...Maglev trains were great idea. Instead of just using conventional motors for power they use magnets to levitate the train above the track and propel it forward. The maglev trains are just a good idea, than reality. These vehicles travel quietly, quickly and with less impact on environment than traditional trains. Today’s maglev trains use conventional electro-magnets. But, scientists and engineers found well-being super conducting electro-magnets that will make maglev trains even more efficient. In this slideshow, I used a train model to demonstrate some of the science behind a well-being super conducting technology. This model doesn’t show exactly how a real super conducting maglev train would work. The real train would use super conducting electro-magnets. Not the form of super conducting material we show. But, this model does those principles such as magnetic levitation, magnetic flux trapping, the Meissonier effect, plus it’s a lot of fun. This pock is made of Yttrium Barium Copper oxide (YBa2Cu3O7-x). It’s a type of super conductor. Super Conductors are very special materials with special properties under certain conditions. But, right now when we place the pock on the magnetic track, nothing special happens. It just sets there. The magnetic field of the magnetic track which is made of very strong neptunium iron boride magnets penetrates through the pock just as the magnetic field penetrates through anything else. To bring out this magnet’s magical properties we need to cool...
Words: 496 - Pages: 2
...In this beautiful world, many forces that can’t be identified by our naked eye surround us like anything...and some people do not even realize their existence. Forces like magnetism, electricity, gravity etc. have been a constituent of earth science. The spinning of the earth and things like gravity force etc. is due to the earth’s magnetism property. Here we are introducing a simple DIY science project for students or hobbyist – Maglev Train. Magnetic suspension, Maglev and Magnetic levitation are an approach by which a thing or any object is hanging without any support apart from the magnetic fields. This magnetic levitation approach is utilized for designing this simple maglev train. Actually the original maglev trains are very complex in design, but here we try to design a simple maglev train, which uses some permanent magnets, cardboard or wooden boards etc. Working Principle of Maglev Trains: The basic principle behind the magnetic levitation is to use the magnetism property to levitate any objects. Magnetism is a part of our elementary science, and the principle is that “the like/same poles repel each other but the unlike/opposite poles attract each other”. Actually our Maglev Train works on this principle of magnetism. The train floats on the guide rail due to this principle of magnetism that the magnetic forces. Materials Required for Maglev Trains: The materials required for the construction of Maglev Train model are listed below. * Wooden block : 5" x...
Words: 825 - Pages: 4
...California HighSpeedRail Series High Speed Rail in Japan: A Review and Evaluation of Magnetic Levitation Trains MamomTaniguchi Working Paper UCTCNo. I02 The University of California Transportation Center Umversity California of Berkeley, CA 94720 The University Transportation of California Center The University of California Transportation Center (UCTC) is one of ten regional units mandated by Congress and established in Fall 1988 to support research, education, and training in surface transportation. The UCCenter serves federal Region IX and is supported by matching grants from the U.$. Departmerit of Transportation, the California Department of Transportation (Caltrans), and the University. Based on the Berkeley Campus, UCTCdraws upon existing capabilities and resources of the Institutes of Transportation Studies at Berkeley, Davis, Irvine, and Los Angeles; the Institute of Urban and Regional Development at Berkeley; and several academic departments at the Berkeley, Davis, Irvhae, and Los Angeles campuses. Faculty and students on other University of California campuses may participate in Center activities. Researchers at other universities within the region also have opportunities to collaborate with UCfaculty on selected studies. UCTC’seducational and research programs are focused on strategic planning for improving metropolitan accessibility, with emphasis on the special conditions in Region IX. Particular attention is directed to strategies for using transportation...
Words: 4096 - Pages: 17
...The B&O Railroad By: Jaime Lewis For: Professor Knutson November 26, 2013 CON 101 Abstract The construction of the Baltimore and Ohio Railroad started in July of 1828. The city of Baltimore came up with the idea to build this railroad from Baltimore to Ohio because of the competition throughout the popular seaports in the United States. Baltimore was already a popular city, but adding a train that could carry people as well as goods would make more people travel to Baltimore, and other places along the train’s route, bring goods into Baltimore, and help keep Baltimore alive. The B&O railroad was always expanding. The railroad is best known for being the first railroad in the United States that used a steam locomotive. B&O Railroad Why was there a need for the Baltimore and Ohio Railroad? The Baltimore and Ohio Railroad was built due to competition throughout the main seaports in the United States. Due to the fact that Baltimore is at the top of the Chesapeake Bay, it had many advantages over other ports. Another way for goods to be transported from Baltimore all they way to Ohio was a great idea for Baltimore, therefore causing the plan for the B&O Railroad. During this time Baltimore was flooding with business. They constantly had ships coming into the harbor as well as trucks riding the highways. Baltimore was (and still is) such a popular and thriving city, so the railroad made sense to help keep business, and the city, alive. Baltimore had to...
