Free Essay

Physics

In:

Submitted By Catalina21
Words 2830
Pages 12
Chapter 1 Problems

1, 2, 3 = straightforward, intermediate, challenging = full solution available in Student Solutions Manual/Study Guide = co ached solution with hints available at www.cp7e.com = biomedical application

Section 1.3 Dimensional Analysis

1. A shape that covers an area A and has a uniform height h has a volume V = Ah. (a) Show that V = Ah is dimensionally correct. (b) Show that the volumes of a cylinder and of a rectangular box can be written in the form V = Ah, identifying A in each case. (Note that A, sometimes called the “footprint” of the object, can have any shape and that the height can, in general, be replaced by the average thickness of the object.)

2. (a) Suppose that the displacement of an object is related to time according to the expression x = Bt2. What are the dimensions of B? (b) A displacement is related to time as x = A sin(2πft), where A and f are constants. Find the dimensions of A. (Hint: A trigonometric function appearing in an equation must be dimensionless.)

3. The period of a simple pendulum, defined as the time necessary for one complete oscillation, is measured in time units and is given by

[pic]

where [pic] is the length of the pendulum and g is the acceleration due to gravity, in units of length divided by time squared. Show that this equation is dimensionally consistent. (You might want to check the formula using your keys at the end of a string and a stopwatch.)

4. Each of the following equations was given by a student during an examination:

[pic]

[pic]

[pic]

Do a dimensional analysis of each equation and explain why the equation can’t be correct.

5. Newton’s law of universal gravitation is represented by

[pic]

where F is the gravitational force, M and m are masses, and r is a length. Force has the SI units kg ∙ m/s2. What are the SI units of the proportionality constant G?

6. (a) One of the fundamental laws of motion states that the acceleration of an object is directly proportional to the resultant force on it and inversely proportional to its mass. If the proportionality constant is defined to have no dimensions, determine the dimensions of force. (b) The newton is the SI unit of force. According to the results for (a), how can you express a force having units of newtons by using the fundamental units of mass, length, and time?

Section 1.4 Uncertainty in Measurement and Significant Figures

7. How many significant figures are there in (a) 78.9 ± 0.2, (b) 3.788 × 109, (c) 2.46 × 10–6, (d) 0.0032?

8. A rectangular plate has a length of (21.3 ± 0.2) cm and a width of (9.8 ± 0.1) cm. Calculate the area of the plate, including its uncertainty.

9. Carry out the following arithmetic operations: (a) the sum of the measured values 756, 37.2, 0.83, and 2.5; (b) the product 0.0032 × 356.3; (c) the product 5.620 × π.

10. The speed of light is now defined to be 2.99 7924 58 × 108 m/s. Express the speed of light to (a) three significant figures, (b) five significant figures, and (c) seven significant figures.

11. A farmer measures the perimeter of a rectangular field. The length of each long side of the rectangle is found to be 38.44 m, and the length of each short side is found to be 19.5 m. What is the perimeter of the field?

12. The radius of a circle is measured to be (10.5 ± 0.2) m. Calculate (a) the area and (b) the circumference of the circle, and give the uncertainty in each value.

13. A fisherman catches two striped bass. The smaller of the two has a measured length of 93.46 cm (two decimal places, four significant figures), and the larger fish has a measured length of 135.3 cm (one decimal place, four significant figures). What is the total length of fish caught for the day?

14. (a) Using your calculator, find, in scientific notation with appropriate rounding, (a) the value of (2.437 × 104)(6.5211 × 109)/(5.37 × 104) and (b) the value of (3.14159 × 102)(27.01 × 104)/(1 234 × 106).

Section 1.5 Conversion of Units

15. A fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is approximately 6 ft in length. Take the distance from Earth to the Moon to be 250 000 miles, and use the given approximation to find the distance in fathoms.

16. Find the height or length of these natural wonders in kilometers, meters, and centimeters: (a) The longest cave system in the world is the Mammoth Cave system in Central Kentucky, with a mapped length of 348 miles. (b) In the United States, the waterfall with the greatest single drop is Ribbon Falls in California, which drops 1 612 ft. (c) At 20 320 feet, Mount McKinley in Alaska is America’s highest mountain. (d) The deepest canyon in the United States is King’s Canyon in California, with a depth of 8 200 ft.

