3 h
1
3

2

(k) 0

(d) 4

2 ^ 3 + 1h
4

(l) 1

(q) 2 3

3 2
2

9 3
2

(a) x =

3.

60c

7.

(a) 6 2 m

4.

(b) y =

2m

5.

3m

4 3
3
(i)

(f)

(r) -

1
2

(s) 6

2 3
3

5
21

(n)
2
3

(t)

6
2- 3
2

(c) p = 2 3
6.

10 3 m 3

(b) 4 m 8. 0.9 m

9.

5^3 + 3 h m 3

10. 100 3 m

1.

(a) 1st, 4th (b) 1st, 3rd (c) 1st, 2nd
(e) 3rd, 4th (f) 2nd, 3rd (g) 3rd
(h) 3rd (i) 2nd (j) 4th

2.

(a) 3rd

(b) -

1
2

3. (a) 4th (b) -

1
2

(d) 2nd, 4th

65

1

(d)

(j)

2
1
2

3
2

(i) 3
2

1
2

(j) -

(e) -

(j) -

(e) -

(d)

1
2

3
2

1
2

1
2

(f)

3

1
2

, cot x = -

, sec i =

3
10

20. (a) sin i

2
21

21
2

, tan x = -

9
65

(b) cos x = -

5
18. cot a = - , sec a =
6
19. sin i =

89
5

55
8
8
, sec x = - , cosec x = 3
3
55

17. (a) sin x =

91
3
, tan x = 10
91

61
61
, cosec a = 5
6

51
7
, cot i = 10
51
(b) cos x

(f) - sin i (g) cos a

(c) tan b

(d) - sin a

(e) - tan i

(h) - tan x

Exercises 6.8
1.

Exercises 6.7

4

15. tan i = 16. tan x =

3

(m) 2 ^ 2 - 1 h

(p) 3 - 2 2

2.

(e)

3
2

(i) −1

(d) (i)

3

(c)

3

(c) - 3

7 74
5 74
, sin x = 74
74

14. cos x = -

(b) 1 (c)

1

, cosec x = -

(b) 7.2 km 30. (a) 13.1 m (b) 50c26l

(a)

(o) 1

89

13. cosec x = -

Exercises 6.6
1.

3

3

2

8

12. cos x =

22. 1931.9 km 23. 34.6 m 24. 149c

29. (a) 1.2 km

(c)

2
1

2

33
4
, tan i = 7
33

11. cos i = -

l
16. 9.2 m 17. 171 m 18. 9.8 km 19. 51c 41 20. 2.6 m
21. 9c21l

(h) -

(h) -

1

(h)

3
2

3
2

1
2

(b)

1

(b)

1

3
4
10. sin i = - , cos i = 5
5

10. (a) 1056.5 km (b) 2265.8 km (c) 245c
11. 83.1 m

(g)

(b)

(g)

(b) -

2

5. (a) 2nd

7. (a) 1

1
2

(f) -

1

(a) (g)

8. 126.9 m 9. 72c48l

21 m

1
2

(a) -

3
2

(b)

(f) - 3

9.

(b) 145c (c) 080c (d) 337c (e) 180c

(b) - 3

l
(a) i = 20c 29l, 159c 31 (b) i = 120c, 240c
(c) i = 135c, 315c (d) i = 60c, 120c (e) i = 150c, 330c
(f) i = 30c, 330c
(g) i = 30c, 120c, 210c, 300c ] 0c # 2i # 720c g
(h) i = 70c, 110c, 190c, 230c, 310c, 350c
] 0c # 3i # 1080c g

ANSWERS

(i) i = 30c, 150c, 210c, 330c
(j) i = 15c, 45c, 75c, 105c, 135c, 165c, 195c, 225c,
255c, 285c, 315c, 345c
2.

(a) i = !79c 13l (b) i = 30c, 150c
(d) i = - 60c, -120c

16.

(c) i = 45c, -135c

(e) i = 150c, -30c

(f) i = !30c, !150c
(g) i = 22c 30l, 112c 30l, -67c 30l, -157c 30l
(h) i = !15c, !45c, !75c, !105c, !135c, !165c
(i) i = 135c, -45c

(j) i = !30c, !60c, !120c, !150c

3.
17.

4.

-1

5.

Exercises 6.9
1.

(a) cos i (b) - tan i (c) cos i (d) tan i (e) - sec a

2.

(a) sin i (b) sec i (c) cosec x
(f) cosec x
2

(j) sin2 x
3.

6.

x = 0c, 180c, 360c

9.

7. - 1

8. 1

x = 0c, 360c

(g) sec x

(k) 1

2

(l) sin i cos i

(a) LHS = cos x - 1
= 1 - sin 2 x - 1
= - sin 2 x
= RHS
So cos 2 x - 1 = -sin 2 x
2

(b) LHS = sec i + tan i sin i
1
=
+
cos i cos i
1 + sin i
=
cos i
= RHS
1 + sin i
So sec i + tan i = cos i

10.

(c) LHS = 3 + 3 tan 2 a

11. 0

12. x = 270c

14. x = 0c, 180c, 360c

13. x = 0c, 180c, 360c
15. x = -270c, 90c

= 3 (1 + tan 2 a )
= 3 sec 2 a
3
= cos 2 a
3
=
1 - sin 2 a
= RHS
So 3 + 3 tan 2 a =

(d) cos2 x

(e) sin a

(h) tan i (i) 5 cosec 2 i

2

3
1 - sin 2 a

801

802

Maths In Focus Mathematics Extension 1 Preliminary Course

(d) LHS = sec 2 x - tan 2 x
= tan 2 x + 1 - tan 2 x
=1
= cosec 2 x - cot 2 x
= RHS

(j) LHS =
=

=

(e) LHS = ] sin x - cos x g 3
= ] sin x - cos x g ] sin x - cos x g 2
= ] sin x - cos x g ^ sin 2 x - 2 sin x cos x + cos 2 x h
= ] sin x - cos x g ] 1 - 2 sin x cos x g
= sin x - 2 sin 2 x cos x - cos x + 2 sin x cos 2 x
= RHS
So ] sin x - cos x g 3 = sin x - 2 sin 2 x cos x - cos x
+ 2 sin x cos 2 x

=

RHS =

1 - sin 2 i + 2 sin i sin i cos i cos 2 i + 2 sin i
=
sin i cos i
2 sin i cos 2 i
=
+ sin i cos i sin i cos i cos i
2
=
+
sin i cos i
= cot i + 2 sec i
= LHS

=

=

(g) LHS = cos 2 ] 90c - i g cot i
= sin 2 i cot i cos i
= sin 2 i # sin i
= sin i cos i
= RHS
So cos 2 ] 90c - i g cot i = sin i cos i

So
4.

So

cos 2 i

= tan 2 i + cos 2 i

sin b cos b
+
cos b sin b sec b sin 2 b + cos 2 b sin b cos b sec b

1 + cot b cosec b

- cos b = sin b

LHS = x 2 + y 2
= ] 2 cos i g 2 + ] 2 sin i g 2
= 4 cos 2 i + 4 sin 2 i
= 4 (cos 2 i + sin 2 i)
= 4 ]1g
=4
= RHS
So x 2 + y 2 = 4

1 - sin 2 i cos 2 i

1 - sin 2 i cos 2 i

tan b + cot b sec b

LHS = RHS

So ] cosec x + cot x g ] cosec x - cot x g = 1 cos 2 i sin 2 i cos 2 i
=
cos 2 i cos 2 i
= sec 2 i - sin 2 i
= tan 2 i + 1 - (1 - cos 2 i)
= tan 2 i + 1 - 1 + cos 2 i
= tan 2 i + cos 2 i
= RHS

sec b

1 sin b cos b cos b sin b
= sec b #
1
cos b sin b
1
=
#
1 cos b
= sin b

1 - sin i + 2 sin i sin i cos i

1

cosec b
1 + cot b - cot b

=

2

(i) LHS =

cosec b

cosec b
1
= cosec b
= sin b

(f) RHS =

(h) LHS = ] cosec x + cot x g ] cosec x - cot x g
= cosec 2 x - cot 2 x
= 1 + cot 2 x - cot 2 x
=1
= RHS

- cos b cosec b
1 + cot b - cos b cosec b
1 + cot b - cos b #

So sec 2 x - tan 2 x = cosec 2 x - cot 2 x

So cot i + 2 sec i =

1 + cot b

5.

LHS = x 2 + y 2
= ] 9 cos i g 2 + ] 9 sin i g 2
= 81 cos 2 i + 81 sin 2 i
= 81 (cos 2 i + sin 2 i)
= 81 ] 1 g
= 81
= RHS
So x 2 + y 2 = 81

1 sin b

ANSWERS

Exercises 6.10
1.

(a) x = 8.9

Exercises 6.13
1.

2.

15 3 2 m 2
1.2 m 2

9.

(c) a = 10.0

(a) 7.5 cm 2 (b) 32.3 units 2 (c) 9.9 mm 2
(d) 30.2 units 2 (e) 6.3 cm 2

6.

(b) y = 9.4 cm

(d) b = 10.7 m
2.

(a) 7.8 cm

(e) d = 8.0

(a) i = 54c 57l (b) a = 61c 23l (c) x = 43c 03l
(d) a = 87c 04l (e) i = 150c 56l

3.

126c 56l 4. (a) 13.5 mm

5.

(a) 1.8 m

7.

(a) 10.3 m

9.

(a) 14.1 cm (b) 15.6 cm

(b) 2.7 m 6. 5.7 cm
(b) 9.4 m 8. (a) 60c 22l (b) 57c 9l

2.

8. 247.7 mm 2

(b) 180.8 cm 2

10. (a) 5.6 cm

(b) 18.5 cm 2

(c) 19.1 cm 2

1.

(e) y = 9.3

(a) i = 51c 50l (b) i = 60c 27l (c) x = 57c 42l

l
(a) 2 m (b) 2.2 m (c) 65c 21 2. (a) 1.9 m (b) 49c 46l
(a) 109 cm 2

5.

(a) 9 m

7.

(c) h = 7.4 cm

l
(d) b = 131c 31 (e) i = 73c 49l

(a) 48 m

(b) 128.6 m

9.

16c 50l

10. 11c 10l

(b) 16c 20l 4. 65c 9l

(b) 25c 7l 6. (a) 56 m

3.

32.94 mm 4. 11.2 cm and 12.9 cm l (a) 11.9 cm (b) 44c 11 (c) 82c 13l

1.

(b) 89.7 m

(c) 97.7 m 8. 84 m

Exercises 6.15

5.
6.
7.
9.

+XYZ = +XZY = 66c 10l, +YXZ = 47c 40l
(a) 18.1 mm (b) 80c49l 8. (a) 6.2 cm

(a) sin a cos b - cos a sin b
(c)

(b) 12.7 cm
(e)

12.9 cm 10. (a) 11 cm

(b) 30c

tan a + tan b
1 - tan a tan b

(b) cos p cos q - sin p sin q

(d) sin x cos 20c + cos x sin 20c

tan 48 + tan x
1 - tan 48c tan x

(f) cos 2i cos a + sin 2i sin a

(g) cos x cos 75c - sin x sin 75c

(h)

Exercises 6.12
1.

12.5 cm and 4.7 cm 2. (a) 040c (b) 305c 3. 16.4 m

4.

103c

7.

(a) 1.21 km

5. 1.97 m 6. 11c

(i) sin 4a cos b - cos 4a sin b (j)
2.

(b) 1 minute 8. 32 m 9. 107 m

11. h = 8.5

12. 7.7 km

13. 5.7 km and 5.4 km

14. 1841 km

15. 35.8 m 16. 89c 52l 17. 9.9 km

18. 163.5 km

(a) sin ] a + b g (b) tan 65c
(e) tan 2i (f) sin 32c
(i) 2 sin x sin y

5.8 sin 42c 29l
10. (a) AC =
(b) i = 74c 50l sin 101c 36l
3.

(a)

19. 64.1 m 20. 3269 km

21. (a) 11.3 cm (b) 44c 40l 22. 141c
23. (a) 11.6 cm (b) 73c 14l

(c)

(d)

(e)

24. (a) 265.5 km (b) 346c 33l l 25. (a) 35c 5 (b) (i) 4.5 m

S6.indd 803

5. 34.8 cm 2

3.
(b) b = 10.4 m

(d) n = 16.4

7. 42 cm 2

4. 15.5 cm 2

Exercises 6.14

Exercises 6.11
(a) m = 5.8

3. 7.5 cm 2

(b) 25 mm

10. (a) 54.7 mm (b) 35.1 mm

1.

803

(ii) 0.55 m

(g)

1+ 3

=

2 2
1+ 3

2 2

(c) cos 55c

(d) sin ^ 2x + 3y h

(g) 2 sin a cos b

(h) 2 cos x sin y

(j) 2 cos m cos n
2+ 6
4

(b)

1+ 3

2+ 6
4

=

2 2

=

-^2 3 + 4h
= -^ 3 + 2h
2

=

2 2
1+ 3

1 + tan a tan 3b

2 3+4
=
2

1- 3
1- 3

tan a - tan 3b

=

3-1
1+ 3

tan 5x - tan 7y
1 + tan 5x tan 7y

=

2- 6
4

(f)

3+2

3-1
2 2

=

6- 2
4

2+ 6
4

8/11/09 11:38:03 AM

804

Maths In Focus Mathematics Extension 1 Preliminary Course

(h)

1+ 3
1- 3

=

15. (a) sin 6x

-^4 + 2 3 h
= -^2 + 3 h
2

(e)

3-1
1+ 3 o + cos x e o (i) sin x e
2
2
(j)

4.

2
2

cos y =

(c)

2 cos y

5. (a)

6 + 35
3 5-2 7

6 + 35
12

=

3 5+2 7
12

(b)

(g)

32 5 + 27 7
17

6.

(a) 2 sin i cos i (b) cos 2 i - sin 2 i (c)

7.

2 tan i

(a) 3 sin i cos 2 i - sin 3 i
(b) cos 3 i - 3 sin 2 i cos i (c)

8.
9.

1 - tan 2 i

3 tan i - tan 3 i

3
(c) 2
11. (a)

4
5

(b)

3
(d) 2
12
13

(c) -

(e)
33
65

10. (a)

1
2

18. (a)

(b)

(d)

12
5

(e) - 3

(b) -2 sin x sin y

21.

15
16

(c) 2 cos x sin y

(f)

2 tan y ^ tan 2 x + 1 h
1 - tan 2 x tan 2 y

2 tan i
1 - tan 2 i

(c) cos 2 i - sin 2 i

(d) sin x cos 2y + cos x sin 2y
= sin x _ cos 2 y - sin 2 y i + 2 cos x sin y cos y
(e) cos 2a cos b - sin 2a sin b
= ^ cos 2 a - sin 2 a h cos b - 2 sin a cos a sin b
(f)

tan x + tan 2y

1 - tan x tan 2y tan x - tan x tan 2 y + 2 tan y
=
1 - tan 2 y - 2 tan x tan y
(g) sin 2i cos d - cos 2i sin d
= 2 sin i cos i cos d - cos 2 i sin d + sin 2 i sin d
(h) cos i cos 2c + sin i sin 2c
= cos i _ cos 2 c - sin 2 c i + 2 sin i sin c cos c tan x - tan 2z tan x - tan x tan 2 z - 2 tan z
=
1 + tan x tan 2z
1 - tan 2 z + 2 tan x tan z
(j) sin 2x cos 2y - cos 2x sin 2y
= 2 sin x cos x _ cos 2 y - sin 2 y i
- 2 sin y cos y ^ cos 2 x - sin 2 x h

(i)

(b)

(h) 1

2

63
65

(b)

1
2

(c)
1

(i)

2 2

1

(d)

3
(j) -

1
2

5 39
7
, sin 2x =
32
32
7
25

(c)

120
169

(d) -

33
56

(b)

1
2+ 3

=2- 3

2-1

(d) cos x cos y - sin x sin y + sin x cos y - cos x sin y

(b)

1

2
4

3

22. (a)

13. (a) 2 sin x cos y

14. (a) 2 sin b cos b

2 2

=

17. cos 2x = -

1
[cos 115c + cos ] - 15c g]
2

1 - tan 2 x tan 2 y

1

20. (a) tan x

3

(b)

2 tan x _ 1 + tan 2 y i

(g) cos 6a

1

12. (a) 2 cos x cos y

(e)

1 sin 12i (f) 1 + sin 2x
2

19. 4 sin i cos i ^ cos 2 i - sin 2 i h =
4 sin i cos 3 i - 4 sin 3 i cos i

1 - 3 tan 2 i

(a) tan 4i (b) sin 7i cos 3i - cos 7i sin 3i cos 2x cos 7x - sin 2x sin 7x

(c) tan 10i (d) cos 2y
(h) cos 80c

(i) tan 2b (j) 1 - sin 6x
16. (a)

tan 2x

(b) cos 14y

(b)

1 sin 2i tan i
2
1
= (2 sin i cos i) tan i
2
sin i
= sin i cos i cos i
= sin 2 i
= LHS
1
2
` sin i = sin 2i tan i
2
RHS =

RHS =

1 - cos i sin i

i i - sin 2 n
2
2
=
i i cos
2 sin
2
2 i i
1 - cos 2 + sin 2
2
2
=
i i cos
2 sin
2
2 i i sin 2 + sin 2
2
2
=
i i 2 sin cos 2
2
i
2 sin 2
2
= i i
2 sin cos 2
2
i sin 2
=
i cos 2 i = tan
2
= LHS i 1 - cos i
` tan =
2
sin i
1 - d cos 2

1
2

(e)

3

(f)

3
2

ANSWERS

23. RHS = sin 11i sin 3i
= sin (7i + 4i) sin (7i - 4i)
= (sin 7i cos 4i + cos 7i sin 4i)
(sin 7i cos 4i - cos 7i sin 4i)
= sin 2 7i cos 2 4i - cos 2 7i sin 2 4i
= sin 2 7i (1 - sin 2 4i) - (1 - sin 2 7i) sin 2 4i
= sin 2 7i - sin 2 7i sin 2 4i - sin 2 4i + sin 2 7i sin 2 4i
= sin 2 7i - sin 2 4i
= LHS
` sin 2 7i - sin 2 4i = sin 11i sin 3i

5.

(a)

1 + t2
2t

(i)

1

4.

LHS =

=

1
2

1 - t2

(c)

1+t
1-t

(f)

8.

5 sin ] i - 63c 26lg

29 sin ] i - 21c 48lg

10 cos ] i - 18c 26lg 9. 2 cos ] i + 60cg

10. (a)

85 sin ] i + 12c 32lg

(b)

85 cos ] i - 77c 28lg

Exercises 6.17
1.

(a) x = 45c, 225c

(b) x = 30c, 210c

(f) x = 0c, 60c, 300c, 360c

(i) x = 30c, 135c, 150c, 315c

2

2.

(d)

1 + t2

3 - 3t + 8t
1+t

2

(h)

3.

+

(e) i = 180n - 45c

(f) b = 360n ! 45c
(h) i = 180n + 30c

l
(i) i = 360n ! 75c 49l (j) a = 180n + ] -1 gn # 23c 31

2

1 + t2
1 + t 2 + 2t + 1 - t 2

1 + sin i - cos i
=t
1 + sin i + cos i

(b) a = 180n + 60c

(d) x = 180n - ] -1 gn # 30c

(g) c = 180n ! 60c

1 - t2

2

(a) i = 180n + ] - 1 gn # 30c
(c) i = 360n ! 30c

1 t ^1 + t h

2

(d) i = 180c, 270c

(i) i = 51c 2l, 190c 54l (j) i = 160c 32l, 270c

2t + 1 - t 2

2 2

2t

(a) i = 126c 52l, 306c52l (b) i = 35c58l, 189c16l

(g) i = 90c, 340c 32l (h) i = 56c 34l, 176c 34l

2

(g)

(h) x = 0c, 180c, 360c

(j) x = 0c, 360c

(d) cos 50c

4t ^ 1 - t 2 h

1+t
2t 2 + 2t
=
2 + 2t
2t ] t + 1 g
=
2]1 + t g
=t
= RHS
`

34 sin ] i + 59c 2lg

l
(e) i = 240c 43l, 327c 21 (f) i = 90c, 180c

1 - t2
2t

2

1+t
1+t
1 + t 2 + 2t - 1 + t 2

=

2 sin ] i - 45cg (b)

(e)

(d) 0

1 + sin i - cos i
1 + sin i + cos i
2t
1 - t2
1+
2
1+t
1 + t2
1+

(a)

(c) i = 60c, 240c

1 + t2

2

(j)

(j)

(e) x = 90c, 210c, 330c

(c)

2

1 - t + 2t
1+t
1-t

41 sin ] i + 38c 40lg

l
65 sin ] i + 60c 15 g

(g) x = 0c, 45c, 180c, 225c, 360c

(b)

1-t

(h)

10 sin ] i + 18c 26lg

(f)

(d) x = 0c, 45c, 180c, 225c, 360c

2

(e)

13 sin ] i + 56c 19lg

29 sin ] i + 21c 48lg

(c) 2 sin ] i - 60cg (d) 2 sin ] i - 30cg

(e) sin 2i (f) cos i

3.

17 sin ] i + 14c 2lg

(b) 2 sin ] i + 60cg

(c) x = 0c, 60c, 180c, 300c, 360c

(a) tan i (b) cos i (c) tan 20c

(b)

2 sin ] i + 45cg (d)

(i)

Exercises 6.16

2.

5 sin ] i + 26c 34lg

(g)

25. 3 sin x - 4 sin 3 x

3
(a)
2

(a)

(e)

` cos 3i = 4 cos 3 i - 3 cos i

1.

^ 1 + t 2 h2

(c)

6.

7.

24. LHS = cos 3i
= cos (2i + i)
= cos 2i cos i - sin 2i sin i
= (cos 2 i - sin 2 i) cos i - 2 sin 2 i cos i
= cos 3 i - sin 2 i cos i - 2 sin 2 i cos i
= cos 3 i - 3 sin 2 i cos i
= cos 3 i - 3 (1 - cos 2 i) cos i
= cos 3 i - 3 cos i + 3 cos 3 i
= 4 cos 3 i - 3 cos i
= RHS

4t - 4t 3 - 1 + 6t 2 - t 4

4.

x = 52c 30l, 82c 30l, -97c 30l, -127c 30l

5.

x = 180n + ] - 1 gn # 30c, 360n ! 90c

6.

x = -180c, 0c, 90c, 180c

7.

(a) i = 180n

(b) x = 360n

(d) i = 180n + (-1) 270c n 8.

(a) (i) x = 30c, 150c

(c) x = 180n
(e) 360n ! 90c

(ii) x = 180n + ] - 1 gn ! 30c

l l l
(b) (i) x = 41c 25 , 318c 35 (ii) x = 360n ! 41c 25
(c) (i) x = 71c 34’, 251c 34l (ii) x = 180n + 71c 34l
(d) (i) x = 161c 34l, 341c 34l (ii) x = 180n - 18c 26l
(e) (i) x = 45c

(ii) x = 180n + (-1) n 90c - 45c

805

806

Maths In Focus Mathematics Extension 1 Preliminary Course

9.

10. (a) x = 0c, 120c, 240c, 360c

cos i =

5

2.

(a) cos x

(b) 2

34

, sin i =

(b)

34

(c) cosec A

(d) cos i

(e) cos 20i

4.

(a) i = 46c 3l (b) i = 73c 23l (c) i = 35c 32l

5.

LHS =

1
(d) 2
8.

(b) -

2 2

2 ^ 3 + 1h
4

=

2 ^1 - 3 h
4

(c)

1
2 2

=

2
4

(b) x = 180n + 45c

24. a = 51c 40l

23. i = 0c, 120c, 360c

(b) cos ] x + x g = cos x cos x - sin x sin x
= cos 2 x - sin 2 x
= ^ 1 - sin 2 x h - sin 2 x
= 1 - 2 sin 2 x

Challenge exercise 6
1.