Words: 2781 - Pages: 12
...THE MATHEMATICS OF LOTTERY Odds, Combinations, Systems ∏ Cătălin Bărboianu INFAROM Publishing Applied Mathematics office@infarom.com http://www.infarom.com http://probability.infarom.ro ISBN 978-973-1991-11-5 Publisher: INFAROM Author: Cătălin Bărboianu Correction Editor: CarolAnn Johnson Copyright © INFAROM 2009 This work is subject to copyright. All rights are reserved, whether the whole work or part of the material is concerned, specifically the rights of translation, reprinting, reuse of formulas and tables, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of Copyright Laws, and permission for use must always be obtained from INFAROM. 2 Contents (of the complete edition) Introduction ...................................................................................... 5 The Rules of Lottery ...................................................................…. 11 Supporting Mathematics ......................................................…....... 15 Probability space ..............................................................…......... 16 Probability properties and formulas used .........................…......... 19 Combinatorics …………………………………………………... 22 Parameters of the lottery matrices …………………………......... 25 Number Combinations .......………….………………………...
Words: 20797 - Pages: 84
...Unit 2 DB Subjective Probability “ A probability derived from an individual's personal judgment about whether a specific outcome is likely to occur. Subjective probabilities contain no formal calculations and only reflect the subject's opinions and past experience.” (investopedia.com, 2013) There are three elements of a probability which combine to equal a result. There is the experiment ,the sample space and the event (Editorial board, 2012). In this case the class is the experiment because the process of attempting it will result in a grade which could vary from an A to F. The different grades that can be achieved in the class are the sample space. The event or outcome is the grade that will be received at the end of the experiment. I would like to achieve an “A” in this class but due to my lack of experience in statistical analysis, my hesitation towards advanced mathematics, and the length of time it takes for me to complete my course work a C in this class may be my best result. I have a 1/9 chance or probability to receive an “A” in the data range presented to me which is (A,A-,B,B-,C,C-,D,D- AND F). By the grades that have been posted I would say that the other students have a much better chance of receiving a better grade than mine. I have personally use subjective probability in my security guard business in bidding on contracts based on the clients involved , the rates that I charge versus the rates other companies charge and the amount of work involved...
Words: 344 - Pages: 2
... Probability – the chance that an uncertain event will occur (always between 0 and 1) Impossible Event – an event that has no chance of occurring (probability = 0) Certain Event – an event that is sure to occur (probability = 1) Assessing Probability probability of occurrence= probability of occurrence based on a combination of an individual’s past experience, personal opinion, and analysis of a particular situation Events Simple event An event described by a single characteristic Joint event An event described by two or more characteristics Complement of an event A , All events that are not part of event A The Sample Space is the collection of all possible events Simple Probability refers to the probability of a simple event. Joint Probability refers to the probability of an occurrence of two or more events. ex. P(Jan. and Wed.) Mutually exclusive events is the Events that cannot occur simultaneously Example: Randomly choosing a day from 2010 A = day in January; B = day in February Events A and B are mutually exclusive Collectively exhaustive events One of the events must occur the set of events covers the entire sample space Computing Joint and Marginal Probabilities The probability of a joint event, A and B: Computing a marginal (or simple) probability: Probability is the numerical measure of the likelihood that an event will occur The probability of any event must be between 0 and 1, inclusively The sum of the...
Words: 553 - Pages: 3
...= {-20, -19, …, -1, 0, 1, …, 19, 20} Number of people arriving at a bank in a day: S = {0, 1, 2, …} Inspection of parts till one defective part is found: S = {d, gd, ggd, gggd, …} Temperature of a place with a knowledge that it ranges between 10 degrees and 50 degrees: S = {any value between 10 to 50} Speed of a train at a given time, with no other additional information: S = {any value between 0 to infinity} 4 Sample Space (cont…) Discrete sample space: One that contains either finite or countable infinite set of outcomes • Out of the previous examples, which ones are discrete sample spaces??? Continuous sample space: One that contains an interval of real numbers. The interval can be either finite or infinite 5 Events A collection of certain sample points A subset of the sample space Denoted by ‘E’ Examples: • Getting an odd number in dice throwing experiment S = {1, 2, 3, 4,...