17. A rectangular building lot measures 100 ft by 150 ft. Determine the area of this lot in square meters (m2).

18. Suppose your hair grows at the rate of 1/32 inch per day. Find the rate at which it grows in nanometers per second. Since the distance between atoms in a molecule is on the order of 0.1 nm, your answer suggests how rapidly atoms are assembled in this protein synthesis.

19. Using the data in Table 1.1 and the appropriate conversion factors, find the distance to the nearest star, in feet.

20. Using the data in Table 1.3 and the appropriate conversion factors, find the age of Earth in years.

21. The speed of light is about 3.00 × 108 m/s. Convert this figure to miles per hour.

22. A house is 50.0 ft long and 26 ft wide and has 8.0-ft-high ceilings. What is the volume of the interior of the house in cubic meters and in cubic centimeters?

23. The amount of water in reservoirs is often measured in acre-ft. One acre-ft is a volume that covers an area of one acre to a depth of one foot. An acre is 43 560 ft2. Find the volume in SI units of a reservoir containing 25.0 acre-ft of water.

24. The base of a pyramid covers an area of 13.0 acres (1 acre = 43 560 ft2) and has a height of 481 ft (Fig. P1.24). If the volume of a pyramid is given by the expression V = bh/3, where b is the area of the base and h is the height, find the volume of this pyramid in cubic meters.

[pic]
(© Sylvain Grandadam/Photo Researchers, Inc.)
Figure P1.24

25. A quart container of ice cream is to be made in the form of a cube. What should be the length of a side, in centimeters? (Use the conversion 1 gallon = 3.786 liter.)

26. (a) Find a conversion factor to convert from miles per hour to kilometers per hour. (b) For a while, federal law mandated that the maximum highway speed would be 55 mi/h. Use the conversion factor from part (a) to find the speed in kilometers per hour. (c) The maximum highway speed has been raised to 65 mi/h in some places. In kilometers per hour, how much of an increase is this over the 55-mi/h limit?

27. One cubic centimeter (1.0 cm3) of water has a mass of 1.0 × 10–3 kg. (a) Determine the mass of 1.0 m3 of water. (b) Assuming that biological substances are 98% water, estimate the masses of a cell with a diameter of 1.0 μm, a human kidney, and a fly. Take a kidney to be roughly a sphere with a radius of 4.0 cm and a fly to be roughly a cylinder 4.0 mm long and 2.0 mm in diameter.

28. A billionaire offers to give you $1 billion if you can count out that sum with only $1 bills. Should you accept her offer? Assume that you can count at an average rate of one bill every second, and be sure to allow for the fact that you need about 8 hours a day for sleeping and eating.

Section 1.6 Estimates and Order-of-Magnitude Calculations

Note: In developing answers to the problems in this section, you should state your important assumptions, including the numerical values assigned to parameters used in the solution.

29. Imagine that you are the equipment manager of a professional baseball team. One of your jobs is to keep baseballs on hand for games. Balls are sometimes lost when players hit them into the stands as either home runs or foul balls. Estimate how many baseballs you have to buy per season in order to make up for such losses. Assume that your team plays an 81-game home schedule in a season.

30. A hamburger chain advertises that it has sold more than 50 billion hamburgers. Estimate how many pounds of hamburger meat must have been used by the chain and how many head of cattle were required to furnish the meat.

31. An automobile tire is rated to last for 50 000 miles. Estimate the number of revolutions the tire will make in its lifetime.

32. Grass grows densely everywhere on a quarter-acre plot of land. What is the order of magnitude of the number of blades of grass? Explain your reasoning. Note that 1 acre = 43 560 ft2.

33. Estimate the number of Ping-Pong balls that would fit into a typical-size room (without being crushed). In your solution, state the quantities you measure or estimate and the values you take for them.

34. Soft drinks are commonly sold in aluminum containers. To an order of magnitude, how many such containers are thrown away or recycled each year by U.S. consumers? How many tons of aluminum does this represent? In your solution, state the quantities you measure or estimate and the values you take for them.

Section 1.7 Coordinate Systems

35. A point is located in a polar coordinate system by the coordinates r = 2.5 m and θ = 35°. Find the x- and y-coordinates of this point, assuming that the two coordinate systems have the same origin.

36. A certain corner of a room is selected as the origin of a rectangular coordinate system. If a fly is crawling on an adjacent wall at a point having coordinates (2.0, 1.0), where the units are meters, what is the distance of the fly from the corner of the room?

