Free Essay

Me 2173 Matlab Project 1 Numerical Methods Using Matlab

In:

Submitted By robbijeffers
Words 663
Pages 3
ME 2173 MATLAB Project 1 Numerical Methods Using MATLAB Click Link Below To Buy:

http://hwcampus.com/shop/2173-matlab-project-1/

MATLAB Project 1
1.) Save Table 1 below in an excel file called 'Superheat' and complete the instructions that follow:
Table 1: Properties of Superheated Steam at three different Pressures (1MPa =10116 N/m^2)
T em p
°C p1=0.20 MPa (120.2 C) p2=0.30 MPa (133.5 C) p3=0.40 MPa (143.6 C) volume

v1(m^3/kg) energy

u1(k)/kg) enthalpy

h1(k)/kg) volume

v2(m^3/kg) energy

u2(k)/kg) enthalpy

h2(k)/kg) volume

v3(m^3/kg) energy

u3(k)/kg) enthalpy

h3(k)/kg)
150 0.960 2577.1 0.634 2571.0 0.471 2564.4 2752.8
200 1.081 2654.6 0.716 2651.0 0.534 2647.2 2860.8
250 1.199 2731.4 0.796 2728.9 0.595 2726.4 2964.4
300 1.316 2808.8 0.875 2807.0 0.655 2805.1 3067.1
350 1.433 2887.3 0.954 2885.9 0.714 2884.4 3170
400 1.549 2967.1 1.032 2966.0 0.773 2964.9 3274.1
450 1.666 3048.5 1.109 3047.5 0.831 3046.6 3379
500 1.781 3131.4 1.187 3130.6 0.889 3129.8 3485.4
600 2.013 3302.2 1.341 3301.6 1.006 3301.0 3703.4
700 2.244 3479.9 1.496 3479.5 1.122 3479.0 3927.8
800 2.476 3664.7 1.650 3664.3 1.237 3663.9 4158.7
900 2.707 3856.3 1.804 3856.0 1.353 3855.7 4396.9
1000 2.938 4054.8 1.958 4054.5 1.469 4054.3 4641.9

a. Use a MATLAB command to import the data from an excel file, as a (13x10) matrix 'SteamProps'
b. Given that h=u+pv, use the column vectors of the 'SteamProps' matrix with operations to extract all the known columns of Table 1, find hi, h2 in kJ/kg, and show the new 'SteamProps' matrix.
c. Plot v(T) v/s Ton the same graph for pressures pi, p2,p3. Show the title, legend, and labelled axes.
d. Create three subplots (1x3) showing u(T),h(T) v/s Ton each subplot for these 3 pressures , with titles, labelled axes, and legends for T in the range [200, 800] and u/h in the range [2500, 4500].
2.) From Table 2 below showing the Ideal-gas specific heats (in Btu/Ibmol.R ) of various common gases as a function of temperature (in Rankine, °R):
Table 2: Cp of common gases as a function of temperature
Gases Formula a b x 10^2 c x 10^5 d x 10^9 cp(T) = a + bT + cr + dT3

[Btu/Ibmol•R] T=500°R T=1000°R T=2500°R
Nitrogen N2 6.903 -0.02085 0.05957 -0.11760
Oxygen 02 6.085 0.20170 -0.05275 0.05372
Air - 6.713 0.02609 0.03540 -0.08052
Hydrogen H2 6.952 -0.02542 0.02952 -0.03565
Carbon Monoxide CO 6.726 0.02222 0.03960 -0.09100
Carbon dioxide CO2 5.316 0.79361 -0.25810 0.30590
Water vapor H2O 7.700 0.02552 0.07781 -0.14720

a. Create an anonymous function cp(a,b,c,d,n of these parameters and call it for Air at T=678°R
b. Use symbolic computation to obtain the change in internal energy, AU = .15185:0 cydT for oxygen where cp = c„ + R, and the gas constant , R=48.24 Btu/Ibmol•R .
c. Using the matrix multiplication of two matrices 'P' (7x4) and 'R'(4x3) in MATLAB, obtain a matrix 'S' of all the cp values missing in the table. (Hint: i.e. [7x4]*[4x3]=[ 7x3]).

Similar Documents

Premium Essay

Me 2173 Matlab Project 5 Numerical Methods Using Matlab

...ME 2173 MATLAB Project 5 Numerical Methods Using MATLAB Click Link Below To Buy: http://hwcampus.com/shop/matlab-project-5/ The properties of Superheated Steam at pressure 200 kPa are shown in the table below: Table 1 Temp °C p=200 kPa (120.2 C) volume v(m^3/kg) energy u(k)/kg) enthalpy h(k)/kg) entropy s(k)/kg.K) 150 0.960 2577.1 2706.2 7.127 200 1.081 2654.6 2769.1 7.281 250 1.199 2731.4 2870.7 7.508 300 1.316 2808.8 2971.2 7.710 350 1.433 2887.3 3072.1 7.894 400 1.549 2967.1 3173.9 8.064 450 1.666 3048.5 3277.0 8.224 500 1.781 3131.4 3381.6 8.373 600 2.013 3302.2 3487.7 8.515 700 2.244 3479.9 3704.8 8.779 800 2.476 3664.7 3928.8 9.022 900 2.707 3856.3 4159.8 9.248 1000 2.938 4054.8 4397.6 9.460 The Ideal-gas specific heat at constant pressure cp in kJ/kmol • K of water vapor as a function of temperature (in Kelvin, °K) is given by: cp(T) = a + bT + cT2 + dT3 where a = 32.24, b = 0.1923 x 10-2, c = 1.055 x 10-5, d = —3.595 x 10-9. cp = c,, + R, and the gas constant, R= 0.4615 kJ/kg • K. For the computations below, convert the temperature to Kelvin: K=273+°C a. Use spline interpolation to increase the data points in table 1 for T, v, u, h, s, by creating a temperature vector in K Tnew = [150: 50:1000] + 273 and using it in the function 'interpl' to form the new vectors vnew, anew, hnew, Snew; e.g. vnew= interpl(T+273, v, Tnew,'spline'). b. Create a 1x2 subplot: subplot (1, 2, 1) has anew , hnew vs Tnew and the data plots of...

Words: 458 - Pages: 2