...NUCLEUS Function The nucleus is the control center of a cell as such it is the most important part of the cell. The control arises from the genetic information stored in the nucleus. Genes are made of the nucleic acid DNA. Hundreds of genes are linked together into enormous molecules called chromosomes (chromatin). Genes can be switched on or off and are indirectly responsible for making proteins which do the work of the cell. Structure The nucleus is a large roundish organelle. It is bounded by a double membrane which has numerous pores. Inside the nucleus are chromosomes and a dark region called a nucleolus which makes ribosomes. (Ribosomes are necessary for protein synthesis.) Endoplasmic Reticulum Function This folded membrane forms sacs to store proteins or other substances. It creates a vast surface area where the manufacture of proteins and new membranes can take place. Structure Endoplasmic reticulum is a folded mass of membranes made of the same phospholipids found in the plasma membrane. There are two types of ER smooth (without ribosomes) and rough (with ribosomes) Ribosomes Function Ribosomes are responsible for protein synthesis Structure Cells normally have millions of ribosomes, each ribosome has two parts which come together during protein synthesis. A ribosome is made of numerous proteins and RNA. Golgi complex Function The Golgi complex takes proteins made by the endoplasmic reticulum and exports them out of the cell as needed. It is able...
Words: 825 - Pages: 4
...An Educational Study on Cell Membrane Radiologic Pathology GUBALLO, MARIBETH S. BS RADTECH III INSTRUCTOR: DR. EMMANUEL PAGALA The Cell Membrane Cells are made of many vital parts that work together and perform specific functions. One important part of the cell structure is the cell membrane also known as the plasma membrane or cytoplasmic membrane. Historically, the plasma membrane was also referred to as the plasmalemma. The cell membrane is a microscopic lipid-based sheath that encloses the cytoplasm of a cell and separates the interior of all cells from the outside environment. It acts as a gatekeeper to ions and organic molecules such as DNA, RNA and other proteins by its selectively permeable barrier which enables the cell to regulate its internal environment and keep out foreign molecules that might damage or destroy the cell's contents, including molecules essential for life. Cell membranes also functions in different cellular processes such as cell adhesion, cell signaling and serve as the attachment surface for several extracellular structures. FUNCTION All prokaryotic cells have a phospholipid bilayer called the plasma membrane. It defines the boundary between the inside and outside of the cell even though it is found on the inside of the prokaryotic cell wall. The cytoplasm and other prokaryotic cellular contents are found inside the plasma membrane. On the other hand, all eukaryotic cells have a plasma membrane as well, but they also have additional...
Words: 1098 - Pages: 5
...characteristic features and functions of the cells key characteristics. Light Microscopy Diagrams *attached Bacterial Cell Diagram Key Characteristics * Cell wall * Plasma Membrane * Cytoplasm * Ribosome * Plasmid * Flagella * Pilli * Capsule Characteristic Features and Functions Cell Wall: * Cell walls of bacteria are made up of glycoprotein. * The main function of cell wall is it helps in providing support, mechanical strength and rigidity to cell and to also protect against osmotic substances. * It also protects the cell from bursting in a hypotonic medium. Plasma Membrane: * It is also known as cytoplasmic membrane (or) cell membrane. * It is composed of phospholipids, proteins and carbohydrates, forming a fluid-mosaic. * It helps in transportation of substances including removal of wastes from the body. * It helps in providing a mechanical barrier to the cell. * Plasma membrane acts as a semi permeable membrane, which allows only selected material to move inside and outside of the cell. Cytoplasm: * Helps in cellular growth, metabolism and replication. * Cytoplasm is the store houses of all the chemicals and components that are used to sustain the life of a bacterium. * There is also regulation of substances being transported in and out of the cell with the use of cytoplasms. Ribosome: * A tiny granule made up of RNA and proteins. * They are the site of protein synthesis therefore...
Words: 2219 - Pages: 9
...wall Plant cell and animal cell are different in shape, size and also has few different organelles which function in different way. One of the main difference between plant cells and animal cells is that plant cells have a cell wall, whereas animal cells don't. Instead of cell wall animal cells have cell membrane but the plant cells have both cell wall and cell membrane. The cell wall in plant cells work as a protection layer outside the cell membrane which also provides structure for the plant cell. It is seen as a shape giver to the plant. Likewise it also purify or determine the substances that goes in and out of the cells which protect the cells from being damage. Although all plant have cell wall but they are constructed in different way for different plants and also they act in different way which depend in the plants type. For example the world tallest tree Hyperion needs a very firm and stern cell wall so that it can stand still and grow to its fullest height. Whereas, for small plant like Hebe needs more mobility so it can bend but not break. Fig 1: Cellulose (Sugar Chain) The cell wall are made of cellulose. Cellulose is a type of fibres that is made up of sugar molecules which is formed in a long chain like structure to strengthen the cell. Cellulose is made up of complex sugar because it is used in both protection as well as structure. It's main function is to give strength to the cell wall. Nucleus and Nucleolus Plants cells and animals cells are different...