37. Express the location of the fly in Problem 36 in polar coordinates.

38. Two points in a rectangular coordinate system have the coordinates (5.0, 3.0) and (–3.0, 4.0), where the units are centimeters. Determine the distance between these points.

Section 1.8 Trigonometry

39. For the triangle shown in Figure P1.39, what are (a) the length of the unknown side, (b) the tangent of θ, and (c) the sine of φ?

[pic]
Figure P1.39

40. A ladder 9.00 m long leans against the side of a building. If the ladder is inclined at an angle of 75.0° to the horizontal, what is the horizontal distance from the bottom of the ladder to the building?

41. A high fountain of water is located at the center of a circular pool as shown in Figure P1.41. Not wishing to get his feet wet, a student walks around the pool and measures its circumference to be 15.0 m. Next, the student stands at the edge of the pool and uses a protractor to gauge the angle of elevation at the bottom of the fountain to be 55.0°. How high is the fountain?

[pic]
Figure P1.41

42. A right triangle has a hypotenuse of length 3.00 m, and one of its angles is 30.0°. What are the lengths of (a) the side opposite the 30.0° angle and (b) the side adjacent to the 30.0° angle?

43. In Figure P1.43, find (a) the side opposite θ, (b) the side adjacent to φ, (c) cos θ, (d) sin φ, and (e) tan φ.

[pic]
Figure P1.43

44. In a certain right triangle, the two sides that are perpendicular to each other are 5.00 m and 7.00 m long. What is the length of the third side of the triangle?

45. In Problem 44, what is the tangent of the angle for which 5.00 m is the opposite side?

46. A surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks 100 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is 35.0°. How wide is the river?

Additional Problems

47. A restaurant offers pizzas in two sizes: small, with a radius of six inches; and large, with a radius of nine inches. A customer argues that if the small one sells for six dollars, the large should sell for nine dollars. Without doing any calculations, is the customer correct? Defend your answer. Calculate the area of each pizza to find out how much pie you are getting in each case. If the small one costs six dollars how much should the large cost?

48. The radius of the planet Saturn is 5.85 × 107 m, and its mass is 5.68 × 1026 kg (Fig. P1.48). (a) Find the density of Saturn (its mass divided by its volume) in grams per cubic centimeter. (The volume of a sphere is given by (4/3)πr3.) (b) Find the area of Saturn in square feet. (The surface area of a sphere is given by 4πr2.)

[pic]
NASA
Figure P1.48 A view of Saturn.

49. The displacement of an object moving under uniform acceleration is some function of time and the acceleration. Suppose we write this displacement as s = kamtn, where k is a dimensionless constant. Show by dimensional analysis that this expression is satisfied if m = 1 and n = 2. Can the analysis give the value of k?

50. Compute the order of magnitude of the mass of (a) a bathtub filled with water and (b) a bathtub filled with pennies. In your solution, list the quantities you estimate and the value you estimate for each.

51. You can obtain a rough estimate of the size of a molecule by the following simple experiment: Let a droplet of oil spread out on a smooth surface of water. The resulting oil slick will be approximately one molecule thick. Given an oil droplet of mass 9.00 × 10–7 kg and density 918 kg/m3 that spreads out into a circle of radius 41.8 cm on the water surface, what is the order of magnitude of the diameter of an oil molecule?

52. In 2003, the U.S. national debt was about $7 trillion. (a) If payments were made at the rate of $1 000 per second, how many years would it take to pay off the debt, assuming that no interest were charged? (b) A dollar bill is about 15.5 cm long. If seven trillion dollar bills were laid end to end around the Earth’s equator, how many times would they encircle the planet? Take the radius of the Earth at the equator to be 6 378 km. (Note: Before doing any of these calculations, try to guess at the answers. You may be very surprised.)

53. Estimate the number of piano tuners living in New York City. This question was raised by the physicist Enrico Fermi, who was well known for making order-of-magnitude calculations.

54. Sphere 1 has surface area A1 and volume V1, and sphere 2 has surface area A2 and volume V2. If the radius of sphere 2 is double the radius of sphere 1, what is the ratio of (a) the areas, A2/A1 and (b) the volumes, V2/V1?