(a) AC =

l
25.3 sin 39c 53
(b) h = 25.2 cm l sin 41c 21

6.
3
2

92c 58l 2. 50.2 km

4.

- cos x

7. 16 3 cm 2

9.

2 cos 2 i
So
= 2 + 2 sin i
1 - sin i

2

=

25. (a) cos ^ x + y h

2 cos 2 i
1 - sin i
2 ^ 1 - sin 2 i h
=
1 - sin i
2 ] 1 + sin i g ] 1 - sin i g
=
1 - sin i
= 2 (1 + sin i)
= 2 + 2 sin i
= RHS

1

2 2

3+1

22. (a) x = 360n ! 60c

(b) 1.84 (c) 0.95

7. (a)

1- 3

(b) 8.5 m

(c) x = 180n + ] - 1 gn # 60c

(a) 0.64

b = 40c

21. (a)

3

3.

6.

20 sin 39c sin 99c

(b) 360n ! 120c, 360n

Test yourself 6
1.

19. (a) AD =
20. 2951 km

x = 180n + ] -1 g n # 30c, 180n + (-1) n 270c

l x = 22c 30l, 112c 30l, 202c 30l, 292c 30l 10. i = 75c 45

3. x = 12.7 cm

8.

(c) - 3

140
(e) 221

11. 5.4 m

x = 120c, 240c

14. -

56
9

12. i = 110c, 230c
15. 31 m

1
2

13. 6.43 km

16. LHS =

9.

5. 4.1 km

cos i ] sin i + cos i g

= cos i

1 - sin 2 i
] sin i + cos i g

cos 2 i sin i + cos i
=
cos i
= tan i + 1
= RHS
17. x 2 + y 2 + 4y - 5 = 0 x = 90c, 270c
10. 122 km

11. 5 3

19. (a) 52c 37l (b) 9 m
12. (a) 6.3 cm

(b) 8.7 m

l
13. (a) i = 65c 5 (b) i = 84c 16l (c) i = 39c 47l
14. 65.3 cm 2

15. (a) x = !60c, !120c

(b) x = 15c, 105c, -75c, -165c
(c) x = 0c, !180c, 30c, -150c
3
4
16. sin i = - , cot i =
5
3

17. (a) 209c

18. i = 180n + ] -1 gn 30c + 53c 8l

(b) 029c

18. (a) 65 m

(b) 27c 42l

20. 30c 8l

21. LHS = cos 6i cos 4i - sin 6i sin 4i
= cos (6i + 4i)
= cos 10i
= cos 2 5i - sin 2 5i
= cos 2 5i - (1 - cos 2 5i)
= 2 cos 2 5i - 1
= RHS
` cos 6i cos 4i - sin 6i sin 4i = 2 cos 2 5i - 1
22. 30.1 m, 0.5 ms - 1

23. i = 30°, 150°, 270°

24. i = 180n + (-1) n 270c

25. - t

ANSWERS

Chapter 7: Linear functions

7.

1 1
Midpoint of AC = midpoint of BD = d 2 , 3 n .
2 2
Diagonals bisect each other

8.

AC = BD =

Exercises 7.1
1.

2.

(a) 5 (b) 10

(c) 13

(c)

52 = 2 13

85

(d)

(a)

13

(b)

65

3.

Two sides =

6.

Show AB = BC =

7.

Show points are

8.

Radius = 3 units, equation x 2 + y 2 = 9

9.

Distance of all points from ^ 0, 0 h is

1
BD = d 4, - n ; rectangle
2

(a) 9.85 (b) 6.71 (c) 16.55 4. 12 units

5.

x 2 + y 2 = 11

34 , 1 side =

AC =

11 , equation

11. a = ! 6 - 2

12. All 3 sides are 2 units. 13. a = 10, - 2
37 , QP = MN =

15. BD = AC =

98

(b) OC = OB = 2
19. AB =

29 , BC =

(b) XY =

17 units from ^ 7, -3 h

14. MQ = NP =

20 , so parallelogram

16. (a) AB = AC =
17. 2 101

18.

116 , AC =

65 , YZ =

130 , XZ =

1.

61 units
3.

12. x 2 + y 2 = 1

1
2

x = 1.8

1
3

(c) - 1

(h) -

2
3

4. x = 9

(d) - 2
1
4

2
5

2
3

(e)

(j) - 2

2. y 1 = 21

(3, 4)

3
(-2, 1)

(7, 2)

2
1

-3 -2 -1
-1

Exercises 7.2

1

2 3 4
(2, -1)

6

5

Gradient of AB = gradient of CD = 1

1
2

Gradient of BC = gradient of AD = 0
7.

1
1
(e) ^ -1, 1 h (f) ^ - 3, 2 h (g) d 3, n (h) d 1 , 1 n
2
2
1 1
1
(i) d , 2 n (j) d 0, 5 n
2 2
2

Gradient of AB = gradient of CD = -1
Gradient of BC = gradient of AD =

1
3

3
4

1
Gradient of AC = - 5 ,
2
1 gradient of BD = 2

(b) a = - 5, b = 6

(c) a = -1, b = - 2 (d) a = -1, b = - 2
8.

3.

3 + ]-3g
-4 + 4
= 0,
=0
2
2

5.

^ 4, 3 h 6. x = 3 is the vertical line through midpoint ^ 3, 2 h.

4. P = Q = ^ 2, -1 h

(f) -

5. (a) Show m 1 = m 2 =

-2

(e) a = 6, b = 1

1
3

(i) 2

4

(Pythagoras’ theorem)

(a) ^ 2, 4 h (b) ^ 1, -1 h (c) ^ - 2, 1 h (d) ^ - 3, 2 h

2

y

6.

(a) a = 9, b = - 3

(b) 1

65

30.2

2.

2
, AB =
2

(b) Lines are parallel.

Problem

1.

(a) 2
(g) - 4

Since XY = YZ, triangle XYZ is isosceles.
XY 2 + XZ 2 = 65 + 65
= 130
= YZ 2
So triangle XYZ is right angled.

34 ; YZ =

34
,
2

40 = 2 10 ; XZ =

Exercises 7.3

40 , BC = 4

145

10 , BC =

11. x 2 + y 2 = 4

AB 2 + BC 2 = 29 + 116
= 145
= AC 2
So triangle ABC is right angled (Pythagoras’ theorem)
20. XY =

9. ^ - 8, 13 h

1 1
1 1
10. (a) X = d - , 3 n , Y = d , n , Z = ^ 1, 1 h
2 2
2 2

128

85

10. a = 3

125 , midpoint AC = midpoint

Gradient of AC = 1, gradient of BD = -1

9.

(a) Show AB 2 + BC 2 = AC 2
(b) Gradient of AB = gradient of BC = -

4
5

5
,
4

7

3
5

1
8

807

808

Maths In Focus Mathematics Extension 1 Preliminary Course

10. (a) F = ^ 1, - 2 h, G = d 4,

Exercises 7.6

1 n 2

(b) Gradient of FG = gradient of BC =

1.

5
6

11. 4x - 3y - 11 = 0 12. Gradient of ^ 2, - 4 h and
^ 3, -1 h = gradient of ^ 3, -1 h and ^ 5, 5 h = 3

18. (a)
19.

(h)

14. 0.93 15. 21 16. 50c 12l 17. 108c 26l

13. 1

3

1

(b)

3

-5 - ] -2 g
7-4
-3
=
3
= -1 m = tan i
-1 = tan i
` i = 180c - 45c ^ 2nd quadrant h
= 135c

3
4

(j)

1
5

1

(i)

3

(d) 1

1
2

(d) x + 2y + 5 = 0

(b) (i) 2

(ii) -7

(ii) 1 (c) (i) 6

(e) (i) - 4

(ii) 3

(f) (i) 1

(ii) - 2

(ii) 6 (h) (i) -1

(ii) 1

(ii) -

1
2

(j) (i) 1

2
3

(ii)

2
3

3. (a) 4

1
(c) 0 (d) - 2 (e) -1 (f) - 3 (g) 2 (h) 4
3
1
2
1
1
2
(j) 1
(k)
(l)
(m)
(n)
(o) 4
5
7
5
3
2
3
1
1
1
(p) (q) 15 (r) - 1
(s)
(t) 6
14
2
8

(b) - 2

1
# 5 = - 1 so perpendicular
5
1
5

m1 # m2 = -

3
7
# = -1
7
3

7. k = -

2
3

8. m 1 = m 2 = 4

5
AB < CD _ m 1 = m 2 = 3 i and BC < AD d m 1 = m 2 = - n
8
1
10. Gradient of AC: m 1 = , gradient of BD: m 2 = - 2,
2
1 m 1 # m 2 = # - 2 = -1
2
11. (a) y = - x

(b) 5x - y - 8 = 0

(d) 2x - 3y + 16 = 0

(c) 2x + y + 2 = 0

12. 7x + 6y - 24 = 0

13. x + y - 3 = 0 14. 2x - y - 5 = 0
15. 2x - 3y + 18 = 0

Exercises 7.7
(a) ^ 2, - 4 h

(b) ^ -1, - 3 h

(e) ^ 5, -1 h

1.

1
(i) 1
2

(f) ^ -1, 1 h

(j) d
3.

(c) ^ 4, 4 h

(g) ^ 3, 7 h

(d) ^ 0, - 2 h

(h) ^ 4, 0 h

^ 2, 5 h, ^ 4, 1 h and ^ -1, -1 h

at ^ 2, -3 h

4. All lines intersect

All lines meet at ^ - 5, 0 h

7.

5x + 6y - 27 = 0

(d) y = 4x + 20 (e) 3x + y - 3 = 0 (f) 4x - 3y - 12 = 0

9.

x+y-1=0

10. 2x + y - 2 = 0

(g) y = x - 1

11. x + y - 3 = 0

12. x - 2y - 3 = 0

13. x - y + 1 = 0

14. x - 3y + 2 = 0

(a) y = 4x - 1 (b) y = - 3x + 4
(h) y = x + 5

(a) 4x - 3y + 7 = 0

2. x + y - 8 = 0

(b) 3x - 4y + 4 = 0

(c) 4x - 5y + 13 = 0
(e) x - 2y + 2 = 0

(c) y = 5x

(d) 3x + 4y - 25 = 0

4. 4x + y - 8 = 0

6. y = - 2x

5. (a) y = 3

7. 3x - 4y - 12 = 0

9. x = - 4

10. 3x + 8y - 15 = 0

(i) ^ 41, 26 h

1
7
n 2. Substitute ^ 3, - 4 h into both lines
,19
19

5.

Exercises 7.5

2x + y - 3 = 0

3

(g) 3x + 4y + 13 = 0

m1 m2 = -

(i) (i) 9 (ii) 0

(j) (i) 5 (ii) - 2 2. (a) (i) - 2 (ii) 3 (b) (i) - 5 (ii) - 6
1
(c) (i) 6 (ii) -1 (d) (i) 1 (ii) 4 (e) (i) - 2 (ii)
2
1
1
4
(f) (i) 3 (ii) 1
(g) (i) (ii) - 2 (h) (i) (ii) 2
5
2
3

8.

1

m 1 = m 2 = 3 so parallel

6.

(ii) 0

(b) x = -1

(g)

(e) x - 2y + 4 = 0

5. m 1 = m 2 = 1

(g) (i) - 2

3.

5
6

(a) x - y + 1 = 0 (b) x - 3y + 16 = 0 (c) x + y - 5 = 0

4.

(d) (i) -1

1.

(f) -

(e) 1

9.

(a) (i) 3 (ii) 5

1
2

(c)

1
3

3.

2^ 3 + 3h
3

(i) (i) 3

1
3

(b)

(f) x + 3y - 1 = 0

Exercises 7.4
1.

2.

(c) - 3

m=

20. x =

(a) - 3

15. 3x + y - 7 = 0

21. 5x - y + 17 = 0

8. 4x + 7y + 23 = 0

16. x + 5y + 13 = 0

17. 27x - 5y - 76 = 0
19. 2x - y - 1 = 0

6. 11x + 6y = 0

18. 3x - y - 14 = 0

20. 3x - y - 11 = 0

ANSWERS

Exercises 7.8

Exercises 7.10
3
13

8
13

1.

(a) 2.6 (b) 1

2.

(a) 3.48 (b) 1.30 (c) 0.384 (d) 5.09 (e) 1.66

3.

(a)

4.

d1 = d2 = d3 = 1

5.

7 13
13

A: d =

14
5

(b)

(c) 2.5 (d) 2.4

5

, B: d =

(c)

4 205
205

(e)

(d)

5 26
13

1.

(e)

9
1
1
2
1
(d) d 4 , -1 n (e) d 2 , - 2 n (f) d - 5, 2 n
7
7
4
2
10
14 13
13

^ 2, - 3 h: d =

13
10

6 6
6 4
4
1 n (i) d - , 1 n
(g) d 2 , 7 n (h) d - 3 , -1
7 7
7 7
11
11
2
2
(j) d 1 , -1 n
3
3

-3
5

Opposite signs so points lie on opposite sides of the line
6.

2.

5

, ^ 9, 2 h: d =

^ - 3, 2 h : d = - 4 , ^ 4 , 1 h : d = 2

8.

d 1 = d 2 = 2 so the point is equidistant from both lines

9.

^ 8, - 3 h: d =

3.

37

9

, ^ 1, 1 h: d =

10. ^ - 3, 2 h: d =

5

, ^ 4, 1 h: d =

A
(3, 2)

5.

3 1
P = d 1 , n , Q = ^ 16, -19 h, PQ = 24 units
5 5

6.

3
4
2
B = d 9 , -12 n 7. p = 4 , q = 20
5
5
5

8.

2 2
2 2
(a) d , 1 n (b) Each ratio gives d , 1 n . This means
3 3
3 3 that the intersection of the medians divides each median in the ratio 2:1.

9.

a = 8, b = 18

7
5

8 5 units 5

11. d 1 = d 2 = 4 so same distance 12.
14. 4.2 15. x = 9

17. m = - 1

2 or -17
3

2
2
(a) E = d , 2 n (b) F = d 1 , 2 n
3
3

4.

Opposite signs so points lie on opposite sides of the line

13. 1

(j) ^ 10, 13 h

(c) EF = 1, AC = 3 ` AC = 3EF

37

Same signs so points lie on same side of the line
-6

1
(d) d 12, 5 n
2

4
1
2
(f) d 9, -1 n (g) d - 6, - n (h) d 9, 1 n
7
2
3

(i) ^ - 58, 30 h

1
5

Opposite signs so points lie on opposite sides of the line

55

1
4
(a) d - 4, 3 n (b) d 6 , 2 n (c) ^ 19, 25 h
5
2
(e) ^ 40, 12 h

10

Same signs so points lie on the same side of the line
7.

3 2
1 3
4 8
(a) d - , 1 n (b) d 2 , 3 n (c) d - 2 , 1 n
5 5
5 5
9 9

16. b = 3

1
1
or -1
4
12

2
1
or -18
3
3

(1 2 , 3 1 )
3
3

18. Show distance between ^ 0, 0 h and the line is 5

1.

6.4 units

4 1
20. (a) ^ 3, -1 h, d 3 , n, ^ - 2, 2 h
7 7

3.

(a) - 1

2 8
10. P = d , 3 n
9 9

Test yourself 7

19. Show distance between ^ 0, 0 h and the line is greater than 1

B
(-1, 6)

( 1, 4 2 )
3
3

(b)

2 10 13 5 26 34
,
,
5
5
119

4.

Exercises 7.9
1.

l
(a) 149c 2l (b) 119c 45 (c) 143c 58l (d) 172c 14l
(e) 135c

3. 12c 20l

1
3

21c 2l, 120c 58l, 38c

7.

m = - 5.4, 1.53

9.

(a) +A = +C = 63c 26l, +B = +D = 116c 34l

6. m = 3, -

8. k Z -1.64, 0.095

l
(b) 124c 31 10. +A = 61c 56l, +B = +C = 59c 2l

(d)

3

(a) 7x - y - 11 = 0

3
5

(b) 5x + y - 6 = 0

(c) 3x + 2y = 0

(e) x - 3y - 3 = 0

6 5 units 5

6.

1 m 1 = - , m 2 = 4 so m 1 m 2 = -1
4
` lines are perpendicular.

7.

x-intercept 5, y-intercept - 2

8.

(a) 2x + y - 1 = 0

9.

m 1 = m 2 = 5, so lines are parallel

4. 53c 58l

5.

1

(c)

5.

(i) 74c 56l (j) 36c 52l
2.

(b) 2

(d) 3x + 5y - 14 = 0

l
(a) 18c 26l (b) 29c 45 (c) 82c 52l (d) 26c 34l l (e) 10c 29l (f) 41c 49l (g) 72c 15 (h) 18c 26l

1
5

1
2. d 2 , - 2 n
2

(b)

1
2

(c)

5 units 2
10. 3x - 4y = 0

809

810

Maths In Focus Mathematics Extension 1 Preliminary Course

11. ^ -1, 1 h

12. a = 6, b = 1

22. (a) AB: 7x + 5y + 14 = 0

13. 66c 48l

^ -7, 7 h lies on the line (show by substitution)

14. Solving simultaneously, x - y - 4 = 0 and

(b) -1:2 or 1:- 2

2x + y + 1 = 0 have point of intersection ^ 1, - 3 h .
Substitute ^ 1, - 3 h in 5x - 3y - 14 = 0:

2
23. x = 16 , y = -17
3

LHS = 5 # 1 - 3 # - 3 - 14 = 0 = RHS

2 1
1 1
25. (a) P = d 1 , 3 n (b) Q = d 4 , 3 n
3 3
3 3

` point lies on 5x - 3y - 14 = 0:
Substitute ^ 1, - 3 h in 3x - 2y - 9 = 0:

(c) PQ has gradient m 1 = 0

LHS = 3 # 1 - 2 # - 3 - 9 = 0 = RHS

AC has gradient m 2 = 0

` point lies on 3x - 2y - 9 = 0:

Since m 1 = m 2, PQ < AC

` lines are concurrent
5
1
15. d 2 , -1 n 16. - 0.499
9
3
19. ^ 4, 7 h

18. y = 3

22. ^ - 2, 1 h: d =

-8
13

1
(d) R = d 6 , 0 n
3

17. c = -13, - 65
4
5
2

(e) PR has gradient m 1 = -

21. 93c22l

20. x = 1

, ^ 6, 3 h: d =

BC has gradient m 2 = -

13

24. x - y - 4 = 0

Chapter 8: Introduction to calculus

2. x - 3 y - 3 3 = 0

3. 10x 2 + 10y 2 = 81

1.

k = -2

4.

Show AC and BD have the same midpoint ^ 1, 2 h and m AC # m BD = -1

5.

6.

4 13
13

8.

12 13
13

Exercises 8.1

Show distance of all points from ^ 0, 0 h is 3; radius 3; equation x 2 + y 2 = 9

9. 113c12l 10. 2x + 3y + 13 = 0

14. 2x + 5y + 14 = 0

3x +y + 3 - 2 3 =0

1
18. b = 2 , - 21
3
m1 - m2

20.

`

1 + m1 m2 m1 - m2

12. ^ 3, - 5 h

2.

15. 45c

17. x - y + 6 = 0

1
1
2
2
19. d 2 , - 2 n, d 1 , - 3 n
3
3
3
3
=1

=1
1 + m1 m2 m1 m2 + 1 = m1 - m2 m1 m2 = m1 - m2 - 1 m1 - m2 or = -1
1 + m1 m2 m 1 - m 2 = -1 - m 1 m 2 m1 m2 = m2 - m1 - 1

21. P = f

1.

7. +OBA = 45c; a = b (sides of isosceles D)

11. BC = AC = 18 , AB = 6, so D is isosceles; m BC # m AC = -1, so D is right angled.

16.

- 4p - 1 7p - 3 p , p -1 p -1

5
7

25. 3x - 7y - 14 = 0

Challenge exercise 7

13. a = 2, b = 3

5
7

Since m 1 = m 2, PR < BC

Opposite signs so points lie on opposite sides of the line
23. 63c 26l

24. m = - 0.059, - 9.2

3.

ANSWERS

4.

5.

10.

Exercises 8.2
2. Yes, x = x 1

1.

Yes, x = 0

5.

Yes, x = x 1, x = x 2

8.

Yes, x = 2

3. No

6. Yes, x = 0

9. Yes, x = - 2, 3

11. Yes, x = 90c, 270c

4. Yes, x = 0
7. Yes, x = - 3

10. Yes, -1 # x 1 0

12. Yes, x = 0

13. No

14. No

15. Yes, x = !3
6.

Exercises 8.3
1.

(a) 3 (b) -7 (c) 3 (d) 8
(h) -1 (i) 10 (j) -1

2.

(a) x 2 - 2x - 4 (b) 2x 3 + x - 1 (c) - 7x - 1
(d) 4x 4 - x 2 (e) - 4x + 3 (f) 2x 2 + 6 (g) - 2x
(h) 4x 2 (i) 3x - 1 (j) x 2 - 2x + 9

(e) 2

(f) - 3

(g) 2

Exercises 8.4
1.

(a) 4.06

2.

(a) 13.61

4.

7.

(a) f ] x + h g = x 2 + 2xh + h 2

(b) 3.994

(c) 4

(b) 13.0601

(c) 12.9401

(d) 13

3. 6

2
2
2
(b) f (x + h) - f (x) = x + 2xh + h - x
2
= 2xh + h

(c)

f ]x + hg - f ]xg h 8.
(d) f l(x) = lim

2xh + h 2 h h ] 2x + h g
=
h
= 2x + h f ]x + hg - f ]xg
=

h "0 h = lim (2x + h) h "0

= 2x
5.

9.

(a) f (x + h) = 2 ] x + h g2 - 7 (x + h) + 3
= 2 (x 2 + 2xh + h 2) - 7x - 7h + 3
= 2x 2 + 4xh + 2h 2 - 7x - 7h + 3
2
2
(b) f (x + h) - f (x) = (2x + 4xh + 2h - 7x - 7h + 3)
- (2x 2 - 7x + 3)
= 2x 2 + 4xh + 2h 2 - 7x - 7h + 3
- 2x 2 + 7x - 3
= 4xh + 2h 2 - 7h

811

812

Maths In Focus Mathematics Extension 1 Preliminary Course

(c) f ] x + h g - f ] x g h (d) f l] x g = 4x - 7
6.

2.

(a)

4.

(c) f ] 2 + h g - f ] 2 g = h + 5h
2

(d) f ] 2 + h g - f ] 2 g h (e) f l] 2 g = 5
7.

x
-1
3

(b) 2x 3 - x 2

(d) 16x 3 - 24x

(c) 2x

(c)

8x 7
- 6x 5
3

(d) 4x

(e)

(f) 2x 2 - 2x + 2

(b) f ] 2 + h g = h 2 + 5h + 11

(a) f ] 2 g = 11

(a) 4x + 1 (b) 8x - 12
(e) 6x 2 + 6x - 3

3.

4xh + 2h 2 - 7h h h ] 4x + 2h - 7 g
=
h
= 4x + 2h - 7
=

6.

h 2 + 5h
=
h h ]h + 5 g
=
h
=h+5

f l] x g = 16x - 7 dy dx

= 60x 9 - 40x 7 + 35x 4 - 3

8.

gl] x g = - 20x - 5

11.

(a) f ] -1 g = -7

dV
= 4rr 2 dr 14. (a) 12

(b) f ] -1 + h g - f ] -1 g = 4h 3 - 12h 2 + 12h
(a) f ] 3 g = 8

(c) f l] 3 g = 6

9.

(a) f l] 1 g = - 13

ds
= 10t - 20 dt 7.

12. 3

(b) x = ! 2

dv
= 30t dt 10.

13. (a) 5

9.

dh
= 40 - 4t dt (b) - 5

(c) x = 4

15. 18

(c) 12

8.

5. - 56

(b) f ] 3 + h g - f ] 3 g = 6h + h 2

Exercises 8.6
1.