Words: 1326 - Pages: 6
...Review Biology Test #1 Chapter 3: Water and life • Polar covalent bonds in water result in Hydrogen bonding between the molecules. These bonds give water its special properties • In presence of water, ionic bonds are weak and covalent bonds are strong. Without water, ionic bonds are stronger. • Each water molecule can make 4 hydrogen bonds. • Water properties: 1. Polarity 2. Surface tension 3. Cohesion 4. Adhesion 5. Capilarity 6. High specific heat 7. Heat bank 8. Heat of vaporization allows evaporation cooling. 9. Abundant and versatile solvent 10. Solid is less dense than liquid 11. It is a reactant and a product in many biological reactions (Photosynthesis, dehydration reaction, hydrolysis…) 12. It can ionize into H3O+ and OH- • When substances dissolve in water, water molecules form hydration shells by breaking their attractions to other water molecules and attracting to the solvate particles. • The dissociation of water molecules into Hydronium and hydroxide ions is a reversible reaction that occurs in a state of equilibrium (pure water). • The concentration of each ion in pure water is 10-7 M. [OH-][H3O+] = 10-14 M. This way, whenever we know the concentration of one ion, we can calculate the concentration of the other. • Adding acids and bases can change these concentrations of ions in water • When acids dissolve in water, they donate H+, increasing the concentration of hydrogen ions. This results in an acidic solution • When bases dissolve in water...
Words: 5464 - Pages: 22
...study the internal ultrastructure of cells. A TEM aims an electron beam through a thin section of the specimen. •Scanning electron microscopes (SEMs) are useful for studying surface structures. The SEM has great depth of field,resulting in an image that seems three-dimensional. Explain why cell fractionation is a useful technique. Enables scientist to determine the functions of organelles. A Panoramic View of the Cell Distinguish between prokaryotic and eukaryotic cells. They both have: Plasma Membrane, Cytosol (semifluid subst), Chromosomes (carry genes), and Ribosomes (make proteins). Prokaryotic: are small, simple, and NO nucleus or membrane-enclosed organelles, DNA is concentrated in the nucleoid w/o membrane separating it. Eukaryotic: are big, complex, the chromosomes are contained within a membranous nuclear envelope, and numerous organelles suspended in the cytosol. Explain the advantages of compartmentalization in eukaryotic cells. They have both hydrophobic region tail and hydrophilic head. Head composed phosphate group attached to one carbon of glycerol is hydrophilic. The Nucleus and Ribosomes Describe the structure and function of the nuclear envelope, including the role of the pore complex. Nuclear Envelope: a complex double membrane structure that encloses the nucleus. - Studded with pore-like openings - Its inside surface...
Words: 994 - Pages: 4
...ASSIGNMENT TOPIC: CELL MEMBRANE [pic] INTRODUCTION Cell membranes are crucial to the life of the cell. It encloses the cell defines its boundaries, and maintains the essential difference between the cytosol and the extra cellular environment. Inside the cell the membranes of the endoplasmic reticulum, Golgi apparatus, mitochondria, and other membrane bound organelles in a eukaryotic cell maintain the characteristic differences between the contents of each organelle and the cytosol. Ion gradients across membranes, established by the activities of specialized membrane proteins, can be used to synthesize ATP to drive the transmembrane movement of selected solutes, or in nerve and muscle cells, to produce and transmit electrical signals. In all cells the plasma membrane also contains proteins that act as sensors of external signals allowing the cell to change its behavior in response to environmental cues; these protein sensors, or receptors, transfer information rather than ions or molecules across the membrane. [pic] THE STRUCTURE OF THE CELL MEMBRANE All biological membranes have a common general structure: each is a very thin film of lipid and protein molecules, held together mainly by non covalent interactions. Cell membranes are dynamic, fluid structures, and most of their molecules are able to move about in the plane of the membrane. The lipid molecules are arranged as a...