55. (a) How many seconds are there in a year? (b) If one micrometeorite (a sphere with a diameter on the order of 10–6 m) struck each square meter of the Moon each second, estimate the number of years it would take to cover the Moon with micrometeorites to a depth of one meter. (Hint: Consider a cubic box, 1 m on a side, on the Moon, and find how long it would take to fill the box.)

© Copyright 2004 Thomson. All rights reserved.

Similar Documents

Free Essay

Physics

...Assignment in Physics... 1. Definition of Science, Major branches of science 2. Scientific Method 3. Definition of Physics and its major branches 4. Notable Physicist and their contribution 5. Importance of Physics in our everyday life and in our society. (Write the references) Short bond paper, written or computerized (font: Times New Roman/font size: 12) Reading assign. Measurement Diff. system of measurement fundamentals and derive quantities scientific notation rules in significant figures conversion of units http://www.hep.man.ac.uk/babarph/babarphysics/physicists.html ) I.1 Science The intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment. I.2 The Branches of Science The Physical Sciences * Physics: The study of matter and energy and the interactions between them. Physicists study such subjects as gravity, light, and time. Albert Einstein, a famous physicist, developed the Theory of Relativity. * Chemistry: The science that deals with the composition, properties, reactions, and the structure of matter. The chemist Louis Pasteur, for example, discovered pasteurization, which is the process of heating liquids such as milk and orange juice to kill harmful germs. * Astronomy: The study of the universe beyond the Earth's atmosphere. The Earth Sciences * Geology: The science of the origin, history, and structure...

Words: 1431 - Pages: 6

Free Essay

Physics

...Aristotle was perhaps the first in the Western tradition to look at mechanics in any sort of structured way. A philosopher, rather than physicist, Aristotle thought about the way objects interact with each other, particularly their motions. One of the ideas to come from Aristotle’s work is that objects “like” to remain at rest. This seems rather reasonable put a book on a table and it remains still, push it gently and it will move until you stop. This begs the question, though what happens when we throw ad object? Our hand stops pushing, but the object continues to move. Likewise when we roll a ball we release the ball and it continues to move. Aristotle’s answer was impetus. When an object is moved by another (your hand, for example, throwing a ball), it accrues impetus. When the mover stops acting upon the movee, the impetus it accrued whilst being acted upon is used to continue the motion. Under this model, we would expect objects to exhibit straight-line trajectories rather than the parabolic trajectories we see when we throw an object A second idea of Aristotle’s is that heavier objects fall faster than lighter objects. It does, at first glance, seem rather reasonable but it is, like the idea of impetus, quite easily shown incorrect. The Aristotleans didn’t bother to take observations or do experiments to support their beliefs and most of those that came after them were content to trust Aristotle. Thus for more than 100 years, our understanding of mechanics was fundamentally...

Words: 667 - Pages: 3

Free Essay

Physics

...1. (5) famous physicist in their invention. Denis Papin (22 August 1647 - c. 1712) was a French physicist, mathematician andinventor, best known for his pioneering invention of the steam digester, the forerunner of the steam engine and of the pressure cooker. Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventorand businessman. He developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electriclight bulb. Dubbed "The Wizard of Menlo Park" by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large-scale teamwork to the process of invention, and because of that, he is often credited with the creation of the first industrial research laboratory Alexander Graham Bell (March 3, 1847 – August 2, 1922) was an eminent scientist, inventor, engineer and innovator who is credited with inventing the first practical telephone. Many other inventions marked Bell's later life, including groundbreaking work in optical telecommunications, hydrofoils and aeronautics. In 1888, Bell became one of the founding members of the National Geographic Society.[8] He has been described as one of the most influential figures in human history. John Logie Baird FRSE (13 August 1888 – 14 June 1946) was a Scottish engineer and inventor of the world's first practical, publicly demonstrated television system, and also the world's first...