10. (a) y = x 2 + 2x
Substitute _ x + dx, y + dy i:

2.

y + dy = ] x + dx g2 + 2 (x + dx)
= x 2 + 2xdx + dx 2 + 2x + 2dx
Since y = x 2 + 2x dy = 2xdx + dx 2 + 2dx dy 2 x d x + d x 2 + 2d x
(b)
= dx dx d x ] 2x + d x + 2 g
=
dx
= 2x + dx + 2

(c)

dy dx 12. (a) f l] x g = 2x

(g)

dy dx dy dx = 3x 2

(c) -12
(b)

dy dx (d) 15

3.

(d) -18

(i) - 4

(j) 149

(a) 1
7

1
26

(b)

(g) -

1
25

1
71

(ii) -

(a) (i) 6

1
6

1
20

1
20

(d) (i) -

(b) (i) 8

1
24
1
(ii) 11

(e) (i) 11

(d) (i) - 8

1
8

(e) 18

1
43

(e)

(j) -

(f) 27

1
10

1
5

1
8
1
(ii)
8

(ii) -

dy dx (a) 27x - y - 47 = 0 (b) 7x - y - 1 = 0
(c) 4x + y + 17 = 0 (d) 36x - y - 47 = 0
(e) 44t - v - 82 = 0

5.

(a) x + 24y - 555 = 0
(c) x - 17y - 516 = 0
(e) x + 2y - 9 = 0

6.

(a) (i) 7x - y + 4 = 0 (ii) x + 7y - 78 = 0
(b) (i) 10x - y + 36 = 0 (ii) x + 10y - 57 = 0
(c) (i) 10x + y - 6 = 0 (ii) x - 10y - 41 = 0
(d) (i) 2x + y + 2 = 0 (ii) x - 2y - 19 = 0
(e) (i) 2x - y + 2 = 0 (ii) x + 2y - 9 = 0

7.

x = !3

(e) - 9

= 10x - 1

(f) f l] x g = 6x 2 + 5
(h) f l] x g = - 6x 2

13. (a) 0.252 (b) 0.25 (c) 0.2498
(b) - 0.03992

(c) - 0.04

11. (1, 2)

Exercises 8.5
(a) 1 (b) 5 (c) 2x + 3 (d) 10x - 1 (e) 3x 2 + 4x - 7
(f) 6x 2 - 14x + 7 (g) 12x 3 - 4x + 5
(h) 6x 5 - 25x 4 - 8x 3 (i) 10x 4 - 12x 2 + 2x - 2
(j) 40x 9 - 63x 8

(b) x - 8y + 58 = 0
(d) x - 45y + 3153 = 0

8. (1, 2) and (-1, 0)

15. -1
10. (0, 1)

1.

(c)
(h)

(ii) -

(c) (i) 24

= 2x + 5

(d)

= 3x 2 - 4 x + 3

14. (a) - 0.04008

(c) 11

(h) 136

4.

(c) f l] x g = 8x - 4
(e)

(b) -13

(f)

= 2x + 2

11. (a) 2 (b) 5

(a) 72
(g) 11

(b) 17

13. (a) (1, -1)

9. (- 5, -7)

3
15
n
12. d - 1 , - 4
4
16

(b) 6x - y - 7 = 0

14. 10t - h - 7 = 0

15. 4x - 2y - 19 = 0

1
4

ANSWERS

Exercises 8.7

(k) 1

1.

(a) - 3x - 4
(e) x

-

1
2

(c) 1.2x - 0.8

(b) 1.4x 0.4

+ 3x - 2

(f) x

-

2
3

(g) 6x

-

1
4

1 -2 x 2

(d)
(h) x

-

(l)

x

2 2-x
- 2 ] 5x + 3 g

+ 2-x =

] 2x - 1 g2

4.

2.
2.

(a) (f) (j) -

3.
8.

1
27
1
8

1

(b)

x2
1

2x

3

3

1

(h)

x7

(i) -

6.

x

x4

2

1

1
32

6. −3 7. 2x + 3 x + 1
1.

(b) -

15. d 5,

1
16

10. x - y + 9 = 0

12. x + 16y - 16 = 0

13. (9, 3)

2
2
n, d - 5, - n
5
5

(w) 2.

9

5

2 ] 4 + x g3

(u) -

^ 4x 3 - 9x 2 + 3 h

^ x 4 - 3x 3 + 3x h

3. 40

2

3

4 ] 3x - 1 g3
(x)

(v) -

16 3 4x + 1
3

4. (4, 1) 5. x = 2, -1

- 2x 2

(g)

^ 2x 2 - x h2

9. 34x - y + 29 = 0

1
2

4

] 7 - x g9

6. 8x + y + 7 = 0

(a) 8x 3 + 9x 2 (b) 12x - 1 (c) 30x + 21
(d) 72x 5 - 16x 3 (e) 30x 4 - 4x
(f) x ] 5x + 2 g ] x + 1 g2 (g) 8 ] 9x - 1 g ] 3x - 2 g4
(h) 3x 3 ] 16 - 7x g ] 4 - x g 2 (i) ] 10x + 13 g ] 2x + 5 g3
4
5
(j) 10x ^ x 3 + 5x 2 - 3 h ^ x 2 + 1 h + ^ 3x 2 + 10x h ^ x 2 + 1 h
^ 13x 3 + 60x 2 + 3x - 20 h ^ x 2 + 1 h4
=x

(c)

- x + 14x
2

(e)
(h)

x4
-6
] x - 2 g2

=
(i)

x 4 - 12x 2
^x - 4h

2

2

- x + 14 x3 - 34
] 4x - 3 g2

=

x 2 ^ x 2 - 12 h
^ x 2 - 4 h2

(f)

11
] x + 3 g2

(j)

-14
] 3x + 1 g2

4x ] x - 3 g
4x 2 - 12x
=
] 2x - 3 g2
] 2x - 3 g2
^ 3x 2 - 7 h
2x 2 ] x + 6 g
- 18x
2x 3 + 12x 2
=
(m)
(n)
2
2
] x + 4 g2
] x + 4 g2
^x - 5h
2x 3 + 9x 2 + 7
] x + 3 g2

(o)

(q)

(p)

3x 2 + 8x - 5
] 3x + 4 g2

^ x 2 - x - 1 h2

(s)
(t)

(l)

x 4 - 2x 3 - 4x 2 - 1

] 7x + 2 g4 - 28 ] x - 1 g ] 7x + 2 g3

(u)

1
2

-

2]x + 5g - x ]x + 5g
(r)
x+5

1
2

] 2x - 9 g2 ] 20x + 51 g
6 ] 5x + 1 g ] 2x - 9 g2 - 5 ] 2x - 9 g3
=
2
] 5x + 1 g
] 5x + 1 g2
] 7x + 2 g8

=

- 21x + 30
] 7x + 2 g5

15 ] 2x - 5 g3 ] 3x + 4 g4 - 6 ] 3x + 4 g5 ] 2x - 5 g2
] 2x - 5 g6
] 3x + 4 g4 ] 4x - 33 g
3
=
] 2x - 5 g4

5

4

15
] x + 5 g2

2

27

(y)

(b)

- 3x 2 - 6x - 7

2 ] 2x + 7 g10

Exercises 8.9
1.

16
] 5x + 1 g2

(k)

6
(a) 4 ] x + 3 g3 (b) 6 ] 2x - 1 g2 (c) 70x ^ 5x 2 - 4 h
5
4
(d) 48 ] 8x + 3 g (e) - 5 ] 1 - x g (f) 135 ] 5x + 9 g8
3
(g) 4 ] x - 4 g (h) 4 ^ 6x 2 + 3 h ^ 2x 3 + 3x h
^ x 2 + 5x - 1 h 7
(i) 8 ] 2x + 5 g
1
3
5
(j) 6 ^ 6x 5 - 4x h ^ x 6 - 2x 2 + 3 h (k) ] 3x - 1 g 2
2
2
5
-4
(l) 2 ] 4 - x g- 3 (m) - 6x ^ x 2 - 9 h
(n) ] 5x + 4 g 3
3
1
3^ 2
3
4
3x - 14x + 1 h ^ x 3 - 7x 2 + x h
(o)
(p)
4
2 3x + 4
8x
5
2
(q) (r) (s) 3
] 5x - 2 g2
^ x 2 + 1 h5
7 - 3x

(t) -

5. 176

7

7. 69x - y - 129 = 0

- 6 ! 30
3

-2
] 2x - 1 g2

(a)
(d)

Exercises 8.8
1.

x=

3x 2

8

=

Exercises 8.10
5.

2 x3

10x - y - 9 = 0

7

5

9. 3x + 16y - 8 = 0

14. x = 4

3 x
2

(e)

x6

1

7+

15

12

-

4. −3

11. (a) -

(d) -

6 6 x5

10

26

8.

(c)

2 x
(g) -

2 x3
1

5

5
11
=2x - 1
] 2x - 1 g2

+

3. 1264

3
2

4 - 3x
2 2-x

3x + 1
3 x+1 -2 x+1
3x + 5
(v)
= x+1 2 ] x + 1 g3
2x - 3
(w)

2 x-1 -2 x-1
- 2x + 1
=
] 2x - 3 g2
2 x - 1 ] 2x - 3 g2

x ] x - 9 g2
(x)

x2 + 1

- 2 ] x - 9 g x2 + 1
] x - 9 g4

=

- x 2 - 9x - 2

x2 + 1 ] x - 9 g3

813

814

Maths In Focus Mathematics Extension 1 Preliminary Course

5
9

2.

1
8

6.

x - 18y + 8 = 0

3. - 1

4. x = 0, 1

(b)

5. x = - 9, 3

7. 17x - 25y - 19 = 0

Exercises 8.11
1.

(a)

2.

dy dx (b)

(b) Substitute Q into both equations.
(c) y = x 2 - 4 has m 1 = 4 y = x 2 - 8x + 12 has m 2 = - 4
(d) 28c 4l

(d)
(e)

dy dx dy dx dy dx =

dy

3. (a)

= 10x - 3

11
] 2x + 1 g2

dx

=

5 x3
2

(f)

dy dx dv
= 4t - 3 dt 5. (a) 1

(a) x = - 2

(a) f l] x g = 32 ] 4x + 9 g3
(c)

dy dx 4. 71c 34l

5. 162c 54l

(d) 0c

3. 8c 8l

6. (a) X = ^ 4, 16 h, Y = ^ -1, 6 h

10 x3 (b) 20

6. 10

7. 42

(c) x = 2
(b)

dy dx = ] 9x - 1 g ] 3x - 1 g (d)

(e) f l] x g =
(c) m = 6

= 9 (2x + 4) (x 2 + 4x - 2)8

=-

(b) x = 1

9.

(b) P = ^ 3, 9 h

dx

= 40x ] 2x - 1 g3 + 5 ] 2x - 1 g4 = 5 ] 2x - 1 g3 (10x - 1)

4.

(a)

dy

(c)

8.

2.

= 42x 5 - 9x 2 + 2x - 8

=dy dx 5
] x - 3 g2

=-

4 x2 1
5 5 x4

10.

y

(b) At X: m 1 = 12, m 2 = 7
At Y : m 1 = - 8, m 2 = - 3
(c) At X: 3c 22l At Y : 11c19l
7.

71c 34l, 8c 58l 8. (a) (0, 0), (2, 8), (-1, -1)
(b) 63c 26l at (0, 0), 4c 42l at (2, 8), 71c 34l at (-1, -1)

9.

At (0, 0), m 1 = 0 and m 2 = 4
At (2, 4), m 1 = 4 and m 2 = 0 Angle at both is 75c 58l

l
10. 164c 45 at (0, 0), 178c 37l at (- 3, - 33), 146c 19l at (1, 3)

Test yourself 8
1.

(a)

11. 9x - y - 7 = 0

12. (2, 3)

14. (- 2, 71), (5, - 272)
17. 9
20.

7
10

13.

dS
= 8rr dr 15. 4x - y - 6 = 0

18. 12x + y - 4 = 0

19.

16. 3525

ds
1
= u + at, t =
5
dt

21. 17c6l at (3, 9), 53c8l at (-1, 1)

22. 175c 26l at (2, 4), 177c 40l at (4, 16)

ANSWERS

Challenge exercise 8

y

(b)

1.

f ] 1 g = - 3, f l] 1 g = - 36

3.

dx
= 8t 3 + 300t 2; t = 0, - 37.5 dt 4.

2x + y = 0, 3x - y - 3 = 0, 6x - y + 12 = 0

5.

^ 2, 2 h, ^ - 2, -14 h, x + 12y - 26 = 0, x + 12y + 170 = 0

6.

3
4

7.

5 ] 5x + 1 g3 ] x - 9 g4 + 15 ] x - 9 g5 ] 5x + 1 g2
= 10 ] 5x + 1 g2 ] x - 9 g4 (4x - 13)

8.

9.

2. -

13
18

2 ] 4x - 9 g4 - 16 ] 2x + 1 g ] 4x - 9 g3
] 4x - 9 g8
- 2 ] 12x + 17 g
=
] 4x - 9 g5 x= - 6 ! 204
- 3 ! 51
=
6
12

11. a = 1
14.
2

1
27

1
1
1 1 ! 13 n 13. x = ,
12. P = d - 2 , 6
4 16
3
3
10

16. (a) Substitute (1, 1) into both curves: y = ] 3x - 2 g5:
LHS = 1
RHS = ] 3 # 1 - 2 g5
= 15
=1
= LHS
So (1, 1) lies on the curve y = ] 3x - 2 g5
5x - 3
:
x+1
LHS = 1
5#1-3
RHS =
1+1
2
=
2
=1
= LHS

90c

21. ^ - 4, -73 h

10. 2x + y - 25 = 0

15. 3x - y + 5 = 0, Q = ^ 0, 5 h, PQ =

1

25. x = 0, 2, 6
28. p = 1

1
2

3 ] 4 - 5x g

23.

4x 4 3x - 2

29.

8r 3 dV =
3
dr
33. -

27.

30. k = 4
1
48

5 22
22
31. x - y - 4 = 0

34. a = -1, b = 2, c = 4

35. S = 8rr - 8r + 2rrh
36. (a) 6x 2 - 5 ] 3x - 1 g ] 3x - 5 g3

(b)

- ] 5x + 6 g

] x - 3 g4 2x + 1

4 ! 13
6

1
1
n
(b) Q = d - 4 , 12
7
49

5x - 3 x+1 Practice assessment task set 2
- 0.77

l
(b) 22c 45

5.

- 0.309

3 3 o, 12x - 12 3 y + 31 = 0
2

7.

m1 m2 =

20. (a) x = 90c, 270c

9.

7
12

1
1 3
, -1 , 1
2
2 5

26. a = - 14, b = 7

32. 4x - y - 13 = 0

1.

19. x =

x

So perpendicular

` (1, 1) is a point of intersection

11
18. e 1 ,
12

22. 3x - 9y - 14 = 0

360c

38. (a) x + 7y - 80 = 0

So (1, 1) lies on the curve y =

17. n = 8

270c

24. (a) 16x + 32y + 1 = 0, 4x - 2y - 1 = 0
1
(b) m 1 $ m 2 = - # 2
2
= -1

37. x =

y=

180c

2. 1

3. 5x + 2y - 1 = 0

6. (a)

3 cm 2

(b) AC =

4. ^ 2, - 2 h
13 cm, BD = 1 cm

3
8
1
# - = -1; A = d -1, 1 n
4
6
2

8. x = 15c

815

816

Maths In Focus Mathematics Extension 1 Preliminary Course

10.

19. i = 120c, 240c
23. y = 16.5
26. 7

20. - 1

2
3

21. 2

24. 3x + y - 5 = 0

27. x = 3

22. a = 115c 56l

25. 1

2
1x 13
3

28. - 3

29. Show perpendicular distance from ^ 0, 0 h to the line is
2 units, or solving simultaneous equations gives only one solution.
30. (a) g ] 2 g = 1, g ] - 3 g = - 6
(b)
11.

31. 3x 2 - 4x

32. -

34. x = - 2, y = -17
12. 45c 49’ 13. Domain: all real x ! real y ! 0

1
; range: all
2

14.

1

33. 17.5 m

2

35. (a) AB = 7.0 m

36. 3 cos i 37. (a) 2x - y + 4 = 0

(b) 27.8 m2

(b) P ^ - 2, 0 h, Q ^ 0, 4 h

2

(c) 4 units

39. 15 units2 40. f (- x) = ] - x g6 - ] - x g2 - 3
= x6 - x2 - 3
= f (x)

38. 127 m

41. 16x 2 ^ 2x 2 + 1 h + ^ 2x 2 + 1 h = ^ 18x 2 + 1 h ^ 2x 2 + 1 h
3

42. - 4

1
# y #9
3

4

43. -

44. (a) 3x - y - 4 = 0

15.

47.
50.

8 units 13
1
2x - 7
5
] x + 1 g2

3 x2 (b) x - y - 2 = 0

(c) x + 3y + 10 = 0
45.

3

(d) R = ^ -10, 0 h

46. Domain: all x ! - 4; range: all y ! 0
48. 4.9 km 49. 8x - 7 - 10x - 3
51. 2x - 3

53. x + 6y - 56 = 0
55. a = 2, b = - 9

52.

-17 - 2x x 2 + 5x

=

- ] 17 + 2x g x 2 + 5x

54. f ] - 2 g = - 45, f l] - 2 g = 48
56. 7x - 5y + 9 = 0

57. 47x - y + 109 = 0 58. x = - 0.25 59. ^ 33, -17 h
16. sin 4 i 17. 2 units 18. x - 8y + 15 = 0

60.

3+1
2 2

=

6+ 2
4

62. x = 63c 26l, 243c 26l

61. 67c 37l

ANSWERS

63.

4.

(a) x = 112c, y = 56c, z = 34c
(c) x = 55c, y = 43c

(b) x = 49c

(d) x = 166c, y = 7c

(e) x = 62c, b = 31c
(f) x = y = 32c, z = 58c, v = 32c, w = 17c
(h) y = 102c

(g) x = 5c

(i) x = 57c 30l, y = 32c 30l

(j) x = 75c, y = 77c, z = 13c
5.
64. (a) cos i (b) cos ^ i + b h

(c) tan 14a

65. 3

D ABC < D DEC
;

67. 12c 32l at both points

66. x 1 4, x 2 4.6

1 range: y $ 0
2
(b) domain: all real x ! -7 range: all real y ! 0

(b) x = 5.5 cm

68. (a) domain: x $

(c) domain: - 2 # x # 2
69. a = -15, b = -1

6.

x = 30° (angle at centre is double the + at the circumference) y = (180° - 30°) ' 2 (+ sum of isosceles D)
= 75c

7.

360° - x = 2 # 110° (+ at the centre is double the
+ at the circumference)
` x = 140° y = 70° (similarly)

8.

+ABC = 90c (+ in semicircle)
)
` +BAC = 90c - 29c (+ sum of D
= 61c
` x = 61c (+ in same segment)

9.

+STV = +WUV (+ in same segment)
+TSV = +UWV (similarly)
+TVS = +UVW (vertically opposite +s)

range: - 2 # y # 0

70. cos 2i

71. (a) (0, 0), (1, 3), (-1, -1), (2, 20)
(b) 63c 26l at (0, 0), 2c 20l at (1, 3), 40c 36l at (-1, -1),
0c 22l at (2, 20)
72. (a) x = 360n ! 45c

(b) x = 180n + 30c

(c) x = 180n + ] -1 gn # 60c
73. (a) (1, 1) (b) 2 13 units

(c) - 1

1
2

(d) 3x + 2y - 5 = 0
74. (a)

75. (b), (d) 76. (a)

79. (b), (d)

77. (c)

(a) +DCE = +ACB (vertically opposite +s)
+EDC = +BAC (+s in the same segment)
+DEC = +ABC (similarly)
` Since all pairs of +s are equal,

` Since all pairs of angles are equal,

78. (c)

D STV ||| DWUV x = 2.4 cm

80. (c)
10.

+B = 90c (+ in semicircle)
AC 2 = AB 2 + BC 2
= 62 + 32
= 36 + 9
= 45
AC = 45
=3 5
1
Radius = AC
2
3 5
=
cm
2

11.

+OAC = 30c (Base +s of isosceles D)
+BAO = 25c (similarly)
` +CAB = 30c + 25c
= 55c x = 2 +CAB
(+ at the centre is double the
+ at the circumference)
= 2 # 55c
= 110c

Chapter 9: Properties of the circle
The proofs given as answers to this chapter are informal. Also, they may not be the only way to answer the question.

Exercises 9.1
1.

(a) i = 32c (b) x = 8 cm (c) i = a = 68c 30l (d) i = 31c
(e) x = 9 mm

2.

16r cm 9

(f) i = 22c30l

3. (a) i = 29c

(c) a = 83c , b = 42c
(f) y = 97c

(b) x = 18c

(d) x = 68c

(e) x = 10 cm

(g) x = 15c, y = 150c, z = 75c

(h) x = 47c, y = 43c, z = 94c
(j) x = y = 39c

(i) b = 40c

817

818

Maths In Focus Mathematics Extension 1 Preliminary Course

12. (a) x = 52c, y = 76c

6.

(b) AC = BD
(equal diameters)
Diagonals are equal so ABCD is a rectangle.
(opposite sides of a rectangle)
` AD = BC

OB = 8.3 cm

8.

x Z 4.4 m, a = 78c, b = 38c, i = 64c

9.

OA = r

13. +ECB = 33c
(angles in same segment)
+EBC = 180 - ] 114 + 33 g (angle sum of triangle)
= 33°
`+ECB = +ADE
These are equal alternate angles.
` AD < BC

AC =
OC =
=
=

14. (a) +AOB = 90c (given)
+ABC = 90c (angle in semi-circle)
` AOB = +ABC
+
` A is common
+
`D AOB ||| D ABC (AAA)
(Note 2 pairs of angles equal means 3 pairs will be equal by angle sum of triangle.)
(b) AO = BO
AB =

r +r
2

=
=

(equal radii)

=

=

2 r2

=
=

2 # r2
2r

x
2

(perpendicular from the centre bisects a chord)

x 2 r -d n
2
2

x2
4
4r 2 x 2
4
4
2
4r - x 2
4
4r 2 - x 2
2
4r 2 - x 2
2

2r + 4r 2 - x 2
2

10. (a) +ECD = +ACB

(AAA)

AC
BC
=
CE
CD

So BC =

AC. CD = BC.CE

2r

15. Obtuse +BOD = 2i

(angle at centre double angle at circumference)

Reflex +BOD = 360 - 2i

(angle of revolution)

1
+BCD = +BOD
2

Exercises 9.3
1.

(a) x = 107c, y = 94c (b) i = 134c, c = 90c
(c) x = 112c, y = 112c, z = 68c (d) x = 92c, y = 114c
(e) b = 73c, a = 107c, c = 107c (f) x = 141c, y = 63c
(g) x = 65c, y = 43c
(h) w = 89c, x = 86c, y = 54c, z = 35c
(i) w = 69c, x = 111c, y = 82c, z = 98c (j) x = 118c

2.

(a) x = 62c, y = 31c (b) x = 75c, y = 105c
(c) x = 88c, y = 65c (d) x = 62c, y = 82c, z = 36c
(e) x = 90c, y = 113c (f) x = 38c, y = 71c
(g) x = 85c, y = 95c (h) x = 48c, y = 78c
(i) x = 107c, y = 73c
(j) a = 81c, b = 55c, c = 83c, d = 16c, e = 28c

3.

(a) +A = 180c - 58c

(+A and +B cointerior angles,
AD ; BC)

+D = 180c - 58c

(+C and +D cointerior angles,
AD ; BC)

(angle at centre double angle at circumference)

1
= (360 - 2i)
2
= 180 - i
So +BCD and +DAB are supplementary (add to180c)

Exercises 9.2

5.

(angles in same segment)

`DABC ||| DCDE
(b) By similar triangles

But AO = BO so AB = BC

2.