Words: 1815 - Pages: 8
...D. organelle. E. plasma membrane. 2. All of the chemical reactions within a cell are known as cell A. reproduction. B. metabolism. C. communication. D. inheritance. E. movement. 3. Cells produce and respond to chemical and electrical signals as a means of A. communicating. B. metabolizing. C. reproducing. D. synthesizing. E. using energy. 4. Which of the following is NOT a characteristic function of a cell? A. reproduction and inheritance B. metabolism and energy use C. movement D. synthesis E. communication 5. Which of the following could be used to study general features of cells? A. a magnifying glass B. scanning electron microscope C. transmission electron microscope D. binoculars E. light microscope 6. In order to study in detail the anatomy of internal cell parts, it would be best to use A. x-rays. B. flashlights. C. a transmission electron microscope (TEM). D. tissue cultures. E. a scanning electron microscope (SEM). 7. The plasma membrane A. separates the nucleus from the rest of the cell. B. is a rigid protein membrane. C. is not permeable. D. has a single layer of phospholipids. E. regulates movement of materials into and out of the cell. 8. The environment outside the plasma membrane is most appropriately referred to as A. intracellular. B. extracellular. C. multicellular. D. centrocellular. E. None of these choices is correct. 9. Glycolipids would contain both lipids and A. carbohydrates. B. proteins. C. electrolytes. D. cholesterol...
Words: 9362 - Pages: 38
...2.3 Chemistry of water Water is a polar molecule The shape of a water molecule and its polarity make hydrogen bonding possible, A hydrogen bond is a weak attraction between a slightly positive hydrogen atom and a slightly negative atom. (They are partial charging) * Can occur between atoms of different molecule or within the same molecule * A single hydrogen bond is easily broken while multiple hydrogen bonds are collectively quite strong. * Help to maintain the proper structure and function of complex molecules such as proteins and DNA. Oxygen attracts the shared electric and is partially negative Hydrogens are partially positive. Properties of water * Water molecules cling together because of hydrogen bonding * This association gives water many of its unique chemical properties * Water has a high heat capacity * The presence of many hydrogen bonds allow water to absorb a large amount of thermal heat without a great change in temperature * The temperature of water rises and falls slowly * Allows organisms to maintain internal temperatures. * Water has a high heat of vaporization * Hydrogen bonds must be broken to evaporate water. * Bodies of organism cool when their heat is used to evaporate water. * Water is a good Solvent * Water is good solvent because of its polarity * Polar substances dissolve readily in water * Hydrophilic molecules dissolve in water (sugar) ...
Words: 4521 - Pages: 19
...SCIE207 Phase 2 Lab Report Title: Animal and Plant Cell Structures 1. Animal Cell: [pic] |Number |Cell Structure |Description and Function | |1 |Nuclear Pore |Nuclear pores are large protein structures that cross| | | |the nuclear envelope, which is the double membrane | | | |inclosing the eukaryotic cell nucleus. The function | | | |of a nuclear pore is to control the way of molecules | | | |between the nucleus and cytoplasm, allowing some | | | |material to go through the membrane. | |2 |Chromatin (DNA) |Chromatin is the combined material of DNA and | | | |proteins. Chromatins are what make up the entire | | | |nucleus of a cell. The function of a chromatin is to | | | ...
Words: 1323 - Pages: 6
...natural phenomena and processes of plant life, the classification and description of plant diversity; applied topics which study the ways in which plants may be used for economic benefit in horticulture, agriculture and forestry and organismal topics which focus on plant groups such as algae, mosses or flowering plants. Core topics Cytology — cell structure, chromosome number Epigenetics — Control of gene expression Paleobotany — Study of fossil plants and plant evolution Palynology — Pollen and spores Plant biochemistry — Chemical processes of primary and secondary metabolism Phenology — timing of germination, flowering and fruiting Phytochemistry — Plant secondary chemistry and chemical processes Phytogeography — Plant Biogeography, the study of plant distributions Phytosociology — Plant communities and interactions Plant anatomy — Structure of plant cells and tissues Plant ecology — Role and function of plants in the environment Plant evolutionary developmental biology — Plant development from an evolutionary perspective Plant genetics — Genetic inheritance in plants Plant morphology — Structure of plants Plant physiology — Life functions of plants Plant reproduction — Processes of plant reproduction Plant systematics — Classification and naming of plants Plant taxonomy — Classification and naming of plants Applied topics[edit] Agronomy — Application of plant science to crop production Arboriculture — Culture and propagation of trees Biotechnology — use of plants to synthesize products...