Words: 508 - Pages: 3

Free Essay

Physics

...Statics of Rigid Bodies STATICS OF RIGID BODIES Chapter 1: Introduction Department of Engineering Sciences enter 〉〉 Statics of Rigid Bodies DEFINITION Mechanics • the study of the relationship among forces and their effects on bodies. • the science which describes and predicts the conditions for rest and motion of bodies under the action of forces. • a physical science (for it deals with physical phenomena) Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies MECHANICS MECHANICS RIGID BODIES STATICS bodies at rest DYNAMICS bodies in motion DEFORMABLE BODIES INCOMPRESSIBLE FLUIDS COMPRESSIBLE Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies What is a FORCE? represents the action of one body on another that tends to change the state or state of motion of a body. may be exerted by actual contact or at a distance (e.g. gravitational and magnetic forces). characterized by its point of application, magnitude and direction. represented by a vector. Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies Effects of a FORCE • development of other forces (reactions or internal forces) • deformation of the body • acceleration of the body Applied Force Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies Development of other forces ...

Words: 534 - Pages: 3

Premium Essay

Physics: The Physics Of Roller Coasters

...In any amusement park, the roller coaster is usually the most popular ride. It was first built in Russia during the 16th century, ever since then, the roller coaster has been a hit. With the car slowly moving up the everlasting height of the hill, high enough to touch the clouds, and then rushing downwards through many loops and twists, is enough to keep one’s adrenaline pumping. But what is the secret of the roller coaster? How is it possible for it to work this way? The answer is science. Many may not know, but science, specifically physics, has a lot to do with roller coasters. The roller coaster is actually powered by many types of energy: mechanical, potential, and kinetic. Mechanical energy is ‘the energy acquired by the objects upon which work is done.’ (Definition of Mechanical Energy). Potential energy is ‘energy possessed by an object because of its height above the ground’ (Definition of Potential Energy). Kinetic energy is ‘the energy of motion’ (Definition of Kinetic Energy)....

Words: 444 - Pages: 2

Free Essay

Physics

...Discussion #3 For this experiment we measured gravitational acceleration and velocity of a cart getting pushed up a ramp. First we had to make a prediction of how a velocity and acceleration graph would look like with a cart going up the ramp. After that we actually started to do the experiment. We then went to the computer which would help us graph our measurements of each time we did the experiment. It measured velocity, acceleration, and position of the cart each time. We did the experiment about a couple times until we got a good looking graph, then we recorded it on our lab reports and used it for the rest of our remaining results. Before using that, we took a measurement of the angle of the ramp which turned out to be 4.04 degrees. After that, we then took the graphs we did that were on the computer and we used different tools to find out the acceleration and slope of each specific time in the reading the lab report told us to do. From there after we were done, we then waited till the whole class was done and we all wrote down what our readings were for each measurement. Our measurements were; 4.04 degrees for angle A, .63 kg for the mass of the cart, .582 with an uncertainty of .009 for our acceleration from the average slope, .58 with an uncertainty of .009 for th average acceleration from STATS , 1.13 for mass of the cart with added mass, .569 with an uncertainty of .032 for acceleration from average slope with the doubled mass, and finally 8.199 with an uncertainty...

Words: 285 - Pages: 2

Premium Essay

Physics Research

...Galileo was born in Pisa (then part of the Duchy of Florence), Italy in 1564, the first of six children of Vincenzo Galilei, a famous lutenist, composer, and music theorist; and Giulia Ammannati. Galileo was named after an ancestor, Galileo Bonaiuti, a physician, university teacher and politician who lived in Florence from 1370 to 1450. Galileo Galilei  was an Italian physicist, mathematician, astronomer, and philosopher who played a major role in the scientific revolution. Galileo has been called the "father of modern physics Galileo's theoretical and experimental work on the motions of bodies, along with the largely independent work of Kepler and René Descartes, was a precursor of the classical mechanics developed by Sir Isaac Newton. Galileo conducted several experiments with pendulums. It is popularly believed that these began by watching the swings of the bronze chandelier in the cathedral of Pisa, using his pulse as a timer. Later experiments are described in his Two New Sciences. Galileo claimed that a simple pendulum is isochronous, i.e. that its swings always take the same amount of time, independently of the amplitude. In fact, this is only approximately true. Galileo also found that the square of the period varies directly with the length of the pendulum. It is said that at the age of 19, in the cathedral of Pisa, he timed the oscillations of a swinging lamp by means of his pulse beats and found the time for each swing to be the same, no matter what the amplitude...