(vertically opposite angles)

+A = +E

By similar triangles
AO
BO
=
AB
BC

1.

(Pythagoras’ theorem)

r2 -

CD = r +

2

7. x = 4.7 m, y = 1.8 m

(a) x = 5 cm (b) y = 15 cm (c) x = 2.4 m (d) x = 42c
(e) z = 90c (f) x Z 10.3 m (g) x = 6 m, y = 3 m
(h) m Z 13.4 cm (i) y Z 5 cm (j) x = 5 mm
41 cm

3. 144 mm

4. 25.6 cm

CE = 11.5 2 - 6.9 2
= 9.2
CD = 2 # 9.2 (perpendicular from O bisects chord)
= 18.4
= AB

So +A = 180c - +C and +D = 180c - +B
Since opposite angles are supplementary, ABCD is a cyclic quadrilateral.
(b) +B = +D = 90c

(given)

` +B = 180c - +D
Let +A = x
+C = 360 - ] 90 + 90 + x g

(angle sum of quadrilateral)

ANSWERS

= 360 - 180 - x
= 180 - x
= 180 - +A
Since opposite angles are supplementary, ABCD is a cyclic quadrilateral.
(c)

+CDA = 180 - i

(straight angle)

` +B = 180c - +CDA

6.

(a) x = 67c (b) y Z 7.5 cm (c) x = 72c, y = 121c
(d) x = 63c, y = 126c (e) x = 8.9 m, y Z 5.1 m
(f) x = 63c, y = 63c (g) x = 98c, y = 65c, z = 17c
(h) x = 57c, y = 57c (i) x = 72c, y = 15c
(j) x = 61c, y = 70c, z = 52c

7.

(a) x = 26c, y = 74c, z = 48c (b) x = 68c, y = 44c, z = 68c
(c) x = y = z = 45c (d) x = 70c, y = 31c
(e) x = 20c, y = 57c, z = 103c (f) x Z 5.4 cm
(g) x Z 7.7 cm (h) x = 77c, y = 13c
(i) x Z 1.2 cm, y Z 2.1 cm (j) x = 55c, y = 112c, z = 57c

8.

AB Z 13 m

Let +A = x
+C = 360 - ] 90 + 90 + x g (angle sum of quadrilateral)
= 360 - 180 - x
= 180 - x
= 180 - +A
Since opposite angles are supplementary, ABCD is a cyclic quadrilateral.

1.

Exercises 9.4
1.

2.

3.

Test yourself 9

(a) i = 47c (b) x = 5 m (c) y = 11.3 cm
(d) x = y = 26c (e) a = 64c, b = 32c (f) i = 57c
(g) p = 145 Z 12 cm (h) y = 10 mm (i) x Z 5.79 cm
(j) x = 33c, y = 33c
(a) x = 10 cm (b) x = 64c, y = 26c (c) x = 13 cm
(d) x = 27c, y = 54c (e) y = 5 cm (f) x = 32c, y = 7c
(g) x = 72c, y = 42c (h) x = 35c, y = 90c
(i) m = 23c, n = 67c, p = 67c, q = 23c
(j) x = 71c, y = 62c
+OAB = 90c (tangent = to radius) z = 90c - 48c (+ sum of D AOB)
= 42c
(equal radii)
OA = OC
` +OAC = +OCA = y

i = 56c

4.

x = y = 12 cm

5.

z = 19c (+s in same segment) y = 180c - (131c + 19c ) (+ sum of D )
= 30c x = 30c (+s in same segment)

6.

x = 10 cm

7.

a = 3c , b = 44c , c = 136c

(+ at centre twice + at circumference)

= 50c
+OCA = 90c (tangent perpendicular to radius) b = 90c - 83c
`
= 7c
OC = OE (equal radii)
` D OCE is isosceles

(base +s of isosceles D )

y = (180c - 48c) ' 2
(+ sum of D OAC)

= 66c
+ACD = 180c - +AED

`

+OCE = + OEC = c
2c + 100c = 180c (+ sum of D)
2c = 80c c = 40c
Reflex +COE = 360c - 100c (+ of revolution)
= 260c d = 360c - (260c + 50c + 7c)

(opposite +s of cyclic quad.)

= 180c - 62c
= 118c
= 52c
= +OAB - +OAC
= 90c - 66c
= 24c
1
v = +AOC
2

y+u
66c + u u +BAC
`
x

(+ at centre twice + at circumference)

1
# 48c
2
= 24c
=

4.

21 cm

5.

AC 2 + BC 2 = 3.9 2 + 5.2 2
= 42.25
AB 2 = 6.5 2
= 42.25
`
AB 2 = AC 2 + BC 2
` +ACB = 90c (by Pythagoras’ theorem)
` A lies on a diameter of the circle (tangent ⊥ radius)

3. x = 7.2 m

1
# 100c
2

a=

8.

`

`

2. y = 2.3 mm

(+ sum of quadrilateral)

= 43c

9.

17 cm

10. 5.3 m

12. a = 61c, b = 29c
15. 18 cm

11. a = 101c, b = 98c
13. 14.9 cm

14. x = 4.9 m

16. a = 127c, b = 53c

17. +D = 180c - (80c + 53c) (+ sum of T)
= 47c
` y = 47c (+s in same segment) x = 47c (+s in alternate segment)
18. x = 55c, y = 56c, z = 54c

819

820

Maths In Focus Mathematics Extension 1 Preliminary Course

6.

19. +C is common
+A = +CBD (+s in alternate segment)

Let +ODC = x and +OAB = y.
Then you can find all these angles

(giving reasons).

` D BCD ||| D ABC ] AAA g
20. (a) +OCB = +OCA = 90c (given)
OA = OB (equal radii)
OC is common
` DOAC / DOBC ] RHS g
(b) AC = BC (corresponding sides in / D s)
∴ OC bisects AB

Challenge exercise 9
1.

6 cm

2.

Let +DOB
Then +EDO
EO
`
+OED

= +DCB = x (base +s of isosceles D ODC)
= 2x (ext. + of D)
= DO (equal radii)
= +EDO = 2x (base of+s of isosceles D EOD)

+AOC + +COB + +BOD + +AOD = 360c
(+ of revolution)

90c - y + x + +COB + y + 90c - x +
+AOD = 360c
+COB ++AOD + 180c = 360c
`
+COB ++AOD = 180c

+EOD = 180c - (+OED + +EDO) (+ sum of D EOD)
= 180c - 4x
+AOE = 180c - (+EOD + +DOB)
(+AOC straight +)

= 180c - (180c - 4x + x)
= 3x
` +AOE = 3+DCB
3.

Let+DAB
Then+DAC
+ACB
+ADB
+DBA
+CBA
+DBA + +CBA

7.

= x and +CAB = y
=x+y
= +DAB = x (+s in alternate segment)
= +CAB = y (similarly)
= 180c - (x + y) (+ sum of D ADB)
= 180c - (x + y) (+ sum of D ACB)
= 180c (DBC is straight +)

D
Let ABCD be a kite with AB = AD and BC = DC, and
+ADC = +ABC = 90°.
AC is common.

(a) AD = DB = BE = EC = CF = FA (equal radii)

∴ by SSS (or RHS) D ABC / D ADC

` AB = BC = CA
`D ABC is equilateral

`+BAC = +DAC and +BCA = +DCA
(corresponding 1s in congruent D s)

(b) rr units
(c)
5.

3 r2 -

Let +BAC = +DAC = a
Then +BAD = 2a
+BCA = +DCA = 90c - a (+sum of D )
+BCD = 180c - 2a
`
Opposite angles are supplementary.

2 3-r
1 2 o units 2 rr = r 2 e
2
2

+BDE = +ABD + +BAD (ext. + of D BAD)
` 2a = +ABD + a a = +ABD
` D BAD is isosceles with AD = BD
+CDE = +ACD + +CAD (ext. +of D CAD )
` 2b = +ACD + b b = +ACD
` DCAD is isosceles with AD = CD
` AD = BD = CD
So a circle can be drawn through A, B and C with centre D.

C

A

` 180c - (x + y) + 180c - (x + y) = 180c
180c = 2 (x + y)
`
90c = x + y
`
`
+DAC = 90c
4.

B

∴ ABCD is a cyclic quadrilateral, and A, B, C and D are concyclic points
Since +ABC = 90c, AC is a diameter. (+ in semicircle)
8.

25rr 2 units 2
28

ANSWERS

9.

Now ABCE is a cyclic quadrilateral, so

Let interval AB subtend angles of x at +ADB and +ACB.

+AEC + +B = 180c (opposite +s supplementary)
Also, +D + +B = 180c (given)
+D = +AEC
These are equal corresponding angles, so
DA < EA (this is impossible!)
∴ A, B, C and D must be concyclic
∴ ABCD is a cyclic quadrilateral.

Chapter 10: The quadratic function
Assume A, B, C and D are not concyclic. Draw a circle through A, B and C that cuts AD at E.

Exercises 10.1

But +AEB and +EDB are equal corresponding angles.
` EB || DB (this is impossible!)
∴ A, B, C, D must be concyclic
10. Let ABCD be a quadrilateral with opposite angles supplementary. i.e. +A + +C = 180c and +B + +D = 180c
Assume the points are not concyclic. Draw a circle through A, B and C, cutting CD at E.

Axis of symmetry x = - 1, minimum value - 1

2.
Then +AEB = +BCA = x (+s in same segment)

1.

Axis of symmetry x = - 1.5, minimum value - 7.5

3.

Axis of symmetry x = - 1.5, minimum value - 0.25

4.

Axis of symmetry x = 0, minimum value - 4

5.

Axis of symmetry x =

6.

Axis of symmetry x = 1, maximum value -6

7.

Axis of symmetry x = - 1, maximum point ^ - 1, 7 h

8.

Minimum value -1, 2 solutions

9.

Minimum value 3.75, no solutions

3 7
3
n
, minimum point d ,
8 16
8

10. Minimum value 0, 1 solution
11. (a) x = -3; (-3, -12)
1
1 1
(c) x = 1 ; d 1 , 3 n
4
4 8

(b) x = -4; (-4, 17)
1
1
1
(d) x = -1 ; d -1 , -13 n
4
4
4

(e) x = -3; ^ -3, -23 h
12. (a) (i) x = -1
(b) (i) x = 1

(ii) -3

(iii) (-1, -3)

(ii) 1

(iii) (1, 1)

821

822

Maths In Focus Mathematics Extension 1 Preliminary Course

13. (a) Minimum (-1, 0)
(b) Minimum (4, -23)
(c) Minimum (-2, -7)
(d) Minimum (1, -1)
(e) Minimum (2, -11)
1
1
(f) Minimum d - , -3 n
4
8

(c) (i) 5.83, 0.17

(ii) Minimum -8 y (iii)
10
8
6

(g) Maximum (-1, 6)

4

(h) Maximum (2, 11)
1 3
(i) Maximum d , 7 n
2 4

2
1

-4 -3 -2 -1
-2

(j) Maximum (1, -3)

2

3

4

5

x

6

-4
14. (a) (i) -2
(iii)

-6

(ii) Minimum 0 y -8
-10

5
4
3

(d) (i) -2, 0

2

y

(iii)

1
-4 -3 -2 -1
-1

5

x

2

1

4

-2

3

-3

2
1

(b) (i) -1, 3 (ii) Minimum -4

-2

5

-3

4

(e) (i) ! 3

3
2

-2
-3

(ii) Minimum -18 y (iii)

1

-4 -3 -2 -1
-1

x

2

1

-4 -3 -2 -1
-1

y

(iii)

(ii) Minimum -1

1

2

3

4

2

x

1
-4 -3 -2 -1
-2

1

-4

-4

-6

-5

-8
-10
-12
-14
-16
-18
(f) (i) -1,

2
3

(ii) Minimum - 2

1
12

2

3

4

5

x

ANSWERS

y

(iii)

(i) (i) 0.56, -3.56

5

(ii) Minimum 4

1
4

y

(iii)

4

41
4

5

3

4

2

3

1
1

-4 -3 -2 -1
-1

3

2

4

2

x

5

1

2
3

-2

-4 -3 -2 -1
-1

-2 1 -3
12
-4

1

2

3

x

5

4

-2
-3

-5
-6
(j) (i) 2.87, -0.87
(g) (i) 1.65, -3.65 (ii) Maximum 7

y

(iii)

y

(iii)

(ii) Maximum 7

7
6

7

5

6

4

5

3

4

2

3

1

2

1

-4 -3 -2 -1
-1

1
2

1

-4 -3 -2 -1
-1

3

4

5

x

2

3

4

5

x

-2
-3

-2
-3
15. (a) 4

(h) (i) 1.3, -2.3 (ii) Maximum 3

(c)

1
4

y
7

y

(iii)

(b) None

6

5

5

4

3

1
4

4

3

3

2

2
1

1

-4 -3 -2 -1
-1
-2
-3

1

2

3

4

5

x

-4 -3 -2 -1
-1
-2
-3

1

2

3

4

5

x

823

824

Maths In Focus Mathematics Extension 1 Preliminary Course

16. (a) None

(b) 6

y

19.

3
4

8

y

(c)

6

14

4

12

2

10
8

-4

6

1

-3 -2 -1
-2

3

2

4

x

5

-4

4
2

-6
2

1

-4 -3 -2 -1
-1

3

4

x

5

Graph is always above the x-axis so y 2 0 for all x
` 3x 2 - 2x + 4 2 0 for all x

-2

y

20.

-3

8

7
17. (a) - 3
8

6

(b) None

4

y

(c)

2

2

1

-4 -3 -2 -1
-2

1
1

-4 -3 -2 -1
-2

2

3

4

x

5

2

3

4

5

x

-4
-6

-4
-6

Graph is always above the x-axis so y 2 0 for all x
` x 2 + x + 2 2 0 for all x

-8
-10

4

-14

2

-16
-18

-4 -3 -2 -1
-2

y

18. (a)

y

21.

-12

1

2

3

4

5

-4

8

-6

6

-8

4

-10
-12

2

-4 -3 -2 -1
-1

1

-2

2

3

4

5

x

-14
-16
-18

-3
(b) x 1 2, x 2 3

(c) 2 # x # 3

Graph is always below the x-axis so y 1 0 for all x
` - x 2 + 2x - 7 1 0 for all x

x

ANSWERS

22.

y

8.

2
1

-4 -3 -2 -1
-1

3

2

1

4

5

9.

-6

1.

x 1 -3, x 2 3

2. - 1 # n # 0

4.

x 1 - 2, x 2 2

5. 0 # y # 6

7.

x 1 - 4, x 2 2

8. p # - 3, p $ - 1

3. a # 0, a $ 2
6. 0 1 t 1 2

1
11. 1 1 h 1 2
2
14. q 1 3, q 2 6

15. All real x

17. - 3 1 x 1 5

1
19. y 1 - , y 2 5
3

20. x # - 2, x $ 4

1
3

30. - 2

24. -

18. - 6 # t # 2

29. x #

21. -

1
1x 10
2

1
#x 10
2

26. x $ - 1, x 1 - 2

28. x 1 - 6, x 2 - 3

9. m 1 2, m 2 4

12. - 4 # x # 5

16. n # - 4, n $ 3

25. 1 1 x 1 1

1
2

(1)
(2)

x 2 + 3 = 2x + 6 x 2 - 2x - 3 = 0 b 2 - 4ac = ] - 2 g2 - 4 ] 1 g ] - 3 g
= 16
20
So there are 2 points of intersection

Exercises 10.2

23. 0 1 x # 1

14. 0 # b # 2

Substitute (2) in (1):

Graph is always below the x-axis so y 1 0 for all x
` - 5x 2 + 4x -1 1 0 for all x

1
3

3

11. m 1 - 3, m 2 3

y = x2 + 3

-7

22. 0 1 x 1

13. p 1 -

1

16. Solving simultaneously: y = 2x + 6

-5

1
#k #7
2

10. 0 1 k 1 4

15. p # - 2, p $ 6

-4

13. - 2

k # - 5, k $ 3

12. k # - 1, k $ 1

-3

10. x # - 3, x $ 2

b 2 - 4ac = ] - 1 g2 - 4 ] 3 g ] 7 g
= - 83
10
So 3x 2 - x + 7 2 0 for all x

x

-2

a =320

27. 2 1 x # 2

2
5

2
,x 21
3

2
# x 1 -2
2

Exercises 10.3
1.

(a) 20 (b) -47 (c) -12 (d) 49 (e) 9
(h) 64 (i) 17 (j) 0

(f) -16 (g) 0

2.

(a) 17 unequal real irrational roots
(b) -39 no real roots (c) 1 unequal real rational roots
(d) 0 equal real rational roots
(e) 33 unequal real irrational roots
(f) -16 no real roots (g) 49 unequal real rational roots
(h) -116 no real roots (i) 1 unequal real rational roots
(j) 48 unequal real irrational roots

3.

1
7
6. p 2 2 7. k 2 - 2 p = 1 4. k = ! 2 5. b # 12
8

17. 3x + y - 4 = 0 y = x 2 + 5x + 3
From (1): y = - 3x + 4
Substitute (2) in (3): x 2 + 5x + 3 = - 3x + 4 x 2 + 8x - 1 = 0 b 2 - 4ac = 8 2 - 4 ] 1 g ] - 1 g
= 68
20
So there are 2 points of intersection

(1)
(2)

18. y = - x - 4 y = x2
Substitute (2) in (1): x2 = - x - 4
2
x +x+4=0 b 2 - 4ac = 1 2 - 4 ] 1 g ] 4 g
= - 15
10
So there are no points of intersection

(1)
(2)

19. y = 5x - 2 y = x 2 + 3x - 1
Substitute (2) in (1): x 2 + 3x - 1 = 5 x - 2 x 2 - 2x + 1 = 0 b 2 - 4ac = ] - 2 g2 - 4 ] 1 g ] 1 g
=0
So there is 1 point of intersection
` the line is a tangent to the parabola

(1)
(2)

20. p = 3

1
4

21. (c) and (d)

(3)

825

826

Maths In Focus Mathematics Extension 1 Preliminary Course

Exercises 10.4
1.

2.

19. (a) k = 2
20. (a) m = 1

(a) a = 1, b = 2, c = -6
(b) a = 2, b = -11, c = 15
(c) a = 1, b = 1, c = - 2
(d) a = 1, b = 7, c = 18
(e) a = 3, b = -11, c = -16
(f) a = 4, b = 17, c = 11
(g) a = 2, b = -12, c = -9
(h) a = 3, b = - 8, c = 2
(i) a = - 1, b = 10, c = - 24
(j) a = - 2, b = 0, c = - 1

(b) k = - 3
(b) m 1

Exercises 10.6
1.

(a) x = - 2, 3

RHS = a ] x - 2 g ] x + 3 g + b ] x - 2 g + c
= 1 ] x - 2 g ] x + 3 g + 1 ] x - 2 g + 17
= x 2 + 3x - 2x - 6 + x - 2 + 17
= x 2 + 2x + 9
= RHS
` true

3.

9.

(b) y = x 2 - 3x
(d) y = x 2 + 4x - 9

x = ! 1, !2

7.

x = ! 2.19, !0.46, !1.93, !0.52

8.

(a) x = 0c , 90c , 180c , 360c (b) x = 90c , 180c , 270c
(c) x = 90c , 210c , 330c (d) x = 60c , 90c , 270c , 300c
(e) x = 0c , 180c , 270c , 360c
(a) x = 0c , 45c , 180c , 225c , 360c
(b) x = 0c , 180c , 360c
(c) x = 0c , 30c , 150c , 180c , 360c
(d) x = 45c , 60c ,135c , 120c , 225c , 240c , 315c , 300c
(e) x = 30c , 60c , 120c , 150c , 210c , 240c , 300c , 330c x+3+ (e) y = - x 2 - 2x + 1

Exercises 10.5
(a) a + b = - 2, ab = 1
(b) a + b = 1.5, ab = - 3
(c) a + b = 0.2, ab = - 1.8
(d) a + b = - 7, ab = 1
2
(e) a + b = 2 , ab = 1
3

Let u = x + 3

4.

m = 0.5

5. k = - 32

9.

k = -5

10. m = ! 3

u 2 - 5u + 2 = 0 b 2 - 4ac = ] - 5 g2 - 4 ] 1 g ] 2 g
= 17
20

(a) x 2 + 3x - 10 = 0 (b) x 2 - 4x - 21 = 0
(c) x 2 + 5x + 4 = 0 (d) x 2 - 8x + 11 = 0
(e) x 2 - 2x - 27 = 0
6. b = 4

7. k = 1

11. k = - 1

14. b = - 6, c = 8

12. n = - 1, 3
15. a = 0, b = - 1

2

Test yourself 10

(c) k = - 1.8

(b) p # - 2 3 , p $ 2 3

(d) k = 3

1.

(a) 0 # x # 3

2.

(e) k # - 1, k $ 0

3 3

So u has 2 real irrational roots.
` x + 3 and so x has 2 real irrational roots

8. p = 13

1
16. ab = 1 ` b = a (c) p = !

2
=5
x+3

2
# (x + 3) = 5 # (x + 3)
]x + 3g
] x + 3 g2 + 2 = 5 ] x + 3 g
] x + 3 g2 - 5 ] x + 3 g + 2 = 0

3.

18. (a) p = ! 2 3

6. x = - 1

(x + 3) # (x + 3) +

(d) 21

(b) k = - 1, 0

(e) a = - 2, - 2 ! 6

(a) x = 0, 3 (b) p = 1 (c) x = 1 (d) x = 1 (e) x = 1, 3

a = 0, b = - 4, c = - 21

17. (a) k = - 1

1! 5
2

10.

K = 1, L = 6, M = 7.5 8. 12 ] x + 5 g + ] 2x - 3 g - 65 - 2

13. p = 2, r = - 7

(c) x =

9.

7.

(c) - 0.5

(b) y = ! 2, ! 2

5.

6. a = 2, b = 1, c = - 1
2

(a) 3 (b) - 6

(a) x = ! 3

(d) x = 3, 5

4.

A = 1, B = 5 , C = - 6

2.

(c) x = 4, 5

(d) x = 1.37, - 4.37, 0.79, - 3.79

5.

1.

(b) x = 2, 3

1
(e) x = 1 , 4
2

x 2 - 4x + 5 = x ] x - 2 g - 2 ] x + 1 g + 3 + 4

4.

(a) x = -1, - 4 (b) y = 2, 5 (c) x = - 4, 2
(d) n = - 1, 4 (e) a = - 3, 5 (f) p = 3, 4 (g) x = 2, - 4
(h) k = 5, 12 (i) t = 6, - 4 (j) b = -12, - 4

2.

3.

(c) y = 2x 2 - 3x + 7

3 - 10
3 + 10
,m2
2
2

(c) m = - 3

m = 2, p = - 5, q = 2

10. (a) y = x 2 - x - 5

(c) k = 2

(b) n 1 - 3, n 2 3

a = 1, b = - 9, c = 14

4.

a =120
D = b 2 - 4ac
= ] -2 g 2 -4 # 1 # 7
= - 24
10
` positive definite

3. (a) x = 2

(c) - 2 # y # 2
(b) - 3

ANSWERS

2 1
(d) 18 (e) 30 6. x = 1 ,
3 3

5.

(a) 6 (b) 3

7.

(a) iv (b) ii (c) iii

8.

a = -1 1 0
D = b 2 - 4ac
= 3 2 - 4 # (-1) # (- 4)
= -7
10

(c) 2

(d) ii

(e) i

(a) x = -

1
4

(b) 6

1
4

1
13. x = - , 3
2

(c) k = 3

14. m 1 -

16. (a) i (b) i (c) iii

(d) i

17. (a) iii (b) i (c) i

9
16

(d) k = 3

(e) k = 2

ab
1
a
LHS
a

19. (a) x + 3x - 28 = 0

(e) ii

1
1
(c) 1 y 1
5
3

y = x 2 - 5x + 4

5.

11

9.