Words: 685 - Pages: 3
...the stage where one can begin to use probabilistic ideas in statistical inference and modelling, and the study of stochastic processes. Probability axioms. Conditional probability and independence. Discrete random variables and their distributions. Continuous distributions. Joint distributions. Independence. Expectations. Mean, variance, covariance, correlation. Limiting distributions. The syllabus is as follows: 1. Basic notions of probability. Sample spaces, events, relative frequency, probability axioms. 2. Finite sample spaces. Methods of enumeration. Combinatorial probability. 3. Conditional probability. Theorem of total probability. Bayes theorem. 4. Independence of two events. Mutual independence of n events. Sampling with and without replacement. 5. Random variables. Univariate distributions - discrete, continuous, mixed. Standard distributions - hypergeometric, binomial, geometric, Poisson, uniform, normal, exponential. Probability mass function, density function, distribution function. Probabilities of events in terms of random variables. 6. Transformations of a single random variable. Mean, variance, median, quantiles. 7. Joint distribution of two random variables. Marginal and conditional distributions. Independence. iii iv 8. Covariance, correlation. Means and variances of linear functions of random variables. 9. Limiting distributions in the Binomial case. These course notes explain the naterial in the syllabus. They have been “fieldtested” on the class of 2000...
Words: 29770 - Pages: 120
...[pic] [pic] Markov Chain [pic] Bonus Malus Model [pic] [pic] This table justifies the matrix above: | | | |Next state | | | |State |Premium |0 Claims |1 Claim |2 Claims |[pic]Claims | |1 | |1 |2 |3 |4 | |2 | |1 |3 |4 |4 | |3 | |2 |4 |4 |4 | |4 | |3 |4 |4 |4 | | | | | | | | |P11 |P12 |P13 |P14 | | | |P21 |P22 |P23 |P24 | | | |P31 |P32 |P33 |P34 | | | |P41 |P42 |P43 |P44 | | | | ...
Words: 361 - Pages: 2
...Permutations The word ‘coincidence’ is defined as an event that might have been arranged though it was accidental in actuality. Most of us perceive life as a set of coincidences that lead us to pre-destined conclusions despite believing in a being who is free from the shackles of time and space. The question is that a being, for whom time and space would be nothing more than two more dimensions, wouldn’t it be rather disparaging to throw events out randomly and witness how the history unfolds (as a mere spectator)? Did He really arrange the events such that there is nothing accidental about their occurrence? Or are all the lives of all the living beings merely a result of a set of events that unfolded one after another without there being a chronological order? To arrive at satisfactory answers to above questions we must steer this discourse towards the concept of conditional probability. That is the chance of something to happen given that an event has already happened. Though, the prior event need not to be related to the succeeding one but must be essential for it occurrence. Our minds as I believe are evolved enough to analyze a story and identify the point in time where the story has originated or the set of events that must have happened to ensure the specific conclusion of the story. To simplify the conundrum let us assume a hypothetical scenario where a man just became a pioneer in the field of actuarial science. Imagine him telling us his story in reverse. “I became...
Words: 825 - Pages: 4
...presence with probability 0.99. If it is not present, the radar falsely registers an aircraft presence with probability 0.10. We assume that an aircraft is present with probability 0.05. What is the probability of false alarm (a false indication of aircraft presence), and the probability of missed detection (nothing registers, even though an aircraft is present)? A sequential representation of the sample space is appropriate here, as shown in Fig. 1. Figure 1: Sequential description of the sample space for the radar detection problem Solution: Let A and B be the events A={an aircraft is present}, B={the radar registers an aircraft presence}, and consider also their complements Ac={an aircraft is not present}, Bc={the radar does not register an aircraft presence}. The given probabilities are recorded along the corresponding branches of the tree describing the sample space, as shown in Fig. 1. Each event of interest corresponds to a leaf of the tree and its probability is equal to the product of the probabilities associated with the branches in a path from the root to the corresponding leaf. The desired probabilities of false alarm and missed detection are P(false alarm)=P(Ac∩B)=P(Ac)P(B|Ac)=0.95∙0.10=0.095, P(missed detection)=P(A∩Bc)=P(A)P(Bc|A)=0.05∙0.01=0.0005. Application of Bayes` rule in this problem. We are given that P(A)=0.05, P(B|A)=0.99, P(B|Ac)=0.1. Applying Bayes’ rule, with A1=A and A2=Ac, we obtain P(aircraft present | radar registers) =...