Words: 734 - Pages: 3

Premium Essay

Math and Physics

...MOST DIFFICULT SUBJECTS FOR HIGHSCHOOL STUDENTS: MATH AND PHYSICS A Term Paper Presented to the Faculty of Saint Joseph's School In Partial Fulfillment of the Requirement in English IV Submitted to: Gemalyn Cantes Submitted by: Jovilyn Bumohya Date of submission: January 5, 2009 iii CONTENTS TITLE PAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii CONTENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACKNOWLEDGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . xii CHAPTER I: THE PROBLEM AND ITS BACKGROUND A. Statement of the Problem. . . . . . . . . . . . . . . . 1 B. Objectives of the Study. . . . . . . . . . . . . . . . . 1 C. Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 D. Significance of the Study. . . . . . . . . . . . . . . . 1 E. Scope and Delimitation. . . . . . . . . . . . . . . . . 2 F. Definition of Terms. . . . . . . . . . . . . . . . . . . . 2 CHAPTER II: MOST DIFFICULT SUBJECTS FOR HIGHSCHOOLSTUDENTS: MATH AND PHYSICS A. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 3 B. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CHPATER III: SUMMARY, CONCLUSION AND RECOMMENDATION A. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . 5 C. Recommendation...

Words: 1424 - Pages: 6

Premium Essay

Physics For Dummies

...(2008). John Michell: (1724-1793). Retrieved November 1, 2015, from http://www.relativitybook.com/resources/John_Michell_bio.html Browne, Michael E. (1999). Schaum's outline of theory and problems of physics for engineering and science (Series: Schaum's Outline Series). McGraw-Hill Companies. p. 58. ISBN 978-0-07-008498-8. Holzner, Steven (2005). Physics for Dummies. Wiley, John & Sons, Incorporated. p. 64. ISBN 978-0-7645-5433-9. Koberlein, B. (n.d.). Einstein and Eddington. Retrieved October 24, 2015, from https://briankoberlein.com/2014/05/19/einstein-eddington/ Mastin, L. (2009). Important Dates and Discoveries - The Physics of the Universe. Retrieved October 24, 2015, from http://www.physicsoftheuniverse.com/dates.html Newton's law of universal gravitation. (n.d.). In Wikipedia. Retrieved October 31, 2015, from https://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation Speed-of-Light. (n.d.). The American Heritage® New Dictionary of Cultural Literacy, Third Edition. Retrieved November 01, 2015, from Dictionary.com website: http://dictionary.reference.com/browse/speed-of-light Stanford's Gravity Probe B confirms two Einstein theories...

Words: 1084 - Pages: 5

Free Essay

Real World Physics

...REAL WORLD PHYSICS Did you know that Physics and Sports cannot be separated? In sports, athletes need to apply the concepts of Physics. But the application of Physics is not just limited to the machineries but also on how people should move the parts of their body. If successfully applied, well it can increase an athlete’s performance. But there are far more reasons why I believe Physics is a spectator of sports: firstly the physics of ice skating or figure skating which was shown in the movie Ice Princes that I recently watched; second, the physics of playing basketball and lastly, the physics of archery. To start off, the movie Ice Princess is the perfect example wherein Physics was applied into sports. Remember Isaac Newton’s first law of motion? Which states: An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force. (Mckinley, 2000) It is also known as inertia, and the very main reason why ice skaters glide smoothly on ice with the help of friction simply because there is less friction on ice. It is truly amazing on how the girl in the movie successfully applied Physics in figure skating. Another argument I have is, when your playing basketball. Physics is applied and can be seen when basketball players shoot the ball into the ring. As seen in the viral game angry birds, it basically shows and applies the concept of projectile motion wherein before the bird flies, a...

Words: 570 - Pages: 3

Free Essay

Understanding the World of Physics

...UNDERSTANDING PHYSICS – Part 1 MOTION, SOUND & HEAT Isaac Asimov Motion, Sound, and Heat From the ancient Greeks through the Age of Newton, the problems of motion, sound, and heat preoccupied the scientific imagination. These centuries gave birth to the basic concepts from which modern physics has evolved. In this first volume of his celebrated UNDERSTANDING PHYSICS, Isaac Asimov deals with this fascinating, momentous stage of scientific development with an authority and clarity that add further lustre to an eminent reputation. Demanding the minimum of specialised knowledge from his audience, he has produced a work that is the perfect supplement to the student’s formal textbook, as well se offering invaluable illumination to the general reader. ABOUT THE AUTHOR: ISAAC ASIMOV is generally regarded as one of this country's leading writers of science and science fiction. He obtained his Ph.D. in chemistry from Columbia University and was Associate Professor of Bio-chemistry at Boston University School of Medicine. He is the author of over two hundred books, including The Chemicals of Life, The Genetic Code, The Human Body, The Human Brain, and The Wellsprings of Life. The Search for Knowledge From Philosophy to Physics The scholars of ancient Greece were the first we know of to attempt a thoroughgoing investigation of the universe--a systematic gathering of knowledge through the activity of human reason alone. Those who attempted this rationalistic search for understanding...