12. Circle, centre ^ 1, -2 h, radius 4

13. y = -5
15. x = -7

16. x = 3

18. x = !4

x 2 - 10x + y 2 + 4y + 25 = 0

5.

12x - 26y - 1 = 0

7.

3x 2 - 32x + 3y 2 - 50y + 251 = 0

8.

5x 2 - 102x + 5y 2 + 58y - 154 = 0

9.

(b) x - 10x + 18 = 0

x2 + y2 = 1

3.

(b) n # - 3, n 2 3

2. x 2 + 2x + y 2 + 2y - 79 = 0

x 2 - 4x + 20y - 36 = 0

11. y 2 + 8x - 32 = 0

1
(d) x # - 10, x 2 - 2
2

4. 8x - 6y + 13 = 0

6. y = ! x

(e) 4 1 x # 7

13. x 2 + 12y = 0

10. x 2 - 20y = 0

12. x 2 - 2x + 8y - 7 = 0

14. x 2 - 5x + y 2 - 2y - 11 = 0

15. x 2 + 3x + y 2 - y - 4 = 0

3. a = 4, b = - 3, c = 7
7. p 2 0.75

4. x = ! 2

8. Show D = 0

16. x 2 + x + y 2 - 2y - 17 = 0
17. 2x 2 + 4x + 2y 2 - 6y + 47 = 0
18. 2x 2 + 2x + 2y 2 + 4y + 27 = 0
19. 3x + 4y + 25 = 0, 3x + 4y - 15 = 0
20. 12x - 5y - 14 = 0, 12x - 5y + 12 = 0

10. A = 2, B = - 19, C = 67 or A = - 2, B = 13, C = - 61
4x + 1

3
1
=
+
11. 2 x-2 x+1 x -x-2
1 - 21
1 + 21
,k$
2
2

13. x = 30c , 90c , 150c

11. Circle x 2 + y 2 = 1 (centre origin, radius 1)

1.

x = !1

12. k #

10. line y = 2

2

4
7

6. n = - 2.3375

9. lines x = !5

Exercises 11.2

D = ] k - 4 g2 $ 0 and a perfect square ∴ real, rational roots

2.

5. A spiral

20. Circle, centre ^ -4, 5 h, radius 1

1
=
a c = a k
=
k
= RHS = 1

Challenge exercise 10
1.

4. A (parabolic) arc

19. Circle, centre ^ -2, 4 h, radius 6

20. x = 1, 3
21. (a) x 1 - 1, x 2 -

lines y = !
1

17. y = !8

∴ roots are reciprocals for all x.
2

2. A straight line parallel to the ladder.

14. Circle, centre (1, 1), radius 3

15. x = 0, 2

(d) ii

18. For reciprocal roots b

A circle, centre the origin, radius 2 (equation x2 + y2 = 4 i

8.

(b) k = 1

The straight line - 2 1 x 1 2 or | x | 1 2

7.

11. x = 30c , 150c , 270c

An arc

6.

1
8

A circle

3.

10. 3 ] x - 2 g2 + 12 ] x + 3 g - 41
12. (a) k = 3

Exercises 11.1
1.

` - 4 + 3x - x 2 1 0 for all x
9.

Chapter 11: Locus and the parabola

3! 5
14. x = 1,
2

15. x = 60c , 90c , 270c , 300c

16. - 23

21. x - 2y - 3 ! 5 5 = 0
22. x - 7y + 9 = 0, 7x + y - 5 = 0
23. 7x - 4y - 30 = 0, 32x + 56y - 35 = 0
24. xy - 16x - 7y + 40 = 0
25. x 2 - 6x - 3y 2 - 12y + 9 = 0

827

828

Maths In Focus Mathematics Extension 1 Preliminary Course

Problem

23.

12x + 5y - 40 = 0, 12x + 5y + 38 = 0

Exercises 11.3
1.

(a) Radius 10, centre (0, 0) (b) Radius 5 , centre (0, 0)
(c) Radius 4, centre (4, 5) (d) Radius 7, centre (5, −6)
(e) Radius 9, centre (0, 3)

2.

(a) x 2 + y 2 = 16 (b) x 2 - 6x + y 2 - 4y - 12 = 0
(c) x 2 + 2x + y 2 - 10y + 17 = 0
(d) x 2 - 4x + y 2 - 6y - 23 = 0
(e) x 2 + 8x + y 2 - 4y - 5 = 0
(f) x 2 + y 2 + 4y + 3 = 0 (g) x 2 - 8x + y 2 - 4y - 29 = 0
(h) x 2 + 6x + y 2 + 8y - 56 = 0 (i) x 2 + 4x + y 2 - 1 = 0
(j) x 2 + 8x + y 2 + 14y + 62 = 0

3.

x 2 + 4x + y 2 + 4y - 8 = 0

6.

x 2 + 6x + y 2 - 16y + 69 = 0

7.

x 2 - 10x + y 2 + 4y + 27 = 0

9.

x 2 - 2x + y 2 - 10y + 25 = 0

5. x 2 - 2x + y 2 - 48 = 0

26. Perpendicular distance from centre ^ 0, 0 h to the line is equal to the radius 2 units; perpendicular distance from centre ^ -1, 2 h to the line is equal to the radius 3 units.
27. (a) x 2 + 2x + y 2 - 6y - 15 = 0
(b) ^ 2, 7 h, ^ -1, -2 h (c) Z = ^ -1, 8 h
1
(d) m zx # m yx = - # 3
3
= -1
` +ZXY = 90c

8. x 2 + y 2 - 9 = 0

(b) x 2 = 36y

(c) x 2 = 4y

(f) x 2 = 12y

(g) x 2 = 24y

(i) x = 8y
2

2.

13. (a) Radius 3, centre (2, 1) (b) Radius 5, centre (−4, 2)
(c) Radius 1, centre (0, 1) (d) Radius 6, centre (5, −3)
(e) Radius 1, centre (−1, 1) (f) Radius 6, centre (6, 0)
(g) Radius 5, centre (−3, 4) (h) Radius 8, centre (−10, 2)
(i) Radius 5, centre (7, −1) (j) Radius 10 , centre (−1, −2)

(a) x 2 = -4y

(b) x 2 = -12y
(e) x = -24y

(g) x 2 = -32y

(h) x 2 = -8y

4.

(a) (i) (0, −1) (ii) y = 1 (b) (i) (0, −6) (ii) y = 6
(c) (i) (0, −2) (ii) y = 2 (d) (i) (0, −12) (ii) y = 12
(e) (i) (0, −5) (ii) y = 5 (f) (i) (0, −4) (ii) y = 4
(g) (i) (0, −8) (ii) y = 8 (h) (i) (0, −10) (ii) y = 10

6.

22. x 2 + 2x + y 2 + 2y - 23 = 0

(i) x 2 = -60y

(a) (i) (0, 1) (ii) y = -1 (b) (i) (0, 7) (ii) y = -7
(c) (i) (0, 4) (ii) y = -4 (d) (i) (0, 9) (ii) y = -9
(e) (i) (0, 10) (ii) y = -10 (f) (i) (0, 11) (ii) y = -11
1
1
(g) (i) (0, 3) (ii) y = -3 (h) (i) c (0, 1 m (ii) y = -1
2
2
3
1
1
(i) (i) c 0, 2 m (ii) y = -2
(j) (i) c 0, 3 m
4
2
2
3
(ii) y = -3
4

5.

21. (a) Both circles have centre ^ 1, -2 h
(b) 1 unit

(f) x 2 = -36y

3.

1
1
(i) (i) c 0, - m (ii) y =
2
2

20. Show perpendicular distance from the line to ^ 4, -2 h is
5 units, or solve simultaneous equations.

(c) x 2 = -16y

(j) x = -52y

17. Centre (4, 7), radius 8

19.

2

2

15. Centre ^ 2, 5 h , radius 5

1
1
18. Centre d - 1 , 1 n , radius 2
2
2

(h) x 2 = 44y

2

(d) x = -28y
12. x 2 + y 2 + 6y + 1 = 0

(d) x 2 = 16y

(j) x = 48y

2

11. x 2 - 8x + y 2 - 6y + 22 = 0

16. Centre ^ - 1, -6 h , radius 7

(a) x 2 = 20y
(e) x 2 = 40y

1.

2

14. Centre ^ 3, -1 h , radius 4

(b) x 2 - 4x + y 2 + 10y + 13 = 0

Exercises 11.4

10. x + 12x + y - 2y + 1 = 0
2

34 units

25. (a) 5 units (b) 3 units and 2 units
(c) XY is the sum of the radii. The circles touch each other at a single point, ^ 0, 1 h .

28. (a) 4 units

x 2 - 18x + y 2 + 8y + 96 = 0

4.

24.

56 units

1
1
(j) (i) c 0, -5 m (ii) y = 5
2
2

(a) x 2 = 28y (b) x 2 = 44y (c) x 2 = -24y
(d) x 2 = 8y (e) x 2 = !12y (f) x 2 = !32y
1
(g) x 2 = 32y (h) x 2 = y
7
(a) Focus ^ 0, 2 h, directrix y = -2, focal length 2
(b) Focus ^ 0, 6 h, directrix y = -6, focal length 6

(c) Focus ^ 0, -3 h, directrix y = 3, focal length 3
1
1
1
(d) Focus d 0, n, directrix y = - , focal length
2
2
2
3
3
3
(e) Focus d 0, -1 n, directrix y = 1 , focal length 1
4
4
4
1
1
1
(f) Focus d 0, n, directrix y = - , focal length
8
8
8

ANSWERS

7.

y =2

8. ^ 4, 4 h

9.

7.

10. ^ 4, -2 h and ^ -4, -2 h ; 8 units
11. (a) x 2 = - 12y

(b) y = 3

(c) 33

x = 4 (latus rectum)

9.

3
1
X = d -1 , - n
2
8

^ 9, - 6 h, ^ 81, 18 h

(d) 4

2 units 13

(e) 11.7 units2

Exercises 11.6

13. (a) x - 4y + 2 = 0 (b) ^ 0, 1 h does not lie on the line
(c) x 2 - 4x + y 2 - 2y + 1 = 0
(d) Substitute ^ 0, 1 h into the equation of the circle.
14. (a) Substitute Q into the equation of the parabola.
(b) _ q 2 - 1 i x - 2qy + 2aq = 0
(c) Equation of latus rectum is y = a. Solving with x 2 = 4ay gives two endpoints A ^ -2a, a h, B ^ 2a, a h .
Length of AB = 4a.

1.

(a) ] x - 3 g2 = 8 ^ y + 3 h

(b) ] x - 5 g2 = 4 ^ y + 6 h

(c) ] x - 1 g = 4 ^ y + 3 h (d) ] x - 4 g2 = -12 ^ y - 3 h
(e) ] x - 6 g2 = 8 ^ y + 7 h (f) ] x + 7 g2 = -16 ^ y - 3 h
(g) ] x - 2 g2 = -4 ^ y - 5 h (h) ] x + 9 g2 = 12 ^ y + 6 h
2

(i) ] x + 1 g2 = - 4 ^ y - 2 h

2.

(j) ] x - 3 g2 = 8 ^ y + 1 h

(a) ^ y - 4 h2 = 4 ] x + 4 g (b) ^ y - 1 h2 = 8 ] x + 2 g
(c) ^ y + 2 h2 = 12 ] x + 1 g (d) ^ y - 10 h2 = - 4 ] x - 29 g
(e) ^ y + 3 h2 = - 16 ] x - 1 g

(f) ^ y - 6 h2 = 8 ] x + 4 g

(g) ^ y + 5 h2 = - 24 ] x - 2 g (h) ^ y + 12 h2 = 4 ] x + 36 g

Exercises 11.5

2.

5
1
units2
(b) d - 5, - 4 n (c) 10
6
12

10. (a) 5x - 12y - 25 = 0

1 units 3

12. (a) Substitute the point into the equation.
3
(b) 3x + 4y - 3 = 0 (c) d 2, - n
4

1.

8. 12, ^ 3, 6 h, ^ 3, -6 h

(a) y 2 = 8x (b) y 2 = 20x (c) y 2 = 56x (d) y 2 = 36x
(e) y 2 = 32x (f) y 2 = 24x (g) y 2 = 28x (h) y 2 = 12x
(i) y 2 = 16x (j) y 2 = 4x

(i) ^ y - 2 h2 = - 20 ] x - 1 g (j) ^ y + 4 h2 = - 8 ] x - 2 g
3.

2

(b) x 2 + 8x - 4y + 16 = 0

(c) x - 4x - 8y - 12 = 0

(d) x 2 - 6x - 8y + 41 = 0

2

(a) y = -36x (b) y = - 16x (c) y = -40x
(d) y 2 = -24x (e) y 2 = - 8x (f) y 2 = -48x
(g) y 2 = - 44x (h) y 2 = -20x (i) y 2 = -12x
(j) y 2 = -28x
2

(a) x 2 + 2x - 8y + 9 = 0

2

(e) x 2 + 4x - 16y + 20 = 0

(f) x 2 + 2x + 16y + 1 = 0

(g) x - 8x + 20y - 24 = 0

(h) x 2 + 10x + 8y + 1 = 0

(i) x 2 + 6x + 12y + 45 = 0

(j) x 2 + 4y + 24 = 0

2

(k) y - 6y - 12x - 3 = 0

(l) y 2 - 8y - 4x + 8 = 0

2

3.

4.

5.

(a) (i) (2, 0)
(c) (i) (4, 0)
(e) (i) (7, 0)
(g) (i) (6, 0)
1
(i) (i) c , 0 m
4

= -2
= -4
= -7
= -6
1
(ii) x = 4

(ii) x
(ii) x
(ii) x
(ii) x

(a) (i) (−2, 0) (ii) x = 2 (b) (i) (−3, 0) (ii) x = 3
(c) (i) (−7, 0) (ii) x = 7 (d) (i) (−1, 0) (ii) x = 1
(e) (i) (−6, 0) (ii) x = 6 (f) (i) (−13, 0) (ii) x = 13
1
1
(g) (i) (−15, 0) (ii) x = 15 (h) (i) c - , 0 m (ii) x =
2
2
1
1
1
1
(i) (i) c - 6 , 0 m (ii) x = 6
(j) (i) c - 1 , 0 m (ii) x = 1
4
4
2
2
(a) y 2 = 20x

(b) y 2 = 4x

(e) y 2 = !36x
6.

(b) (i) (3, 0) (ii) x = -3
(d) (i) (1, 0) (ii) x = -1
(f) (i) (8, 0) (ii) x = -8
(h) (i) (9, 0) (ii) x = -9
1
1
(j) (i) c 4 , 0 m (ii) x = -4
2
2

(c) y 2 = -16x

(f) y 2 = !8x

(m) y 2 - 8x + 32 = 0

(o) y + 2y - 8x - 7 = 0

(h) y 2 =

(s) y - 4y + 2x + 5 = 0
4.

(a) (i) (3, −2)

(ii) y = -4

(b) (i) (1, 1)

(ii) y = - 3

(c) (i) (−2, 0)

(ii) y = -2

(d) (i) (4, 2)

(ii) y = - 4

(e) (i) (−5, −1)

(ii) y = -5

(f) (i) (3, 1)

(g) (i) (−1, 0)

(ii) y = 4

(h) (i) (2, 0)

(i) (i) (4, −2)

(ii) y = 4

(j) (i) (−2, −3)

(ii) y = 3

(ii) y = 2
(ii) y = 5

5.

(a) (i) (0, −1) (ii) x = -2 (b) (i) (2, 4) (ii) x = - 4
(c) (i) (0, 3) (ii) x = -4 (d) (i) (3, −2) (ii) x = -5
(e) (i) (7, 1) (ii) x = -5 (f) (i) (1, −5) (ii) x = 5
(g) (i) (11, −7) (ii) x = 13 (h) (i) (−3, 6) (ii) x = 7
1
1
(i) (i) (−7, 2) (ii) x = 9 (j) (i) c -10 , -3 m (ii) x = 9
2
2

6.

x 2 - 12y + 36 = 0

(a) Focus ^ 2, 0 h, directrix x = - 2, focal length 2

(c) Focus ^ -3, 0 h, directrix x = 3, focal length 3

(r) y 2 - 6y + 16x + 25 = 0
(t) y 2 - 2y + 2x - 6 = 0

2

1 x 2

(b) Focus ^ 1, 0 h, directrix x = - 1, focal length 1

(p) y 2 + 8y + 12x + 4 = 0

(q) y 2 - 2y + 4x - 11 = 0

(d) y 2 = 12x

(g) y 2 = 12x

(n) y 2 + 4y - 16x - 12 = 0

2

1
1
1
(d) Focus d 1 , 0 n, directrix x = - 1 , focal length 1
2
2
2

7.

x 2 + 4x - 8y - 4 = 0, x 2 + 4x + 8y + 12 = 0

8.

x 2 - 2x - 4y - 19 = 0

9. y 2 - 12y + 12x + 12 = 0

1
1
1
(e) Focus d -1 , 0 n, directrix x = 1 , focal length 1
4
4
4

10. x 2 - 2x - 12y + 1 = 0

11. x 2 - 2x - 28y + 29 = 0

(f) Focus d

12. y 2 + 4y + 24x - 44 = 0

13. y 2 - 6y - 32x + 9 = 0

14. x 2 - 6x + 8y - 15 = 0

15. y 2 + 2y - 16x + 49 = 0

1
1
1
, 0 n, directrix x = - , focal length
12
12
12

16. x 2 + 6x + 4y - 7 = 0

17. x 2 - 4x - 12y - 8 = 0

829

830

Maths In Focus Mathematics Extension 1 Preliminary Course

18. y 2 + 2y + 16x - 95 = 0

Exercises 11.8

19. (a) Vertex ^ - 2, 1 h, focus ^ - 2, 3 h, directrix y = -1

1.

(a)

(b) Vertex ^ 3, 2 h, focus ^ 3, 5 h, directrix y = -1

(c) Vertex ^ 1, -1 h, focus ^ 1, - 2 h, directrix y = 0
(d) Vertex ^ 3, 4 h, focus ^ 7, 4 h, directrix x = -1

(e) Vertex ^ 0, - 2 h, focus ^ 6, - 2 h, directrix x = -6

(f) Vertex ^ - 5, 0 h, focus ^ - 7, 0 h, directrix x = -3
20. Vertex ^ - 1, 4 h, focus ^ -1, -3 h , directrix y = 11, axis x = - 1, maximum value 4
21. x 2 - 4x - 8y + 12 = 0 or x 2 - 4x + 8y - 36 = 0
(b) d 0, 7

22. (a) 8x 2 + 9y - 72 = 0

23
9
n, y = 8
32
32

(b)

23. (a)

(c)
3
1
(b) d -1, -8 n, y = -9
4
4
24. x 2 + 4x + 8y - 20 = 0

25. 0.3 m

Exercises 11.7
1.
5.

m= dy dx

1
3

=x

2. m = -4

3. m = -1

6. x - y - 2 = 0

4. m =

1
2

7. x - 2y + 12 = 0

8.

x + y - 6 = 0, x - y - 18 = 0

9.

(d)

x - 2y - 2 = 0, 2x + y - 9 = 0

7 1
10. 4x + y - 8 = 0, M = d 1 , n
8 2
11. x + y - 9 = 0, P = ^ - 18, 27 h
12. Q = ^ 33, 60.5 h
13. x + 4y + 144 = 0, 4x + 2y + 9 = 0, ^ 18, -40.5 h ; show the point lies on the parabola by substituting it into the equation of the parabola
14. x - y - 4 = 0, R = ^ 4, 0 h
15. (a) Substitute P into the equation of the parabola
(b) x + py - 2p - p 3 = 0
(c) Substitute ^ 0, 1 h into the equation of the normal.
0 + p - 2p - p 3 = 0
0 = p3 + p
= p (p 2 + 1)
2
Since p ! 0, p + 1 = 0

(e)

ANSWERS

(f)

2.

(a) (i) p

(ii) -

1 p (iii) y - px + p 2 = 0

(iv) x + py = p 3 + 2p
1
(iii) y - qx + 3p 2 = 0
(b) (i) q (ii) q
(iv) x + qy = 3q 3 + 6q
1
(iii) y - tx + 2t 2 = 0
(c) (i) t (ii) t

2.

(a) x - 2y - 2 = 0 (b) 2x - y - 11 = 0
(c) y = x 2 + 3x + 2 (d) y = 16x 2 - 1 (e) xy = 2

3.

(a) x = 2t, y = t 2

(iv) x + ty = 2t 3 + 4t
1
(iii) y - nx + 5n 2 = 0
(d) (i) n (ii) n

(b) x = 6t, y = 3t 2

(c) x = - 4t, y = -2t 2

(d) x = 8t, y = 4t 2

(e) x = - 18t, y = - 9t

2

(f) x = 10t, y = 5t 2

t t2 ,y=
4
2
5t 2
(j) x = - 5t, y = 2

(g) x = -3t, y = (i) x =

(iv) x + ny = 5n 3 + 10n
1
(iii) y - px + 6p 2 = 0
(e) (i) p (ii) p
(iv) x + py = 6p 3 + 12p
1
(iii) y + kx - 4k 2 = 0
(f) (i) −k (ii) k t t2 ,y=
4
8

3t
2

2

(h) x =

4.

(iv) x + qy = -q 3 - 2q
1
(iii) y + tx - 2t 2 = 0
(h) (i) −t (ii) t (a) x 2 = 16y (b) x 2 = 20y (c) x 2 = 4y (d) x 2 = -28y
(e) x 2 = - 8y (f) x 2 = 4ay (g) x 2 = -4y (h) x 2 = 24y
(i) x 2 = -2y (j) x 2 = 4ay

5.

(iv) x - ky = 4k 3 + 8k
1
(iii) y - qx - q 2 = 0
(g) (i) q (ii) q

(a) Substitute _ 6t, - 3t i into the equation
(b) P = ^ -12, -12 h
(c) 2x - y + 12 = 0

(iv) x - ty = 2t 3 + 4t
1
(iii) y - mx - 3m 2 = 0
(i) (i) m (ii) m

2

6.

(a) Q = ^ - 8, 4 h

7.

^ 4, 0 h, x = - 4

9.

(a) x 2 = 24y

(iv) x + my = -3m 3 - 6m
1
(iii) y + ax - 8a 2 = 0
(j) (i) −a (ii) a (b) x - y + 12 = 0

(iv) x - ay = 8a 3 + 16a

8. P = ^ 4, -4 h; 4x + 3y - 4 = 0

(b)

1
4

10. 3x - y - 18 = 0

3.

(ii) 8 -4pq ^ p + q h, 4 _ p 2 + pq + q 2 + 2 i B

Exercises 11.9
1.

t+n
(a) (i)
2
(b) (i)
(c) (i)
(d) (i)
(e) (i)

p+q
2
m+n
2
p+q
2
a+b
2

(f) (i) -

p+q
2

a+b
(g) (i) 2
(h) (i)

p+q
2

(i) (i) (j) (i)

s+t
2

p+q
2

(a) (i) ^ p + q, pq h (ii) 7 - pq ^ p + q h, p 2 + pq + q 2 + 2 A
(b) (i) 7 4 ^ p + q h, 4pq A
(c) (i) 6 2 ] a + b g, 2ab @

(ii) 7 -2ab ] a + b g, 2 ^ a 2 + ab + b 2 + 2 h A

1
(ii) y - ] t + n g x + 4tn = 0
2

(d) (i) 6 3 ] s + t g, 3st @

(ii) y -

1
^ p + q h x + 2pq = 0
2

(ii) y -

1
] m + n g x + 3mn = 0
2

(ii) 7 -5tw ] t + w g, 5 ^ t 2 + tw + w 2 + 2 h A

(ii) y -

1
^ p + q h x + 5pq = 0
2

(ii) 8 -6pq ^ p + q h, -6 _ p 2 + pq + q 2 + 2 i B

(ii) y -

1
] a + b g x + ab = 0
2

(ii) y +

(ii) 7 -3st ] s + t g, 3 ^ s 2 + st + t 2 + 2 h A

(e) (i) 6 5 ] t + w g, 5tw @

(f) (i) 7 6 ^ p + q h, -6pq A

(g) (i) 6 4 ] m + n g, -4mn @

(ii) 7 -4mn ] m + n g, - 4 ^ m 2 + mn + n 2 + 2 h A

(h) (i) 7 10 ^ p + q h, -10pq A

1
^ p + q h x - 2pq = 0
2

(ii) 8 -10pq ^ p + q h, -10 _ p 2 + pq + q 2 + 2 i B
(i) (i) 6 5 ] h + k g, - 5hk @

1
(ii) y + ] a + b g x - 6ab = 0
2

(ii) 7 -5hk ] h + k g, - 5 ^ h 2 + hk + k 2 + 2 h A

1
(ii) y - ^ p + q h x - 4pq = 0
2
(ii) y +

1
] s + t g x - st = 0
2

1
(ii) y - ^ p + q h x - 7pq = 0
2

(j) (i) 7 -3 ^ p + q h, - 3pq A

(ii) 8 3pq ^ p + q h, - 3 _ p 2 + pq + q 2 + 2 i B

4.

