Warm up Product Rule Quotient Rule 1 Power Rule n f (x) = x f '(x) = nx n−1 2 Power Rule n f (x) = x f '(x) = nx n−1 General Power Rule n f (x) = g(x) n−1 f '(x) = ng(x) g"(x) 3 Examples y = ( 2x + 3) 3 y = x 3 −1 4 Exercise A General Power Rule 5 Transcendental Functions x sin(x) e cos(x) ln(x) 6 Sine Function ratio of the length of the side opposite the angle to the hypotenuse hyp opp θ opp sin(θ ) = hyp 7 Radians vs Degrees Radians Degrees 0 0 π/2 90 π 180 3π/2 270 2π 360 8 Plot of sin(x) −2π − 3π 2 −π − π 2 π 2 π 3π 2 2π 9 Values of sin(x) Radians Degrees sin(0)=0 sin(0)=0 sin(π/2)=1 sin(90)=1 sin(π)=0 sin(180)=0 sin(3π/2)=-1 sin(270)=-1 sin(2π)=0 sin(360)=0 10 Cosine Function ratio of the length of the side adjacent the angle to the hypotenuse hyp θ adj adj cos(θ ) = hyp 11 Plot of cos(x) −2π 3π − 2 −π − π 2 π 2 π 3π 2 2π 12 Values of cos(x) −2π 3π − 2 −π − π 2 π 2 π 3π 2 2π Radians Degrees cos(0)= cos(0)= cos(π/2)= cos(90)= cos(π)= cos(180)= cos(3π/2)= cos(270)= cos(2π)= cos(360)= 13 Exercise B sin and cos 14 Derivative of sin(x) −2π −2π −π −π π − 2 π − 2 π 2 π 2 π π 3π 2 2π 3π 2 2π 15 Derivative of sin(x) −2π −π π − 2 π 2 π 3π 2 2π 3π 2 2π =cos(x) −2π −π π − 2 π 2 π 16 Proof y = sin(x) sin(a + b) = sin(a)cos(b) + cos(a)sin(b) f (x + h) − f (x) y' = lim h→0 h sin(x + h) − sin(x) y' = lim h→0 h [sin(x)cos(h) + cos(x)sin(h)]− sin(x) y' = lim h→0 h