Words: 2435 - Pages: 10
...Compare the structure of prokaryotic and eukaryotic. (290) There are two major types of cell: eukaryotic and prokaryotic. Eukaryotic cells have many membrane-bounded organelles within the cell. Whereas prokaryotic cells do not have any membrane-bounded organelles. The only membrane in prokaryotic is plasma(cell)membrane. Prokaryotes with the size of 5㎛(1-10㎛) are much smaller than eukaryotic cells with the size of 10㎛(10-100㎛). They both have a cell wall but with different composition. Prokaryotic cell walls are combined of peptidoglycan, a single large polymer of amino acids and sugar. Whereas the cell wall in plant is cellulose and fungi’s cell wall is made of chitin (the cell wall are not present in animals cells). Both cell types have many ribosomes, but the ribosomes of the eukaryotic are more complex and larger(80S) than ribosomes in the prokaryotic cell(70S). The ribosomes makes protein in both and can be found floating within the cytoplasm and RER (only in eukaryotic cells). Both cells have DNA as their genetic material, but the DNA of eukaryotes is held within its nucleus.Eukaryotic DNA is linear and is associated with histones (proteins). Hence the nucleus is absent in...
Words: 971 - Pages: 4
...fitting because cytoplasm is the substance of life that serves as a molecular soup in which all of the cell's organelles are suspended and held together by a fatty membrane. The cytoplasm is found inside the cell membrane, surrounding the nuclear envelope and the cytoplasmic organelles. The cytoplasm, as seen through an electron microscope, appears as a three-dimensional lattice of thin protein-rich strands. These lattices are known as microtrabecular lattice (MTL) and serves to interconnect and support the other "solid" structures in the cytoplasm. In other words, the cytoplasm is like a fence that is made up of lattes that are connected together. This fence's main purpose is to hold together the organelles within the cytoplasm. Cytoplasm is the home of the cytoskeleton, a network of cytoplasmic filaments that are responsible for the movement of the cell and give the cell its shape. The cytoplasm contains dissolved nutrients and helps dissolve waste products. The cytoplasm helps materials move around the cell by moving and churning through a process called cytoplasmic streaming. The nucleus often flows with the cytoplasm changing the shape as it moves. The cytoplasm contains many salts and is an excellent conductor of electricity, which therefore creates a medium for the vesicles, or mechanics of the cell. The function of the cytoplasm and the organelles which sit in it, are critical the cell's survival. http://sln.fi.edu/qa97/biology/cells/cell3.html Mitochondria Mitochondria...
Words: 2624 - Pages: 11
...Biology Units 3 &4 Notes -Chapter 1- The Chemical Nature of Cells | |Protein |Carbohydrates |Fats |Nucleic acid | |Monomer |Amino acids |Monosaccharaide |Fatty acids, glycerol |Nucleotide | |Example |2o Amino acids |Glucose, Fructose, Ribose |Triglycerides |Adenine, Cytosine, Guanine | | | | |Steroids, Phospholipids |&Thymine/ Uracil | |Diagram | | | | | | | | | | | | | | | | | | | | | | | |Bonding (how units combine – |1st structure-strong covalent |Strong covalent glycoside |Rarely ever forms polymer |covalent bonds b/w sugar | |polymers ...
Words: 8693 - Pages: 35
...The structure and functions of Cell The purpose of this report is to explain the structure and functions of Cell. Cell is the basic unit of life and it contains other membrane-bound organelles structures that carry out specific functions necessary for normal cellular operation. Organelles have a wide range of roles and functions that include everything from producing hormones and enzymes to providing energy for Cells. Organelles Location Structure Functions Nucleus Centre - Nucleus is spherical in shape - Nucleus is surrounded by a nuclear envelope - Nucleus is separated from cytoplasm by double membrane - It functions as an intermediary when DNA replication is taking place during cell cycle. - It contains hereditary materials DNA and RNA - It directs activities of the cell such as growth, metabolism and reproduction. - It create different type of RNA from DNA in the process called Transcription - It is control centre of the cell Nucleolus Inside the Nucleus (Centre) - It is spherical in shape - It is made of Protein and RNA - It helps in synthesis of Ribosome - It helps in assembly of signal recognition particles in the cell - It helps in sensing stress in the cell Golgi body They are found in Cytoplasm of the cell - It is sac-like - It comprises stacks of membrane structure - It is involve in movement of Lipid molecules around the cell - It helps in process and package of macromolecules e.g. Protein - It modifies protein after Endoplasmic Reticulum prepared ...
Words: 614 - Pages: 3