(a) (i) xx 1 = 4 _ y + y 1 i (ii) y - y 1 = -

4 x - x1 i x1 _

(b) (i) xx 1 = 6 _ y + y 1 i (ii) y - y 1 = -

6 x - x1 i x1 _

831

832

Maths In Focus Mathematics Extension 1 Preliminary Course

(c) (i) xx 1 = 8 _ y + y 1 i (ii) y - y 1 = -

8 x - x1 i x1 _

(d) (i) xx 1 = 2 _ y + y 1 i (ii) y - y 1 = -

2 x - x1 i x1 _

10
(e) (i) xx 1 = 10 _ y + y 1 i (ii) y - y 1 = - _ x - x 1 i x1 (f) (i) xx 1 = -2 _ y + y 1 i

(ii) y - y 1 =
(ii) y - y 1 =

(ii) y - y 1 =
(ii) y - y 1 =

22 x - x1 i x1 _

(j) (i) xx 1 = -14 _ y + y 1 i

(ii) y - y 1 =

14 x - x1 i x1 _

(a) xx 1 = 8 _ y + y 1 i (b) xx 1 = 2 _ y + y 1 i
(c) xx 1 = 4 _ y + y 1 i (d) xx 1 = 6 _ y + y 1 i

(e) xx 1 = 10 _ y + y 1 i (f) xx 1 = -2 _ y + y 1 i

(g) xx 1 = -12 _ y + y 1 i

(h) xx 1 = -4 _ y + y 1 i

Substitute in (1): y - pa (q + p) + ap 2 = 0 y - apq - ap 2 + ap 2 = 0 y - apq = 0 y = apq
(b) Substitute ^ 0, 2 h into equation.

16. (a) 3x + 4y - 8 = 0

17. (a) For proof, see no. 9 above

(i) xx 1 = -8 _ y + y 1 i
6.
7.
9.

(j) xx 1 = -18 _ y + y 1 i

18. (a) 15x + 8y + 4 = 0

(a) y - px + ap 2 = 0

(b) xx 0 = 2a _ y + y 0 i

19. (a) x + 3y - 3 = 0

1
] t + r g x + 2tr = 0
2
x2 y=18 dy x =9 dx 9t 2 o At e -9t, 2 dy -9t n = -d
9
dx
=t
y-

8. x + 2y - 36 = 0

For normal, m 1 m 2 = -1
1
t
The equation is given by y - y 1 = m (x - x 1)
` m2 = -

9t 2
1
= - (x + 9t) t 2
2ty + 9t 3 = -2 (x + 9t)
= -2x - 18t
2x + 2ty + 9t 3 + 18t = 0
`

y+

10. x + ty = at 3 + 2at

11. 3x - 4y + 4 = 0

12. Substitute focus ^ 0, -1 h into equation
3x + 4y + 4 = 0.
13. Equation of chord
1
y - ^ p + q h x + apq = 0
2
Substitute ^ 0, a h into equation
1
a - ( p + q) 0 + apq = 0
2
a + apq = 0 apq = - a pq = - 1

(2)

- px + qx + ap 2 - aq 2 = 0 x (q - p) - a (q 2 - p 2) = 0 x (q - p) - a (q + p) (q - p) = 0 x - a (q + p) = 0 x = a (q + p)

12 x - x1 i x1 _

(i) (i) xx 1 = -22 _ y + y 1 i

(1)

] 1 g - ] 2 g:

4 x - x1 i x1 _

(h) (i) xx 1 = -12 _ y + y 1 i

5.

15. Equation of tangent at P: y - px + ap 2 = 0
Equation of tangent at Q: y - qx + aq 2 = 0

2 x - x1 i x1 _

(g) (i) xx 1 = -4 _ y + y 1 i

14. ^ - 2, -1 h

(b) N = _ 0, ap 2 + 2a i

1
1
(b) N = c - , - m
4
32

(b) ^ - 6, 3 h c 2,

1 m 3

20. (a) F = ^ 0, 6 h
(b) 3x + 4y - 24 = 0
(c) Q = ^ - 24, 24 h

(d) P : x - 2y - 3 = 0; Q: 2x + y + 24 = 0
1
(e) m 1 m 2 = # -2 = -1, ` tangents at P, Q are
2
perpendicular
(f) R = ^ -9, -6 h
(g) directrix: y = - a = - 6, ` R lies on directrix
21. P = ^ -2, -1.5 h
22. x - y + 9 = 0
23. m 1 m 2 = pq
= - 1 (since pq = - 1 for focal chord)
` tangents are perpendicular
24. Tangents intersect at 6 a ^ p + q h, apq @
i.e.
y = apq
= - a (since pq = - 1 for focal chord)
Directrix: y = - a
` tangents meet on the directrix
25.

y=

x2
4a

dy x =
2a
dx
At P _ x 0, y 0 i, dy dx

=

x0
2a

ANSWERS

(c) Directrix y = -3
Point of intersection = ^ - 8, -3 h
So the point lies on the directrix.

The equation is given by y - y 1 = m(x - x 1) x0 ` y - y0 =
(x - x 0)
2a
2ay - 2ay 0 = x 0 (x - x 0)

6.
7.

= xx 0 - x 02
= xx 0 - 4ay 0 (since x = 4ay 0)
2ay + 2ay 0 = xx 0
2a(y + y 0) = xx 0
2
0

(a) 3x + 4y - 8 = 0
(b) Q = d 2,

y - px + 2p 2 = 0; y - qx + 2q 2 = 0; y = - 2

8.

x 2 = 16 ^ y - 6 h

dy dx =

12. (a) PO has gradient

1 n 2

dy

x
4

=

1
2

FR = p + 1
= PF

5.

#

(b) y = - 6a

Test yourself 11
2. x 2 - 4x - 8y - 4 = 0

(a) y - tx + 3t 2 = 0
(b) Y = _ 0, - 3t 2 i
(c) F = ^ 0, 3 h
TF = FY = 3 ^ t 2 + 1 h
(a) y + qx - 5q = 0
(b) R = _ 0, 5q 2 i
(c) F = ^ 0, - 5 h
FR = FQ = 5 _ q 2 + 1 i
So triangle FQR is isosceles.
` +FQR = +FRQ (base angles of isosceles triangle)
2

(a) 4x + 3y - 9 = 0
(b) Focus (0, 3)
Substitute into equation:
LHS = 4 ] 0 g + 3 ] 3 g -9
=0
= RHS
So it is a focal chord.

1.

8x + 6y - 29 = 0

3.

Centre ^ 3, 1 h, radius 4

5.

(a) ^ 8, 8 h

6.

x 2 + y 2 = 25

8.

(a) y - px + p 2 = 0
(b) p 2 + 1
(c) R = _ 0, - p 2 i and F = ^ 0, 1 h
2

4.

q
2

15. (a) x 2 = 9a ^ y - 5a h

= -1
So the tangents are perpendicular.

3.

p

2

14. (a) T = 6 a ^ p + q h, apq @

2
4
dx
1
` m2 =
2

2.

; QO has gradient

(c) x 2 = 2a ^ y - 4a h is a parabola in the form
(x - h) 2 = 4a 0 ^ y - k h where ^ h, k h is the vertex and a 0 is the focal length a ` vertex is ^ 0, 4a h and focal length is
2
a
13. x 2 = 2ay - a 2 or x 2 = 2a d y - n
2

1 m: 2

m 1 m 2 = -2 #

p
2

q
= -1
2
pq = - 4
`
(b) x 2 = 2a ^ y - 4a h m1 m2 =

At P (−8, 8): dy -8
=
4 dx ` m 1 = -2
At q c 2,

(b) x 2 = 2a ^ y - a h

10. (a) y = -a

(c) (−3, −2)
(d)

9. x 2 = 2a ^ y - a h

11. x 2 = - 4 ^ y + 4 h

Exercises 11.10
1.

x 2 = 2 a ^ y - 2a h

x 2 + x + y 2 - 3y - 10 = 0

4. (a) ^ 1, - 3 h

(b) ^ 4, - 3 h

(b) 2x - y - 8 = 0

10. (a) (i) ^ 1, 1 h

(b) ^ 0, - 2 h

7. (a) y = 2

(ii) ^ 1, 2 h

9. x 2 - 8x + 16y - 16 = 0

(b) y = 0

11. 2x + 3y + 6 = 0

12. 14 units

13. y = - 24x

2

2

14. x - 8y + 16 = 0

15. 4x - 3y - 16 = 0, 4x - 3y + 14 = 0
16. y = x, y = - x
19. (a) x 2 = 12y

17. y 2 = 20x

18. (a) -

1
2

(b) 2

(b) y 2 = - 32x

20. (a) x - 4y + 72 = 0

1
(b) d 9, 20 n
4

21. Sub ^ 0, 4 h : LHS = 7 # 0 - 3 # 4 + 12 = 0 = RHS
2
22. d , -7 n
9

23. 3x - 2y + 40 = 0

24. x 2 - 10y + 100 = 0

25. y - 3x + 9a = 0

26. (a) x - y - 3 = 0 (b) R = ^ 0, -3 h
(c) F = ^ 0, 3 h FP = FR = 6

833

834

Maths In Focus Mathematics Extension 1 Preliminary Course

27. (a) y a-

1
^ p + q h x + apq = 0
2

1
(p + q) # 0 + apq
2
a + apq apq pq

(b) Sub ^ 0, a h:

=0

6ap + 4aq 3ap 2 + 2aq 2 p ,
5
5

(b) x 2 = 2a ^ y + 2a h

=0
= -a
= -1

19. y = 0
20. (a) T = ^ 6, - 20 h

28. x - 2y + 48 = 0
(b) ^ 6, 9 h and ^ - 2, 1 h

29. (a) x - y + 3 = 0

18. (a) N = f

m x = t and m y = s m1 - m2 tan i =
1 + m1 m2 t-s tan 45c =
1 + ts t-s 1=
1 + ts t-s 1=
1 + ts
1 + ts = t - s
1 + s = t - ts
= t (1 - s)
1+s
=t
1-s
t-s
-1 =
1 + ts
-1 - ts = t - s s - 1 = t + ts
= t (1 + s) s-1 =t
1+s

(c)

30. y = - a

Challenge exercise 11
1.

(a) 8x + 6y - 29 = 0
(b) Midpoint of AB lies on line; m 1 m 2 = -1

2.

(a) x 2 - 2x + y 2 - 6y - 15 = 0
(b) Put y = 0 into equation

3.

y = 1 - 2x 2

5.

(a) 4x - 2y + 9 = 0; x + 2y - 24 = 0
(b) m 1 m 2 = - 1 (c) X = ^ 3, 10.5 h
(d) 3x - 4y + 8 = 0; focus ^ 0, 2 h lies on the line

6.

^ 0, 0 h

7.

(a) 2x - 4y - 1 = 0; 2x + y + 4 = 0
(b) Point lies on line y = - 1

8.

y = - 2 x 2 + 4x - 2

1
4. d 2 , - 3 n
2

or

9. 3x + y + 2 = 0

10.

(b) P = 6 a ] t + s g, ats @

Practice assessment task set 3
1.

m ≤ 2, m ≥ 3

4.

24 cm

2
6. (a)
3

2. 4x + 3y - 16 = 0

3. x 2 = 8y

Centre ^ - 3, 5 h, radius 7

5.

1
(b) 3

(c) 1

1
9

7.

Focus ^ 0, -2 h, directrix y = 2

8.

x = - 5 or - 6

10.

9. k = - 1

+AFE = +CBE (ext.+ equal to opp. interior
+ in cyclic quadrilateral)

+CBE = 180c - +EDC (opp.+s supplementary in cyclic quadrilateral) 11. (a) x 2 + 4x + y 2 - 10y + 21 = 0
(b) ] x + 2 g2 + ^ y - 5 h2 = 8; centre ^ -2, 5 h; radius =
12. -

8 =2 2

11. 3x - 4y - 14 = 0, 3x - 4y + 16 = 0

2 3
3

12. Vertex ^ - 4, -17 h , focus ^ - 4, -16.75 h

13. (a) y + 4y - 16x + 52 = 0
2

14. 4 2 units

` +AFE = 180c - +EDC
These are supplementary cointerior angles.
` AF || CD

(b) 2x - y - 6 = 0

15. x + y - 2y - 2 = 0
2

2

16. 696 mm from the vertex
17. 141x + 127y + 32 = 0; 219x + 23y + 58 = 0

13. x = 0, 3

14. k = 7.2 cm

16. b $ -2 17. i = 16c
^ 0, 0 h and radius 4

15. x + 2y + 2 = 0

18. x 2 + y 2 = 16, circle centre

19. x 2 + 4x + y 2 + 6y - 12 = 0

ANSWERS

Obtuse +AOC = 2+ADC (+at centre double + at circumference)
Reflex +AOC = 2+ABC (similarly)
Obtuse +AOC + reflex +AOC = 360c (+ of revolution)
`
2+ADC + 2+ABC = 360c
+ADC + +ABC = 180c
It can be proved similarly that
+BAD + +BCD = 180c by drawing BO and DO.
` opposite angles in a cyclic quadrilateral are supplementary 20. x 2 - 3x + y 2 - 6y - 17 = 0
21.

+BCD
+DAB
+DBC
+BDC
`+BDC
` +DAE

22. - 0.75

= 90c (+in semicircle)
= 90c (similarly)
= +DAE (+s in same segment)
= 90c - +DBC (+ sum of D BDC)
= 90c - +DAE
= 90c - +BDC

23. 5x 2 - 54x + 5y 2 + 20y - 79 = 0

24. a = 2, b = 1, c = 0
26. -

25. x = 33°, y = 57°

x

37. Centre ^ -5, 3 h, radius 2
38.

9 - x2

27. (a) y - px + ap 2 = 0

(b) R = f

a _ p2 - 1 i p , - ap

(c) 2px + _ p 2 - 1 i y + a - ap 2 = 0
28. x 2 - 4x - 16y + 20 = 0
29.
`

AC = BC and CD = CE (given)
AC
BC
=
CD
CE
+ACB = +ECD (vertically opposite angles)

` since two sides are in proportion and their included angles are equal, ΔABC is similar to ΔCDE y = 5.3 cm
30. x - y - 4 = 0

39. a 2 0
D = b 2 - 4ac
= ] -1 g2 - 4 (1) (3)
= -11
10
Since a 2 0 and D 1 0, x 2 - x + 3 2 0 for all x

31. x 2 + 2x - 16y - 15 = 0
33.

Let +DBA = x and +EBC = y
Then +EDB = x and +DEB = y (alternate +s, DE < AC)
+FDE = 180c - x (+FDB straight +)
+GED = 180c - y (+GEB straight +)
+FGB = +DBA = x (+s in alternate segment)
+GFB = +EBC = y (similarly)
` +FDE = 180c - +FGB and
+GED = 180c - +GFB
Since opposite angles are supplementary, FGED is a cyclic quadrilateral.

32. x = 0, 2

a 10
D = b 2 - 4ac
= 1 2 - 4 (- 1) (- 9)
= - 35
10
Since a 1 0 and D 1 0, - x 2 + x - 9 1 0 for all x

34. 8 (3x - 1) (2x + 5) + 3 (2x + 5) = ] 30x + 7 g (2x + 5) 3
3

4

35. sec x cosec x
36.

40. k = 1

41. 3x + 2y - 9 = 0

42. (a) 217 km

(b) 153c

43. a = 3, b = - 18, c = - 34
45. (a) y = x 2 - 1

44. x 2 4, x 1 3

(b) ^ - 4, 15 h

(c) x - 8y + 124 = 0

46. i = 95c 44’ 47. x = 11c
48. T = 361 ^ 2 0 and a perfect square h
49. x + 2y + 9 = 0

50. k # 3

51.

Let ABCD be a cyclic quadrilateral of circle, centre O.
Join AO and CO.

52. 5x - 4y - 41 = 0

55. - 1

1
# y 1 -1
4

1+ 3
2
2
53. d 3 , -2 n 54.
5
5
3-1
56.

3 6 - 10 + 3 3 - 5
22

835

836

Maths In Focus Mathematics Extension 1 Preliminary Course

57. x = 4.9 cm, y = 11.1 cm
60. 4.5 m

128
2187

61.

59. 8.25 units

1
1
64. y = 1 , 3
2

65. 162c

b 2 - 4ac = -104 1 0
So Pl(x) has no real roots
15. Ql] x g = 3x 2 - 6x + 3 b 2 - 4ac = 0
So Ql] x g has equal roots

+ACB = 90c (+ in semicircle)
`+DCA = 90c (+DCB straight +)
` AD is a diameter of the circle

Exercises 12.2

67. x = 45°, 135°, 225°, 315°

1.

1
1
68. x = - 1, y = 2 or x = - , y = 4
4
4

69. ] a - 2b g ^ a 2 + 2ab + 4b 2 h

70. x = 43

71. -

1
31

73. tan i

72. 1.8 units

14. Pl] x g = 3x 2 - 2x + 9

62. x = 60°, 120°, 240°, 300°

63. 2x + 3y - 3 = 0
66.

58. x = 1

3x 2 + 2x + 5 = ] x + 4 g ] 3x - 10 g + 45

2.

x 2 - 7x + 4 = ] x - 1 g ] x - 6 g - 2

3.

x 3 + x 2 + 2x - 1 = ] x - 3 g ^ x 2 + 4x + 14 h + 41

74. 8x ] 2x + 5 g (x 2 - 1) 3 + 2 (x 2 - 1) 4
= 2 (x 2 - 1) 3 (9x 2 + 20x - 1)

4.

4x 2 + 2x - 3 = ] 2x + 3 g ] 2x - 2 g + 3

5.

x 3 - 5x 2 + x + 2 = ^ x 2 + 3x h ] x - 8 g + ] 25x + 2 g

1
75.
4

6.

x 3 + x 2 - x - 3 = ] x - 2 g ^ x 2 + 3x + 5 h + 7

77. Focus (2, 1), directrix y = 5

7.

5x 3 - 2x 2 + 3x + 1 = ^ x 2 + x h ] 5x - 7 g + ] 10x + 1 g

78. px - y - 9p 2 = 0

8.

76. x + 2x + y - 3y - 25 = 0
2

2

79. x - 2y - 36 = 0

1
^ p + q h x + apq = 0 (b) x 2 = 2a ^ y - 2a h
2
(c) Concave upward parabola, vertex (0, 2a)

80. (a) y -

81. (c)

82. (d)

83. (b)

88. (a)

87. (c)

84. (a)

89. (a), (d)

85. (c)

86. (a)

9.

x 4 - x 3 - 2x 2 + x - 3
= ] x + 4 g ^ x 3 - 5x 2 + 18x - 71 h + 281
2x 4 - 5x 3 + 2x 2 + 2x - 5 = ^ x 2 - 2x h ^ 2x 2 - x h + ] 2x - 5 g

10. 4x 3 - 2x 2 + 6x - 1 = ] 2x + 1 g ^ 2x 2 - 2x + 4 h - 5
11. 6x 2 - 3x + 1 = ] 3x - 2 g d 2x +

90. (c)

1
2
n+ 1
3
3

12. x 4 - 2x 3 - x 2 - 2 = ^ x 2 - x h ^ x 2 - x - 2 h + ] -2x - 2 g
Chapter 12: Polynomials 1

5
4
3
2
13. 3x - 2x - 3x + x - x - 1
4
3
= ] x + 2 g ^ 3x - 8x + 13x 2 - 25x + 49 h - 99

Exercises 12.1

14. x 2 + 5x - 2 = ] x + 1 g ] x + 4 g - 6

1.

(a) 7 (b) 4 (c) 1

2.

(a) -19 (b) -10 (c) -1
3. (a) -6 (b) 5
(c) 2 (d) 1 (e) 2
4. (a) 5 (b) 4 (c) -3 (d) 0

5.

(a) !3

6.

7.

(b) -5

(d) 11 (e) 3 (f) 0 (g) 4

(c) -2, 1

(d) 4 (e) 0

(a) P l ] x g = 12x 3 - 6x 2 - 2x + 4; 3 (b) Pl] x g = 10x; 1
(c) Pl] x g = 108x 11 - 35x 4 + 8; 11
(d) P l ] x g = 7x 6 - 9x 2 + 2x - 7; 6 (e) Pl] x g = 8; 0
(a), (b), (g) 8. (a) a = 0
(d) a = -1
(c) 3

10. (a)

(d) 3

(e) a = 4

(b) b = 10
1
9. (a) -2
2

(c) c = -6
(b) x = 2, -1

(e) x 5

(d) 9

11. (a) 2 (b) 0 (c) 2
12. x = -3, 2

17. x 3 - 3x 2 + 3x - 1 = ^ x 2 + 5 h ] x - 3 g + ] - 2x + 14 g
18. 2x 3 + 4x 2 - x + 8 = ^ x 2 + 3x + 2 h ] 2x - 2 g + ] x + 12 g
4
3
2
19. x - 2x + 4x + 2x + 5
= ^ x 2 + 2x - 1 h ^ x 2 - 4x + 13 h + ] - 28x + 18 g

20. 3x 5 - 2x 3 + x - 1 = ] x + 1 g ^ 3x 4 - 3x 3 + x 2 - x + 2 h - 3

Exercises 12.3

(e) x =

(d) 0

13. x = 0, 1

(e) 2 (f) 4

(g) 3

2
(a) k = 8 (b) k =
7
(e) k = !2

3.

2
, -1
3

(a) 41 (b) -3 (c) -43 (d) 9424 (e) 0
(g) 47 (h) 2321 (i) 31 174 (j) - 3

2.

` f ] x g has no zeros
(c) - 2

16. 2x 4 - x 3 + 5 = ^ x 2 - 2x h ^ 2x 2 + 3x + 6 h + ] 12x + 5 g

1.

D = b 2 - 4ac
= -8
-8 1 0

(b) 9x 3

15. x 4 - 2x 2 + 5x + 4 = ] x - 3 g ^ x 3 + 3x 2 + 7x + 26 h + 82

(a) 0 (b) Yes
(c) x 3 - 4x 2 + x + 6 = ] x - 2 g ^ x 2 - 2x - 3 h
(d) f ] x g = ] x - 2 g ] x - 3 g ] x + 1 g

(c) k = 15 299

(f) 37

(d) k = 6

8
9

ANSWERS

4.

5.
7.

9.

