...ME 2173 MATLAB Project 5 Numerical Methods Using MATLAB Click Link Below To Buy: http://hwcampus.com/shop/matlab-project-5/ The properties of Superheated Steam at pressure 200 kPa are shown in the table below: Table 1 Temp °C p=200 kPa (120.2 C) volume v(m^3/kg) energy u(k)/kg) enthalpy h(k)/kg) entropy s(k)/kg.K) 150 0.960 2577.1 2706.2 7.127 200 1.081 2654.6 2769.1 7.281 250 1.199 2731.4 2870.7 7.508 300 1.316 2808.8 2971.2 7.710 350 1.433 2887.3 3072.1 7.894 400 1.549 2967.1 3173.9 8.064 450 1.666 3048.5 3277.0 8.224 500 1.781 3131.4 3381.6 8.373 600 2.013 3302.2 3487.7 8.515 700 2.244 3479.9 3704.8 8.779 800 2.476 3664.7 3928.8 9.022 900 2.707 3856.3 4159.8 9.248 1000 2.938 4054.8 4397.6 9.460 The Ideal-gas specific heat at constant pressure cp in kJ/kmol • K of water vapor as a function of temperature (in Kelvin, °K) is given by: cp(T) = a + bT + cT2 + dT3 where a = 32.24, b = 0.1923 x 10-2, c = 1.055 x 10-5, d = —3.595 x 10-9. cp = c,, + R, and the gas constant, R= 0.4615 kJ/kg • K. For the computations below, convert the temperature to Kelvin: K=273+°C a. Use spline interpolation to increase the data points in table 1 for T, v, u, h, s, by creating a temperature vector in K Tnew = [150: 50:1000] + 273 and using it in the function 'interpl' to form the new vectors vnew, anew, hnew, Snew; e.g. vnew= interpl(T+273, v, Tnew,'spline'). b. Create a 1x2 subplot: subplot (1, 2, 1) has anew , hnew vs Tnew and the data plots of...
Words: 458 - Pages: 2