Assume that 1 year from now you plan to deposit $1,000 in a savings account that pays a nominal rate of 8%. a. If the bank compounds interest annually, how much will you have in your account 4 years from now? b. What would your balance be 4 years from now if the bank used quarterly compounding rather than annual compounding? c. Suppose you deposited the $1,000 in 4 payments of $250 each at the end of Years 1, 2, 3, and 4. How much would you have in your account at the end of Year 4, based on 8% annual compounding? d. Suppose you deposited 4 equal payments in your account at the end of Years 1, 2, 3, and 4. Assuming an 8% interest rate, how large would each of your payments have to be for you to obtain the same ending balance as you calculated in part a?
Assume that 4 years from now you will need $1,000. Your bank compounds interest at an 8% annual rate. a. How much must you deposit 1 year from now to have a balance of $1,000 at Year 4? b. If you want to make equal payments at the end of Years 1 through 4 to accumulate the $1,000, how large must each of the 4 payments be? c. If your father were to offer either to make the payments calculated in part b or to give you a lump sum of $750 one year from now, which would you choose? d. If you will have only $750 at the end of Year 1, what interest rate, compounded annually, would you have to earn to have the necessary $1,000 at Year 4?