(a) P ] - 3 g = 81 - 81 - 81 + 81 = 0
` x + 3 is a factor
(b) P ] x g = x ] x + 3 g 2 ] x - 3 g
7
17 a = -1 , b = -1
12
48

Exercises 12.4
1.

y

(a)

6. a = - 6

(a) P ] 3 g = 140 ! 0
` x - 3 is not a factor of P ] x g
(b) k = - 39 8. a = -2, b = -1

6

-1

(a) a = 3, b = 11
(b) f ] x g = ] x + 1 g ^ 3x 3 + 8x 2 + 7x + 2 h
(c) g ] -1 g = 0 (d) f ] x g = ] 3x + 2 g ] x + 1 g3

10. (a) ] x + 2 g ] x - 4 g (b) x ] x + 2 g ] x - 1 g
(c) ] x - 1 g ] x + 4 g ] x - 2 g (d) ] x + 5 g ] x - 3 g ] x + 2 g
(e) ] x - 3 g ] x - 1 g ] x - 7 g (f) ] x + 2 g ] x - 9 g ] x - 5 g
(g) ] x - 3 g ] x - 2 g2 (h) x ] x + 4 g ] x + 1 g 2
(i) ] x - 1 g ] x + 2 g2 (j) ] x + 1 g ] x - 3 g ] x + 2 g
11. (a) P ] x g = ] x - 1 g ] x + 3 g ] x - 2 g (b) -3, 1, 2

2

x

3

y

(b)

(c) Yes

12. (a) Dividing f ] x g by ] x + 5 g ] x - 2 g gives f ] x g = ] x + 5 g ] x - 2 g ^ x 2 + 7x + 12 h
` ] x + 5 g ] x - 2 g is a factor of f ] x g
(b) f ] x g = ] x + 5 g ] x - 2 g ] x + 3 g ] x + 4 g

-4

x

2

13. P ] x g = ] x + 1 g ] x - 4 g ] x + 3 g2
14. (a) P ] -6 g = P ] 5 g = 0

(b) P ] x g = ] x - 4 g ] x + 6 g ] x - 5 g

15. (a) P ] u g = ] u - 2 g ] u - 1 g 2

(b) x = 2, 3

16. (a) f ^ p h = ^ p - 1 h ^ p + 2 h ^ p - 3 h
17. (a) P ] k g = ] 2k - 1 g ] k + 1 g2

y

(c)

1
(b) x = 0, -1 , 1
2

(b) x = 30c , 150c , 270c

18. (a) f ] u g = ] u - 1 g ] u - 3 g ] u - 9 g (b) x = 0, 1, 2
19. x = -5, -4, -2

1

3

x

20. i = 0c, 90c, 120c, 240c, 270c, 360c
21. (a) a = 1, b = 3, c = 4, d = - 2
(b) a = 1, b = -1, c = 8, d = -12
(c) a = 2, b = 0, c = -1, d = 6
(d) a = 1, b = 1, c = 11, d = -12
(e) a = 3, b = 0, c = -1, d = 8
(f) a = 1, b = 1, c = -4, d = -7
(g) a = 5, b = -2, c = -19, d = -43
(h) a = -1, b = 4, c = -1, d = -1
(i) a = -1, b = 3, c = 6, d = -4
(j) a = -1, b = -10, c = -27, d = -20
22. P ] x g = x 3 - x 2 - 12x

23. a = 1, b = -3, c = -6

24. P ] x g = 2x 4 - 4x 3 - 10x 2 + 12x
25. P(x) has degree 3.
Suppose P(x) has 4 zeros, a1, a2, a3 and a4.
Then _ x - a 1 i _ x - a 2 i _ x - a 3 i _ x - a 4 i is a factor of P(x).
So P ] x g = _ x - a 1 i _ x - a 2 i _ x - a 3 i _ x - a 4 i Q ] x g.
` P(x) has at least degree 4
But P(x) only has degree 3.
So it cannot have 4 zeros.

y

(d)

-2

x

837

838

Maths In Focus Mathematics Extension 1 Preliminary Course

(d) (i) A ] x g = x ] 2x - 5 g ] x + 3 g

y

(e)

-5

y

(ii)

50

-2

x

5

2.

(a) (i) P ] x g = x ] x - 4 g ] x + 2 g

(e) (i) P ] x g = - x 2 ] x - 3 g ] x + 1 g

y

(ii)

x

1
22

-3

y

(ii)

-2

x

4

x

3

-1

(b) (i) f ] x g = - x ] x - 1 g ] x + 5 g
(ii)

3.

y

(a) x = 0, 1, -2 y (b)

-5

x

1

-2

(c) (i) P ] x g = x 2 ] x + 1 g ] x + 2 g

4.

y

(ii)

x

1

(a) P ] 2 g = 8 - 12 - 8 + 12
=0
(b) P ] x g = ] x - 2 g ] x - 3 g ] x + 2 g y (c)
12

-2

-1

x
-2

2

3

x

ANSWERS

5.

y

(a)

-4

(e)

-2

y

x

3

-24

-3

x

-18 y (f)

y

(b)

3

2

-3

-1

3

x

2

-2

x

-8
-9
y

(c)

y

(g)

12

1

3

4

1

x

2

x

-4

y

(d)

y

(h)

12
3

-4

1

3

x
-3

1

x

839

840

Maths In Focus Mathematics Extension 1 Preliminary Course

(i)

(c) P ] 4 g = ] 4 + 1 g ] 4 - 4 g2
=0
Pl(x) = 3x 2 - 14x + 8
Pl(4) = 3 ] 4 g2 - 14 (4) + 8
=0

y

6.

4

-2

x

7. y (j)

1

1

-1

x

8.

(a) ] x + 3 g 3 = x 3 + 9x 2 + 27x + 27
Dividing by x 3 + 9x 2 + 27x + 27 gives x 4 + 7x 3 + 9x 2 - 27x - 54 = ^ x 3 + 9x 2 + 27x + 27 h ] x - 2 g so ] x + 3 g 3 is a factor
(b) f ] x g = ] x - 2 g ] x + 3 g 3
(c) f ] -3 g = ] -3 - 2 g ] -3 + 3 g 3
=0
f l(x) = 4x 3 + 21x 2 + 18x - 27 f l(-3) = 4 ] -3 g3 + 21 ] -3 g2 + 18 (-3) - 27
=0
(a) P ] x g = ] x - k g3 Q ] x g where Q(x) has degree n - 3
(b) P ] k g = ] k - k g3 Q ] k g
=0
Pl(x) = ulv + vlu
= Ql(x) ] x - k g3 + 3 ] x - k g2 Q (x)
Pl(k) = Ql(k) ] k - k g3 + 3 ] k - k g2 Q (k)
=0

(a)

y

Exercises 12.5
1.

2.

(a) x = 3, double root (b) x = 0, 2, 7, single roots
(c) x = 0, double root, x = 3, single root
(d) x = - 2, single root, x = 2, double root
(e) x = - 2, triple root (f) x = 0, 2, single roots, x = 1, double root
(g) x = - 1, 3, double roots (h) x = 0, triple root, x = 4, double root (i) x = 1, triple root, x = - 5,
1
single root (j) x = 1 , triple root
2

(b)

y

(a) (i) Positive (ii) Even (b) (i) Negative (ii) Odd
(c) (i) Negative (ii) Even (d) (i) Negative (ii) Odd
(e) (i) Positive (ii) Odd (f) (i) Positive (ii) Even
(g) (i) Positive (ii) Odd (h) (i) Negative (ii) Even
(i) (i) Positive (ii) Odd (j) (i) Positive (ii)Even

3.

P ] x g = ] x + 4 g 2 Yes, unique

4.

(a) P ] x g = k ] x - 1 g Not unique

5.

x

3

x
(b) P ] x g = 5 ] x - 1 g3

(a) ] x - 4 g2 = x 2 - 8x + 16
Dividing by x 2 - 8x + 16 gives x 3 - 7x 2 + 8x + 16 = ^ x 2 - 8x + 16 h ] x + 1 g so ] x - 4 g 2 is a factor
(b) P ] x g = ] x + 1 g ] x - 4 g2

ANSWERS

(c)

10.

y

x

x

-1

11.

y

(d)

y

y

x

2

x

y

12. y (e)

x

-3

x

13.
9.

y

y

1

2

x

x

841

842

Maths In Focus Mathematics Extension 1 Preliminary Course

17. Odd function with positive leading coefficient starts negative and turns around at the double root. It then becomes positive as x becomes very large so it must cross the x-axis again. So there is another root at k 2 -1

y

14.

y

x

15.

x

k

-1

y

x

-2

18. Even function with negative leading coefficient is negative at both ends. The triple root has a point of inflexion so the curve must cross the x-axis to turn negative again. So there is another root at k 2 -2 y 16.

y

4

x

k

-2

x
19. Odd function with positive leading coefficient starts negative and turns around at both the double roots.
It then becomes positive as x becomes very large so it must cross the x-axis again. So there is another root at k 22 y -3

2

k

x

ANSWERS

20. Odd function with negative leading coefficient starts positive and turns around at the double root. It then becomes negative as x becomes very large so it must cross the x-axis again. So there is another root at k 2 1

Test yourself 12 p ]xg = ]x + 3g]x - 3g]x + 5g]x - 1g

2.

(a) 3

3.

P (x) = (x - 6) (x - 1) (x + 2)
= x 3 - 5x 2 - 8x + 12

4.

(a) x 2 + 3x + 2

5.

y

1.

(a) 3 (b) - 3

(b) 9

(c) 1

(d)

1
9

(b) p ] x g = ] x - 5 g ] x + 3 g ] x + 1 g ] x + 2 g
(c) - 3, 0, 1

(d) x 3

6. k 1

x

Exercises 12.6
1.

(b) (i) -2 (ii) -

(a) (i) 2 (ii) 8
(d) (i) 2

1
(ii) -3
4

2
3

(c) (i) -7 (ii) 1

(e) (i) -3 (ii) 0

2. (a) (i) -1 (ii) -2

1
(c) (i) (ii) 3
2

(iii) -8
(iii) -1
3.

(b) (i) 3 (ii) 5 (iii) 2

(d) (i) -3 (ii) 0 (iii) -11 (e) (i) 0 (ii) 7 (iii) 3

(a) (i) -2 (ii) -1 (iii) 1 (iv) 5

(b) (i) 1 (ii) -3

(iii) -2 (iv) -7

(c) (i) 1 (ii) -3 (iii) -2 (iv) -4
1
(d) (i) 1 (ii) -2 (iii) -1 (iv) -1 (e) (i) 6 (ii) 0
2
1
(iii) 0 (iv) 3
4. (a) 5 (b) -5 (c) -1 (d) 35
2
3
5
1
1
(e) 200
5. (a)
(b) (c) (d) 2
2
2
3
1
(e) 2
2
6. (a) - 3 (b) - 5 (c) 1
7. k = - 26
3
1
1
8. a + b = 2, ab = -7 9. a + b = 2 , ab = 2
2
1
10. (a) k = 0 (b) k = 4 (c) k = ±1 (d) k = - , 1
2
3
1
(e) k = 0
11. m = -9
12. a = -1 , b = -9
4
8
13. (a) P ] 1 g = 0

15. (a)

4
2
, q = -17
15
15

1 1
18. x = - , 1
2 2

(a) a = 3

(b) - 5

8.

p (-7) = ] -7 g3 - 7 ] -7 g2 + 5 (-7) - 4
= - 725 ! 0

9.

x = - 1, !3

10. a = 2, b = - 18, c = 40

11. x-intercepts -3, 2, 4; y-intercept 24
12. 3x 5 - 7x 3 + 8x 2 - 5
= (x - 2) (3x 4 + 6x 3 + 5x 2 + 18x + 36) + 67
13. x = 60c, 90c, 180c, 270c, 300c
15. 4, 5
16.

(b) a + b + c = 1, abc = -6

14. a = 1; a + b = -2
(b) p = 8

7.

19. x =

4
15

16. 1
1
1
,!
3
2

17. -5
1 2
20. x = ! 3 , -1 ,
2 3

17. k = - 14

18. 4

14. k = 7.4

843

844

Maths In Focus Mathematics Extension 1 Preliminary Course

19. P (a) = A (a) ] a - a g3
=0
Pl(x) = A (x) 3 ] x - a g2 + Al(x) ] x - a g3
Pl(a) = A (a) 3 ] a - a g2 + Al(a) ] a - a g3
=0

y

24.

20. f ] 5 g = 5 3 - 6 ] 5 g 2 + 12 ] 5 g - 35 = 0 x 21. (a) f ] 5 g = 5 3 - 7 ] 5 g 2 - 5 ] 5 g + 75
=0
(b) f l] x g = 3x 2 - 14x - 5 f l(5) = 3 ] 5 g2 - 14 (5) - 5
=0
(c) Double root at x = 5 (d) f ] x g = ] x + 3 g ] x - 5 g 2 y 22.

25. (a) a = 2, b = - 3, c = 4, d = 5

Challenge exercise 12
1.
3

x

2.

P ] x g = ] x - 1 g ] x + 1 g2 ^ x 2 + x + 1 h
(a) P (b) = ] b - b g7 Q (b)
=0
Pl(x) = ] x - b g7 Ql(x) + Q (x) 7 ] x - b g6
Pl(b) = ] b - b g7 Ql(b) + Q (b) 7 ] b - b g6
=0
(b) a = -7, b = - 1

23. (a) P ] x g = ] x + 6 g 3Q ] x g
3.

y

i = 0c , 45c , 60c , 120c , 180c , 225c , 240c , 300c , 360c

4.

(b)

(a) 3x - y + 2 = 0

(b) ^ 2, 8 h

5. (a)

a - 33
4

(b) a = -14
6.

(a) - 3

(b) 17

7. i = 90c, 210c, 330c

8. a = - 5

If x - a is a factor of P ] x g
Then P (x) = (x - a) Q (x)
P (a) = (a - a) Q (a)
`
=0
10. ^ - 1, -1 h, ^ -3, 5 h 11. P ] x g = - ] x + 1 g 2 ] x - 2 g 3
9.

-6

x

12.

y

a1

a2

x

ANSWERS

Exercises 13.1
16
33

1.

1
10 000

2.

5.

98.5%

6. (a)

8.

1
3

1
9. (a)
6

2
9

3.
3
7

7.

1
(b)
3

4
7

1
20 000

4.

5
(c)
6

(b)

3
20

6.

(a) 39 916 800

8.

Chapter 13: Permutations and combinations

5040

9. 6

12. 1.3 # 10 12
14. (a) 720
16. (a)

1
4

10. 720

13. (a) 39 916 800

(b) 120
(b)

1
62

(b)

3
31

(c)

1
2

11. (a)

1
15

(b)

8
15

(c)

3
5

13. (a)

29
86

(b)

19
43

(c)

67
86

15. (a)

1
6

(b)

4
5

(b) 36

17. (a)

20.

329
982

22. (a)

14
59

1
2

1
3

(c)

(b)

24. 19%

35
59

19
31

(c)

20. (a)

14. 32

(d)

1
2

24
59

(b)

20
31

(b)

(d)

(b)

1
2

(e)

23
44

16. (a)
21
44

(c)

38
59

4
31

23.

19.

(d)

5
18

(b) 91
(c)

6
19

11
31

5
24

(d)

1
24

5.

1
67 600 000

14.

1
17.
5184

18. 6

21. 7 880 400

n ] n - 1 g ] n - 2 g ... ] n - r + 1 g ] n - r g ... 3.2.1 n! =
]n - r g!
] n - r g ] n - r - 1 g ] n - r - 2 g ... 3.2.1
= n ] n - 1 g ] n - 2 g ... ] n - r + 1 g

5!
= 20
]5 - 2 g!

1
9900

7!
= 2520
]7 - 5 g!

11!
= 6 652 800
] 11 - 8 g !

(g)

(e)

8!
= 336
]8 - 3 g!

(c)

9!
= 60 480
]9 - 6g!

8!
= 20 160
]8 - 6g!
(i)

9!
=9
]9 - 1 g!

6!
= 720
]6 - 6 g!

(a) 720 (b) 3 628 800 (c) 1 (d) 35 280 (e) 120
(f) 210 (g) 3 991 680 (h) 715 (i) 56 (j) 330
4. 479 001 600

5. 120

3.

(a) 648 (b) 432 (c) 144 4. (a) 20 (b) 4 (c) 12 (d) 8

5.

(a) 24

7.

(a) 120

(a) 479 001 600 (b) 1320

9.

1
720

(a) 650

8.

20. 360

23. 271 252 800
25.

(b)

2.
16. Yes

Exercises 13.3

3. 720

10!
= 640 800
] 10 - 7 g !

(j)

15. 7

19. 6840

22. 210

24. (a) 9900 (b)

362 880

n ] n - 1 g ] n - 2 g ... ] r + 1 g r ] r - 1 g ... 3.2.1 n! = r! r ] r - 1 g ] r - 2 g ... 3.2.1
= n # ] n - 1 g # ] n - 2 g #...# ] r + 1 g
= n (n - 1) (n - 2) #...# (r + 1)

6!
= 120
]6 - 3 g!

7. 1 000 000

12. (a) 10 000 000 (b) 1000

13. Yes

2.

11!
11 # 10 # 9 #...# 2 # 1
=
6#5#4#3#2#1
6!
= 11 # 10 # 9 # 8 # 7

(a)

4. 260

3
10.
10 000

9. 64

1
120

8!
8 # 7 # 6 #...# 2 # 1
=
4#3#2#1
4!
=8#7#6#5

(h)

3. 26 5 # 10 4

6. 1 000

1
11. (a) 84 (b)
84

1.

18.

(f)

1.

2. 67 600

26 10 # 10 15

8. 300

1
12

(d)

25. 0.51

456 976

(b)

Exercises 13.4

Exercises 13.2
1.

(b) 3 628 800

19. 6 227 020 800

12. 8

18. (a)

21. (a)

99
124

(d)

11. 5040

15. 5040

(c) 48

17. (a) 479 001 600
10. (a)

7. 40 320

(b) 479 001 600

(a) 56 (b) 336 (c) 1680

(b) 15 600

(c) 358 800

6. (a) 4536

(b) 24
(b) 48

(c) 96

(d) 7 893 600

(b) 2016

(d) 72

(c) 3528

(e) 60

10. (a) 60 480 (b) 2520 (c) 907 200 (d) 151 200
(f) 453 600 (g) 360 (h) 2520 (i) 59 875 200
(j) 90 720
11. (a) 24 (b) 5040
(e) 39 916 800
12. (a) 6

(b) 720

(c) 40 320

(c) 5040

(e) 60

(d) 3 628 800

(d) 362 880

(e) 3 628 800

845

846

Maths In Focus Mathematics Extension 1 Preliminary Course

13. (a) 181 440 (b) 19 958 400 (c) 20 160
(d) 1 814 400 (e) 239 500 800

n!
' (n - r) !
]n - n + r g! n! 1
=
#
]n - r g! r! n!
=
] n - r g !r! n n
Pn - r
Pr
=
]n - r g! r! =

14. (a) 720 (b) 120 15. (a) 362 880 (b) 40 320
16. (a) 3 628 800 (b) 362 880 (c) 181 440
17. (a) 24 (b) 12 (c) 24

`

18. (a) 720 (b) 240 (c) 480 (d) 144

20.

2
9

21. (a) 20! (b) 5!8!7!3! (c)

22. (a) 60 (b) 48 (c) 36 (d)
24.

1
336

P3

=
=
=
=

P5

5!

=
=
=
=

8

`

=

1
6

=
=

3!

8

Pr + r n Pr - 1 =

27. (a) 720 (b) 120 (c) 192

28. (a) x! (b) ] x - 1 g !
(e) ] x - 3 g ] x - 2 g !

29. (a)

23.

n

7
20

Pr =

25. (a) 40 320 (b) 30 240 (c) 21 600

26. (a) 20 (b) 60

8

1
5

n+1

30.

19. (a) 3 628 800 (b) 362 880 (c) 28 800

P3

3!

3!
8!
' 3!
5!
8!
1
#
5!
3!
8!
5!3!
8!
]8 - 5 g!
5!
8!
' 5!
3!
8!
1
#
3!
5!
8!
5!3!
8

=

=
=
=
=
`

=
=
=
=

Pn - r

]n - r g!

=

n

n

Pr = Pr + r Pr - 1

(a)

9!
= 126
] 9 - 5 g !5!

(c)

8!
= 56
] 8 - 3 g !3 !

(e)

1.

P5

Pr

n+1

Exercises 13.5

11!
= 462
] 11 - 5 g !5!

(b)
(d)

12!
] 12 - 7 g !7!

n!
]n - r g! r! n!
' r!
]n - r g! n! 1
#
]n - r g! r! n!
] n - r g !r! n! (n - 5 n - r ? ) !
]n - r g!

= 792

10!
= 210
] 10 - 4 g !4!

2.

(a) (i) 1 (ii) 1 (iii) 1 (iv) 1 n n
(b) (i) C 0 = 1 (ii) C n = 1

3.

(a) 28

4.

(a) Number of arrangements = 15

5!

r!

n

=

(d) 3! ] x - 2 g !

8!
]8 - 3g!

n

(b)

(c) 2! ] x - 2 g !

]n + 1g!
]n + 1 - r g! n! n!
+r
]n - r g!
^n - 5r - 1?h ! n! n!
+r
]n - r g!
^n - 5r - 1?h ! n! rn!
+
]n - r g! ]n - r + 1g!
] n + 1 - r g n! rn! +
]n + 1 - r g]n - r g! ]n + 1 - r g!
] n + 1 - r g n! rn! +
]n + 1 - r g!
]n + 1 - r g! n $ n! + n! - rn! + rn!
]n + 1 - r g! nn! + n!
]n + 1 - r g!
] n + 1 g n!
]n + 1 - r g!
]n + 1g!
]n + 1 - r g!

(b) 84

(c) 462

(v) 1

(d) 5005

(e) 38 760

R1R2

R2R3

R3B1

B1B2

R1R3

R2B1

R3B2

B1B3

R1B1

R2B2

R3B3

R1B2

R2B3

R1B3
(b) 77 520

B2B3

ANSWERS

5.

15 504

6. 210

8.

(a) 720 (b) 120

10. 296 010

7. 2 598 960
9. (a) 2184 (b) 364

11. 4845

13. 23 535 820

27.

12. 2925

14. (a) 792 (b)

5
12

(c)

5
33

15. (a) 100 947 (b) 462 (c) 924 (d) 36 300 (e) 26 334
(f) 74 613 (g) 27 225
16. $105
17. (a) 2 042 975 (b) 55 (c) 462 462 (d) 30 030
18. (a) 3003 (b) (i) 2450 (ii) 588 (iii) 56 (iv) 1176
19. (a) 1.58 # 10 10
(e) 12 271 512

(b) 286 (c) 15 682 524 (d) 5 311 735

20. (a) 395 747 352 (b) 32 332 300 (c) 4 084 080
(d) 145 495 350 (e) 671 571 264
21. (a) 170 544 (b) 36 (c) 20 160 (d) 17 640 (e) 6300

28.

22. (a) 7 (b) 27 132 (c) 13 860 (d) 20 790 (e) 27 720
23. (a) 5 (b) 360 (c) 126
24. (a) 792 (b) 792
(c)

25.

12!
] 12 - 5 g !5!
12!
=
7!5!
12!
12
C7 =
] 12 - 7 g !7!
12!
=
5!7!
12
12
` C5 = C7
12

9
8

C5 =

C 6 = 84

8

C 6 + C 5 = 28 + 56
= 84
9
8
8
`
C6 = C6 + C5
26.

13! b 13 l =
7
] 13 - 7 g !7!
13!
=
6!7!
13! b 13 l =
6
] 13 - 6 g !6!
13!
=
7!6!
13
13
`b 7 l=b 6 l

29.