Words: 1422 - Pages: 6
...1.M/G/ Queue a. Show that Let A(t) : Number of arrivals between time (0, t] “ n should be equal to or great than k” since if n is less than k (n<k), Pk(t)=0 Let’s think some customer C, Let’s find P{C arrived at time x and in service at time t | x=(0,t)] } P{C arrives in (x, x+dx] | C arrives in (0, t] }P{C is in service | C arrives at x, and x = (0,t] } Since theorem of Poisson Process, The theorem is that Given that N(t) =n, the n arrival times S1, S2, …Sn have the same distribution as the order statistics corresponding to n independent random variables uniformly distributed on the interval (0, t) Thus, P{C is in service | C arrives between time (0, t] } Since let y=t-x, x=0 → y=t, x=t →y=o, dy=-dx Therefore, In conclusion, ------ (1) 1-a Solution Since b. let 1-b Solution ------------------------------------------------- 2. notation Page 147 in “Fundamentals of Queuing Theory –Third Edition- , Donald Gross Carl M. Harris a. b. ------------------------------------------------- ------------------------------------------------- ------------------------------------------------- 3. a. let X=service time (Random variable) and XT=total service time (Random variable) X2=X+X, X3=X+X+X, ….. f2(x2)...
Words: 277 - Pages: 2
...Probability & Mathematical Statistics | “The frequency concept of Probability” | [Type the author name] | What is probability & Mathematical Statistics? It is the mathematical machinery necessary to answer questions about uncertain events. Where scientists, engineers and so forth need to make results and findings to these uncertain events precise... Random experiment “A random experiment is an experiment, trial, or observation that can be repeated numerous times under the same conditions... It must in no way be affected by any previous outcome and cannot be predicted with certainty.” i.e. it is uncertain (we don’t know ahead of time what the answer will be) and repeatable (ideally).The sample space is the set containing all possible outcomes from a random experiment. Often called S. (In set theory this is usually called U, but it’s the same thing) Discrete probability Finite Probability This is where there are only finitely many possible outcomes. Moreover, many of these outcomes will mostly be where all the outcomes are equally likely, that is, uniform finite probability. An example of such a thing is where a fair cubical die is tossed. It will come up with one of the six outcomes 1, 2, 3, 4, 5, or 6, and each with the same probability. Another example is where a fair coin is flipped. It will come up with one of the two outcomes H or T. Terminology and notation. We’ll call the tossing of a die a trial or an experiment. Where we...
Words: 1183 - Pages: 5
...Model Answers for Chapter 4: Evaluating Classification and Predictive Performance Answer to 4.3.a: Leftmost bar: If we take the 10% "most probable 1’s(frauds)” (as ranked by the model), it will yield 6.5 times as many 1’s (frauds), as would a random selection of 10% of the records. 2nd bar from left: If we take the second highest decile (10%) of records that are ranked by the model as “the most probable 1’s (frauds ” it will yield 2.7 times as many 1’s (frauds), as would a random selection of 10 % of the records. Answer to 4.3.b: Consider a tax authority that wants to allocate their resources for investigating firms that are most likely to submit fraudulent tax returns. Suppose that there are resources for auditing only 10% of firms. Rather than taking a random sample, they can select the top 10% of firms that are predicted to be most likely to report fraudulently (according to the decile chart). Or, to preserve the principle that anyone might be audited, they can establish differential probabilities for being sampled -- those in the top deciles being much more likely to be audited. . Answer to 4.3.c: Classification Confusion Matrix Predicted Class 1 (Fraudulent) Actual Class 1 (Fraudulent) 0 (Non-fraudulent) Error rate = 0 (Non-fraudulent) 30 58 32 920 n0,1 + n1,0 32 + 58 = = 0.0865 = 8.65% n 1040 Our classification confusion matrix becomes Classification Confusion Matrix Predicted Class 1 (Fraudulent) ...
Words: 435 - Pages: 2