Words: 259 - Pages: 2

Free Essay

Physics Test Paper

...[pic] |Level 1 Science | |90940 (1.1): Demonstrate understanding of aspects | |of mechanics | Credits: Four You should answer ALL parts of ALL questions in this booklet. If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question. Check that this booklet has pages 2–13 in the correct order and that none of these pages is blank. YOU MUST HAND THIS BOOKLET TO YOUR TEACHER AT THE END OF THE ALLOTTED TIME. |For Assessor’s |Achievement Criteria | | |use only | | | |Achievement |Achievement |Achievement | | |with Merit |with Excellence | |Demonstrate...

Words: 976 - Pages: 4

Free Essay

Physics

...Roger Truong Week 4 Physics Notes Experiment 1 * Rise and fall is pressure in the sound wave makes the flame move * The rise and fall in pressure makes the click sound * The rise and fall in the disturbance to what brings the sound to your ear * The square waves to what makes the flame move and bring the sound to your ear * The air molecules don’t move the disturbance does * For a 0.5 Hz your hear a click and the flame moves and resets * For 100 Hz the flame remains displaced and doesn’t recover * The transition from a click to a tone is between 20 and 50 Hz Reflection * Change in direction of a wave at an interference between two media wave returns into media from which it originated form. Wave Refraction * Change in direction of a wave when it passes from one medium to another caused by the different speeds of a wave * When water moves into different depths Wave Diffraction * Bending waves when they encounter an obstacle Absorption of waves * Reduction of energy in wave consumed by medium which it travels. * The main cause of absorption is Viscosity Interference * Two or more waves form coming together to make up a new wave Resonance * Tendency of a system to oscillate at a large amplitude at certain frequencies * Tendency to magnify a sound * The difference between an acoustic and electric guitar Wave Motion in Space and Time * Wave Motion in Space * Horizontal Axis:...

Words: 323 - Pages: 2

Free Essay

Physics Collisions

...Throughout our previous unit, we described the constant velocity of objects in motion. That laid the basis for this next unit, where we will be studying why and how the object moves the way it does, specifically the "push" or "pull" of force. The heavier cart in a same-direction elastic collision seems to push the lighter cart, which causes an increase in speed for the lighter cart. Although we may have brushed on the surface of movement, this unit will pave the path for further investigation on velocity as well as momentum. According to today's lab, it is possible to measure the mass of the carts and then multiple the mass by the velocity to determine momentum. These two things will be related to almost everything that we will be doing in physics, as how can we study how things move if we don't know how they're...

Words: 279 - Pages: 2

Free Essay

Physics

...Computational Condensed Matter 4 (2015) 32e39 Contents lists available at ScienceDirect Computational Condensed Matter journal homepage: http://ees.elsevier.com/cocom/default.asp Regular article Putting DFT to the trial: First principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3 Ghazanfar Nazir a, b, *, Afaq Ahmad b, Muhammad Farooq Khan a, Saad Tariq b a b Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, South Korea Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan a r t i c l e i n f o a b s t r a c t Article history: Received 8 July 2015 Received in revised form 21 July 2015 Accepted 27 July 2015 Available online 31 July 2015 Here we report optical properties for cubic phase Strontium Zirconate (SrZrO3) at different pressure values (0, 40, 100, 250 and 350) GPa under density functional theory (DFT) using Perdew-Becke-Johnson (PBE-GGA) as exchange-correlation functional. In this article we first time report all the optical properties for SrZrO3. The real and imaginary dielectric functions has investigated along with reflectivity, energy loss function, optical absorption coefficient, optical conductivity, refractive index and extinction coefficient under hydrostatic pressure. We demonstrated the indirect and direct bandgap behavior of SrZrO3 at (0) GPa and (40, 100, 250 and 350) GPa respectively. In addition, static dielectric...

Words: 5414 - Pages: 22