10! b 10 l =
4
] 10 - 4 g !4!
10!
=
6!4!
9!
9!
b9 l + b9 l =
+
4
3
] 9 - 4 g !4! ] 9 - 3 g !3!
9!
9!
=
+
5!4! 6!3!
6 # 9!
4 # 9!
=
+
6 # 5!4! 4 # 6!3!
6 # 9! 4 # 9!
=
+
6!4!
6!4!
6 # 9! + 4 # 9!
=
6!4!
10 # 9!
=
6!4!
10!
=
6!4!
b 10 l = b 9 l + b 9 l
`
4
3
4 n! bn l = r ] n - r g !r! n! b n l= n-r (n - 5 n - r ? ) ! ] n - r g ! n! =
]n - n + r g! ]n - r g! n! = r! ] n - r g ! n n
` br l = bn - r l n Pr =

n!
]n - r g!

n!
] n - r g !r! n! =
]n - r g!

r! n C r = r! #

` n Pr = r! n C r n! n
30. b l = k ] n - k g !k!
]n - 1 g!
]n - 1 g! bn - 1 l + bn - 1 l =
+
k-1 k ] n - 1 - ] k - 1 g g ! ] k - 1 g ! ] n - 1 - k g !k!
]n - 1 g!
]n - 1 g!
=
+
] n - k g ! ] k - 1 g ! ] n - 1 - k g !k!
]n - k g]n - 1 g! k ]n - 1 g!
=
+ k ] n - k g ! ] k - 1 g ! ] n - k g ] n - 1 - k g !k! k ]n - 1 g! ]n - k g]n - 1 g!
=
+
] n - k g !k!
] n - k g !k!
]k + n - k g]n - 1 g!
=
] n - k g !k! n ]n - 1 g!
=
] n - k g !k! n! =
] n - k g !k! n =b l k 847

848

Maths In Focus Mathematics Extension 1 Preliminary Course

Test yourself 13
1.

4.
13
(b)
22

4
2. (a)
11

(a) 5040 (b) 720

3.

(a) 24 (b) 12

5.

(a) 65 780 (b) 25 200 (c) 252

7.

120

17
(c)
22

(a) ] n - 1 g !

(b)

6.

(a) 792

5
44

8. 2.4 # 10 18

9.

7.

1
9

10. 142 506

11. 990
12. (a) 40 320 (b) 362 880
(c) 80 640 (d) 168
13. (a) 19 958 400 (b) 4 989 600 (c) 181 440
(d) 9 979 200 (e) 181 440 n! n
14. b l = k ] n - k g ! k!

15. (a) 151 200 (b) 881 280

16. 1.08 # 10 17

20. (a) 1

(a) 60 (b) 72 (c) 30

3.

n! bn l = k ] n - k g ! k!

3
40

21
40

(a) 1 860 480

9.

(a) 94 109 400 (b) 7920 (c) 5 527 200
(e) 37 643 760 (f) 23 289 700
4
35

(b)

(b)

(c)

(d)

(d) 93 024

17
35

Practice assessment task set 4
2. P ] x g = ] x - 1 g ] x + 1 g ] x + 4 g 3. y = 3x 4

1
2

(a) 362 880

(b) 4320

5. -1, 2

(c) 282 240
3
(c)
4

6.

^ 19, 10 h

8.

x 2 + y 2 = 2; circle centre ^ 0, 0 h radius

9.

3060c; 161c3l

7. (a) - 4

(b) −2

(d) 10
2

10. Distance from centre ^ 0, 0 h to line is d= | ax 1 + by 1 + c | a2 + b2

40
10
=4
= radius
` line is tangent
=

2. (a) 360 (b) 60

]n - 1 g!
]n - 1 g! bn - 1 l + bn - 1 l =
+
k-1 k (n - 1 - 5 k - 1 ? ) ! ] k - 1 g ! ] n - 1 - k g ! k!
]n - 1 g!
]n - 1 g!
=
+
] n - k g ! ] k - 1 g ! ] n - k - 1 g ! k!
]n - k g]n - 1g! k ]n - 1g!
=
+ k ] n - k g ! ] k - 1 g ! ] n - k g ] n - k - 1 g ! k! k ]n - 1 g! ]n - k g]n - 1 g!
=
+
] n - k g ! k!
] n - k g ! k! k ] n - 1 g !+ ] n - k g ] n - 1 g !
=
] n - k g ! k!
] n - 1 g !5 k + n - k ?
=
] n - k g ! k!
] n - 1 g !n
=
] n - k g ! k! n! =
] n - k g ! k!

n n-1 n-1
` bk l = bk - 1 l + b k l

1
4

8.

4.

Challenge exercise 13
1.

(b) 246

Pr =

1.

n n! c m=
] n - 0 g ! 0!
0
n!
=
n! 0 !
=1
n! n c m= n ] n - n g ! n! n! =
0!n!
=1 n n
` c m=c m
0
n

5. (a) 90 720

` n Pr = r! n C r

10. (a)

18. (a) 15 (b) 181 440 19. 37 015 056

k!

n!
]n - r g! n! r! n C r = r!
] n - r g !r! n! =
]n - r g! n 17. (a) 1 709 316 (b) 203 490 (c) 167 580

(b)

(b)

4. (a) 720 (b) 120
6. 29%

]n - k + 1g!

11. k = -2

1
2

12. x = 74c (+s in alternate segment) y = (180c - 74c) ' 2
= 53c (+ sum in isosceles D)
13. 120

14. x 1 - 2, x 2 2

15. P ] x g = ] x - 2 g2 Q ] x g
Pl(x) = ] x - 2 g2 Ql(x) + 2 (x - 2) Q (x)
P (2) = ] 2 - 2 g 2Q (2)
=0
Pl(2) = ] 2 - 2 g2 Ql(2) + 2 (2 - 2) Q (2)
=0
16. (a) 1
17. 126

(b) 3

(c) ab = -

18. 7

1
,a+b=0
10

19. 7.1 m

20. 131c 38l

ANSWERS

31. Domain: all real x; range: y $ - 3

21. (a) P ] x g = ] x - 1 g ] x - 3 g2
(b)
y

32.

+ACB
+ABC
AC
` by AAS, DABC

33. 46 m2
1

x

3

= +ECD ^ vertically opposite angles h
= +CED (alternate angles AB||ED)
= CD ^ given h
/ DCDE

34. x + y - 3 = 0

35. x 2 - 12x + 36 = ] x - 6 g2

36. 41c 38l

37. y $ 2.5, y # - 6.5
38.

-9

22.
4 1
39. d - 1 , 7 n
7 7
40. (a) 9x - y + 16 = 0
(c) Q = ^ - 20, 0 h

(b) x + 9y + 20 = 0 l (d) 27c 21

41. Domain: all real x ! ! 2; range: all real y
42. (a) sin ^ a - b h
43. (a) 149.1 m
23. P ] -2 g = - 55
P ] x g = ] x + 2 g ^ 2x 2 - 11x + 23 h - 55 on division
` P ] - 2 g is the remainder
24. (a) abc + acd + bcd + abd = -

d
=0
a

(b) 1 (c) -1

25. P ] x g = ] x - 3 g 2 Q ] x g
P ]3 g = ]3 - 3 g 2 Q ]3 g
= 0Q ] 3 g
=0
Pl] x g = 2 ] x - 3 g Q ] x g + ] x - 3 g 2 Ql] x g
Pl(3) = 2 (3 - 3) Q (3) + ] 3 - 3 g 2 Ql(3)
= 2 (0) Q (3) + 0Ql(3)
=0

45.

3

(b) cos 45c =

(b) 46c 48l

2

(c)

^ 3 + 1 h2
8

44. X = ^ 7.5,17.5 h

46. x 11, x 21.6

48. (a) x - 8y + 129 = 0

1

47. x = 150c

1
1
n
(b) R = d 7 , 17
64
8

t 4 + 2t 3 - 6t 2 + 2t + 1
^ 1 + t2 h 2
50. f ] x g = 3x 3 - 7x 2 - 5x - 3 f ]3g = 3]3g3 - 7]3g2 - 5]3g - 3
= 81 - 63 - 15 - 3
=0
So x - 3 is a factor of f ] x g = 3x 3 - 7x 2 - 5x - 3
49.

51. a = 1, b = - 3, c = -1
52. 3x - y - 1 = 0, x + 3y - 7 = 0

26. 1 884 960 27. Radius 3; x 2 + y 2 = 9

53. 2175 cm3; 1045 cm2

28. a = 3, b = -14, c = 9

54. y 1 - 3, - 2 1 y 1 -1

29. (a) 8.1 m (b) 35c 46l

55.

56. (a) x = 60c, 120c, 240c, 300c

30. (a) !1
(b) P (1) = ^ 1 2 - 1 h (1 2 + 5)
=0
2
3
Pl(x) = 6x ^ x 2 - 1 h (x 2 + 5) + ^ x 2 - 1 h $ 2x
3

Pl(1) = 6 (1) ^ 1 2 - 1 h (1 2 + 5) + ^ 1 2 - 1 h $ 2 (1)
=0
2

3

(c) x = 270c

56
65
(b) x = 0c 90c, 360c
,

849

850

Maths In Focus Mathematics Extension 1 Preliminary Course

60. x = - 6.5, y = 2.8

(b)

61. y = - x 4

62. (a) 4

57. (a) 0

(d) 1

(b) −2

(c) −3

63. P ] x g = ] x - 2 g ^ x 2 + 1 h + 5
65. P ] x g = - ] x - 5 g ] x + 1 g 2

1
2

(e) 22
64. 15 504

66. 63

68. (b)

59. 8c 8l

70. (a), (b), (d)

71. (b)
58. i = 90c # n + ] - 1 g n # 135c

69. (c)
72. (b)

73. (a)

67. (a)

75. (d)

74. (d)

Similar Documents

Premium Essay

Essay

...1 Overview of How to Write an Essay Writing essays is a major element of your education at the university level. Effective writing gives you the ability to express your ideas, theories, arguments, and projects clearly. The skills you acquire at the university level through writing essays will be aimed at practical business applications that you will be able to use in the workplace. The following information provides a succinct overview of the elements you need to know to begin writing an essay. It will help you on your writing journey. Types of Essays Narrative A narrative essay is a story told by a narrator. Generally, a narrative discusses the personal experience of the author (the first person point of view), but it can also be written about things that happen to others (third person point of view). A narrative typically involves characters, a setting, specific and vivid details, and a series of events that can include current incidents, flashbacks, or dialogue. Cause and Effect A cause and effect essay explores why events, actions, or conditions occur (cause) and examines the results of those events, actions, or conditions (effect). For example, a cause could be purchasing a new expensive home. The effect might be fewer family vacations, more time spent on upkeep, or less time with family because of extra work hours to pay for the home. Comparison and Contrast A comparison and contrast essay shows the relationship between two or more elements. The items can be compared...

Words: 6215 - Pages: 25

Premium Essay

Essay

...How to determine custom essay editing company that is legitimate This is the company you will find great editors to provide you with custom essay editing service. Students whose first language is not English may find speaking and writing in English as a difficult task for them. Most of these students are international students who have enrolled in various universities in America and in the UK. The main teaching language is English, American and Standard English respectively. It is essential for students to master well the language of instruction because it is a medium through which they are required to write their assignments and speak in classroom. Competence and fluency in English language will help students to read and understand the teaching material provided to them. It is important therefore for students to ask for support from custom essay editing services which deal with the tips of writing good essays among other academic papers and also to write for them assignment essays. Our writing and editing services is created both for students and professionals. We deal with both the non academic and academic editing and writing services to fulfill your needs. At our custom essay editing, you will find editors who are qualified in linguistics and English language. We are ready to provide you the custom essay editing service at any time of the day or night because we operate as a 24/7 service. Our custom essay editing service comprises of creative thinkers, skillful editors...

Words: 574 - Pages: 3

Premium Essay

Essay

...An essay is usually a short piece of writing. It is often written from an author's personal point of view. Essays can be literary criticism, political manifestos, learned arguments, observations of daily life, recollections, and reflections of the author. The definition of an essay is vague, overlapping with those of an article and a short story. Almost all modern essays are written in prose, but works in verse have been dubbed essays (e.g. Alexander Pope's An Essay on Criticism and An Essay on Man). While brevity usually defines an essay, voluminous works like John Locke's An Essay Concerning Human Understanding and Thomas Malthus's An Essay on the Principle of Population provide counterexamples. It is very difficult to define the genre into which essays fall. Aldous Huxley, a leading essayist, gives guidance on the subject: Like the novel, the essay is a literary Abstract This article will examine the reasons why it is important both linguistically and psychologically to build a vocabulary quickly when learning a foreign language. The article asserts that very little can be achieved or learned in a foreign language with a small vocabulary and that by building a sizable vocabulary quite quickly one can soon be able to function adequately. You may also wish to look at http://www.jalt-publications.org/tlt/files/95/feb/meara.html   Introduction   It is obvious that in order to learn a foreign language one needs to learn many many words. But how many? Educated...

Words: 332 - Pages: 2

Premium Essay

Essay

...There are some teachers who are going to require you to write a 250 word essay. Actually, it is a very short essay for that matter but for some students, it may also be a burden to have a word limit in writing. Let us take a look at the scenarios that you need to understand to compose a well developed essay. For some students, it may be limiting to have a word factor quota in writing an article. There are some individuals who can tell more out of a topic and that having 250 words will not suffice to tell everything in their minds. That is why you need to have the skills in budgeting the words that you have to write without sacrificing the ideas that you have to deliver. There are different essay types that you also need to consider so having a word limit cannot simply be an easy task. Still for some students, a 250 word essay may mean too much because there are also some people who do not want to waste their time writing. No matter what the essay structure may be, these types of people are not really eager to translate their thoughts to written form so they think 250 words simply equates to too much work. Anyway, you need to understand that having this kind of limit will eventually benefit the students as they improve their discipline, being responsible and being resourceful individuals. We can offer you to buy essays from us so you do not have to worry about the number of words in writing. Let our writers make your life easier...

Words: 273 - Pages: 2

Free Essay

Essay

...I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real essay I’m sorry this is not a real...

Words: 256 - Pages: 2

Premium Essay

Essay

...Process and Procedure Essay Samples are Helpful Guides in Writing Saturday, June 20th, 2009 Process and Procedure Essay Samples will Assist You in Understanding this Essay Format First of all let’s find out what essay is called process and procedure essay. It is an essay which sometimes called “how to” essay for it guides in certain activities or gives instructions as how to do some job (procedure) or complete a certain task. When you feel difficulty with this essay type, you can find process and procedure essay samples which can give you useful tips into creating an essay which will be have high rating. Process and procedure essay outlining certain procedures or directions to perform certain activity is an important task if one needs to learn how to compile clear instructions to serve the needs of professionals in different fields. These can be helpful for engineers, teachers, doctors and even housewives when it concerns cook books which are also some kind of instructive writing. Procedure essay writing is a useful skills for managerial personnel as they need to organize people and direct them toward certain activities. Process and procedure essay samples can be found online in abundance. Through these essay examples one can get some notion about procedure writing and take some notes how to complete a good piece of process essay. One may note that procedure can include descriptions, warnings and recommendations to the procedures described. To provide guidelines for...

Words: 539 - Pages: 3

Premium Essay

Essays

...HOW TO READ ESSAYS YOU MUST ANALYZE 1. Take a pencil in your hand. 2. Read the essay over once, quickly, looking for the main idea, for what the essay is about in general, and for what the author seems to be saying. Don't get bogged down in details. (If you come to an unfamiliar word, circle it but go on reading). 3. Check the meaning of unfamiliar words. If they seem to be key words, i.e., if the author uses them more than once, scribble a brief definition at the bottom of the page or at the end of the essay. 4. Now re-read more slowly and carefully, this time making a conscious attempt to begin to isolate the single most important generalization the author makes: his thesis. Follow his line of thought; try to get some sense of structure. The thesis determines the structure, so the structure, once you begin to sense it, can lead you to the thesis. What is the main point the author is making: Where is it? Remember, examples or "for instances" are not main points. The thesis is the generalization the author is attempting to prove valid. Your job, then is to ask yourself, "What is the author trying to prove"? Another way of identifying the thesis is to ask yourself, "What is the unifying principle of this essay"? or "What idea does everything in this essay talk about"? or "Under what single main statement could all the subdivisions fit"? If the author has stated his thesis fully and clearly and all in one place, your job is easier. The thesis is apt to be stated...

Words: 971 - Pages: 4

Premium Essay

Essay

...to write A Level Sociology Essay Assessment With reference to the present AEB syllabus, there are three main skills being assessed in your essays. 1. Knowledge and Understanding (9 marks) 2. Interpretation and Application (9 marks) 3. Evaluation (9 marks) What Does This Mean? What this means is that for writing an essay is that the content (studies, names of researcher, dates, figures, concepts, although important need to be organised coherently, applied to a variety of social situations and interpreted, and expressed in a critical fashion. You must be aware of the skills being highlighted in the question in order to use the appropriate skills in your essays. You should also practice writing essays regularly and develop a technique which addresses the skills required so that you can actually answer the question set. I hope that this handout should allow you to achieve this. Stage One Many students are too quick into diving into an answer. They have focused on certain key terms and ‘assumed’ what the essay requires from a quick look at the question. Instead, the question should be read a number of times. Task One With the title provided. Analyze the question by underlining the key features in the essay title Double underline the skills being assessed, e.g., describe and explain Identify any terms or concepts contained in the question. These terms will need to be defined, i.e. concepts such as interactionists. Essay questions will also include...

Words: 1452 - Pages: 6

Premium Essay

Essay

...This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is my essay. This is...

Words: 401 - Pages: 2

Premium Essay

Essay

...from these events? How have they affected your personality or how you deal with situations now? Remember the focus of the essay is on the contrasting impacts of these events in your life. These events do not have to be major events, they could be minor in nature but their impact on you could be great and long lasting. Undertake the task of pre writing for this topic. Select your two events. Describe them in point form. Consider their diverse impacts on your life. By the end of this class you should have completed your pre writing and make sure you get your sheet signed by me. You have the week to work on your first draft. Those of you who would like to show me the first draft are free to submit it to me online and I shall hand them back to you online. I will tell you whether you are on the right track, however this is optional and you will not be penalized if you do not show me your first draft. You need to give me Draft 1 by Tuesday, Feb 26. This will be an online submission under Assignments on ilearn. I will correct it and give it back to you by Sunday March 3, and then you will work on changing the draft according to my corrections and bring it to class on Tuesday, March 5 when we will have a peer review session. So after our class today you need to upload your first drafts of the essay in a week, by Feb 26 in an area marked out as Essay 1 under Assignments on Ilearn. You need to exchange your second drafts with two of your classmates on Tuesday, March...

Words: 547 - Pages: 3

Premium Essay

Essay

...Essay Writer can provide students with the exact answers to their essay assignments through our free essay section as well as our custom essay writing services. All of Essay Writer’s free essays are uploaded to our site by some college and university students in the UK to serve as informative guides and comparative templates to help you finish your own essay writing tasks with greater ease and clarity. These sample essays are readily downloadable and very easily accessible; just simply select a subject area or topic from our list of available subjects. You can then go through our list of available essay titles under that subject. Welcome to Essay Writer’s free essays section! You can now access our very extensive collection of free essays. These essays are all original and previously not made available to anyone, and are excellently written and submitted by some well meaning college students who wish to share their knowledge to help you do better in writing your own essays. Below is the list of the subject areas we cover in our free essays section. Simply select the subject that corresponds to your need. You will then be shown a list of all the essay titles available for that specific subject. Essay Writer regularly updates its free essay database. Keep checking back for additional subjects or topics. You may also bookmark our Free Essays page to make it easier to check back on the availability of our free essays. To bookmark this page, simply click on the bookmark...

Words: 314 - Pages: 2

Premium Essay

Essay

...tutorial x 13 weeks)     Level: Foundation/Matriculation     Lecturers: Ms Fazidah Abdul Jamil., Mdm Goh Wan Chen, Ms Saratha Thevi Ramasamy, Ms Norzaireen Shamsul Kamar Synopsis: This course is designed for students who require the necessary skills for tertiary studies. Some basic grammatical concepts are taught and students are to apply them in their writing. Writing will focus on the development of coherent paragraphs. Reading skills will cover such strategies as scanning, skimming, main ideas, contextual clues and inferences. Learning Outcomes: Upon completion of this subject, student will be able to: 1. write summaries as well as process, comparison-contrast and cause-effect essays 2. apply basic grammatical concepts in writing 3. answer questions based on academic texts 4. give oral presentations Textbook: 1. Daise, D., Norloff, C., and Carne, P., (2011). Q: Skills for Success 4 : Reading and Writing Oxford University Press, UK 2. Paterson, K, and Wedge, R., (2013). Oxford Grammar for EAP. Oxford University Press, UK Recommended References: Cambridge International Dictionary of English (1997), Cambridge University Press, UK Mode of Assessment: [1] Class participation 5% [2] Quiz 1 15% [3] Quiz 2 10% [4] Oral Presentation 10% [5] Mid-Term Examination 20% [6] Final Examination 40% Syllabus – FDENG001 |Week |UNIT |Topics ...

Words: 469 - Pages: 2

Premium Essay

Essay

...Define Your Thesis For essays that are part of an Early Years Care & Education Degree, it is important to clearly define a thesis statement within the first paragraph of the essay. Even if you are given a topic to write, such as the importance of preschool classes in low-income neighborhoods, you need to develop a strong thesis in your own words. Here is an example: "Preschool classes in low-income neighborhoods are a crucial step in helping all children enter elementary school at the same educational level, regardless of the income of the family." Once you have defined a clear thesis, you can proceed to the rest of your essay. However, without a clear thesis, your essay will not hold up. Use Examples The majority of your essay should be a careful and clear argument that supports your thesis statement. Do research and cite as many examples as possible to prove your point. For an essay about the merits of all-day educational opportunities for preschool-aged children, check trustworthy sources such as the National Association for the Education of Young Children and national PTA. Provide each point in a strong and complete paragraph. Each paragraph should have a main statement, supporting information and a conclusion. Tie In Conclusion After you have made your argument, state your conclusion in a clear and concise manner. Whether you have proven that the teacher ratio in a preschool setting should be lower than 4 to 1 or made a case for more national funding for the education...

Words: 281 - Pages: 2

Free Essay

Essay

...Carmen Hollow Mr. Beurskens College English Critique Essay: The Morals of the Prince May 3, 2011 The Grey Area between Good and Evil: A Critique of “The Morals of the Prince” by Niccolo Machiavelli Introduction We’ve all made a promise that we couldn’t keep and we have all felt bad about breaking those promises. Whether it was a promise to our parents, our children or a co-worker, we don’t feel good about it, but sometimes it can’t be helped. Usually if we couldn’t keep a promise it was for a good reason and not a selfish one. To the person that we made the promise to, we may be viewed as uncaring or unreliable, but to ourselves we know that we had to make a decision that could hurt someone but at the same time our decision could help that same person or persons. Making a promise and not being able to keep it for one reason or another, is one of the few topics that Machiavelli writes of in his essay “The Morals of the Prince”. He also tells why he believes a prince should be feared rather than loved, and why a prince should be stingy and not generous. He wants us to know how a “perfect” prince should act and behave so that the prince will be viewed upon as a great prince. Summary Machiavelli writes about how he believes a prince should act and behave to be considered a successful prince, one that is loved and feared, liberal and stingy, one that knows when to keep his word and when to break it. In his essay, Machiavelli writes “a prince who wants to keep his post...

Words: 1138 - Pages: 5

Premium Essay

Essay

...Basic techniques for generating ideas. Brainstorming. Brainstorming consists in writing series of words or sentences just as they flow from our mind, although they have no logical order or connections. Once the words are written down, we have to establish relationships among them. This is the embryo of the future text. Free writing. Free writing is a similar technique to the brainstorming. Consists in writing a text without previous decisions or ideas about how we want to write it. Just choosing a topic and writing about it, and then we can summarise the main ideas. Organisation of information. There are some basic rules for writing a well - structured text. The text should be organised in a clear way; it must not be a twisted or an incomprehensible lot of ideas. We have to try to write according to certain conventions about hoe the text is organised. We have to structure our text in paragraphs. Each paragraph must express one idea. Some rules referring to the paragraphs: A paragraph must be clearly separated from other paragraphs, either by an empty line or by indenting the first line, or both. There must be no blank spaces or half-empty lines inside the paragraph. A paragraph in academic prose does not begin with a dot, a line or a kind of mark, except in special circumstances. Each body paragraph must normally have a topic sentence, and more than one sentence. Types of paragraphs. The introductory paragraph. There must be at least one...

Words: 1285 - Pages: 6