...SQL Performance Analyzer in Oracle Database 11g Release 1 The concept of SQL tuning sets, along with the DBMS_SQLTUNE package to manipulate them, was introduced in Oracle 10g as part of the Automatic SQL Tuning functionality. Oracle 11g makes further use of SQL tuning sets with the SQL Performance Analyzer, which compares the performance of the statements in a tuning set before and after a database change. The database change can be as major or minor as you like, such as: •Database, operating system, or hardware upgrades. •Database, operating system, or hardware configuration changes. •Database initialization parameter changes. •Schema changes, such as adding indexes or materialized views. •Refreshing optimizer statistics. •Creating or changing SQL profiles. Unlike Database Replay, the SQL Performance Analyzer does not try and replicate the workload on the system. It just plugs through each statement gathering performance statistics. The SQL Performance Analyzer can be run manually using the DBMS_SQLPA package or using Enterprise Manager. This article gives an overview of both methods. •Setting Up the Test •Creating SQL Tuning Sets using the DBMS_SQLTUNE Package •Running the SQL Performance Analyzer using the DBMS_SQLPA Package •Creating SQL Tuning Sets using Enterprise Manager •Running the SQL Performance Analyzer using Enterprise Manager •Optimizer Upgrade Simulation •Parameter Change •Transferring SQL Tuning Sets Setting Up the Test The SQL performance...
Words: 1591 - Pages: 7
...Universe From Wikipedia, the free encyclopedia For other uses, see Universe (disambiguation). Part of a series on Physical cosmology • • • • Early universe[show] Expanding universe[show] Structure formation[show] Future of universe[show] Components[show] History[show] Experiments[show] Scientists[show] Social impact[show] Universe Big Bang Age of the universe Chronology of the universe • • Astronomy portal Category: Physical cosmology • • • V T E The Universe is commonly defined as the totality of existence,[1][2][3][4] including planets, stars, galaxies, the contents of intergalactic space, the smallest subatomic particles, and all matter and energy.[5][6] Similar terms include the cosmos, the world, reality, and nature. The observable universe is about 46 billion light years in radius.[7] Scientific observation of the Universe has led to inferences of its earlier stages. These observations suggest that the Universe has been governed by the same physical laws and constants throughout most of its extent and history. The Big Bang theory is the prevailing cosmological model that describes the early development of the Universe, which is calculated to have begun13.798 ± 0.037 billion years ago.[8][9] Observations of supernovae have shown that the Universe is expanding at an accelerating rate.[10] There are many competing theories about the ultimate fate of the universe. Physicists remain unsure about what, if anything, preceded the Big Bang. Many...
Words: 12085 - Pages: 49
...This is page i Printer: Opaque this A Mathematical Introduction to Fluid Mechanics Alexandre Chorin Department of Mathematics University of California, Berkeley Berkeley, California 94720-3840, USA Jerrold E. Marsden Control and Dynamical Systems, 107-81 California Institute of Technology Pasadena, California 91125, USA ii iii A Mathematical Introduction to Fluid Mechanics iv Library of Congress Cataloging in Publication Data Chorin, Alexandre A Mathematical Introduction to Fluid Mechanics, Third Edition (Texts in Applied Mathematics) Bibliography: in frontmatter Includes. 1. Fluid dynamics (Mathematics) 2. Dynamics (Mathematics) I. Marsden, Jerrold E. II. Title. III. Series. ISBN 0-387 97300-1 American Mathematics Society (MOS) Subject Classification (1980): 76-01, 76C05, 76D05, 76N05, 76N15 Copyright 1992 by Springer-Verlag Publishing Company, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer-Verlag Publishing Company, Inc., 175 Fifth Avenue, New York, N.Y. 10010. Typesetting and illustrations prepared by June Meyermann, Gregory Kubota, and Wendy McKay The cover illustration shows a computer simulation of a shock diffraction by a pair of cylinders, by John Bell, Phillip Colella, William Crutchfield, Richard Pember, and Michael Welcome...
Words: 50231 - Pages: 201
...Natural Computing Series Series Editors: G. Rozenberg Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink Leiden Center for Natural Computing Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen T. Head L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer E. Oja G. P˘ un J. Reif H. Rubin A. Salomaa M. Schoenauer H.-P. Schwefel C. Torras a D. Whitley E. Winfree J.M. Zurada For further volumes: www.springer.com/series/4190 Franz Rothlauf Design of Modern Heuristics Principles and Application Prof. Dr. Franz Rothlauf Chair of Information Systems and Business Administration Johannes Gutenberg Universität Mainz Gutenberg School of Management and Economics Jakob-Welder-Weg 9 55099 Mainz Germany rothlauf@uni-mainz.de Series Editors G. Rozenberg (Managing Editor) rozenber@liacs.nl Th. Bäck, J.N. Kok, H.P. Spaink Leiden Center for Natural Computing Leiden University Niels Bohrweg 1 2333 CA Leiden, The Netherlands A.E. Eiben Vrije Universiteit Amsterdam The Netherlands ISSN 1619-7127 Natural Computing Series ISBN 978-3-540-72961-7 e-ISBN 978-3-540-72962-4 DOI 10.1007/978-3-540-72962-4 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011934137 ACM Computing Classification (1998): I.2.8, G.1.6, H.4.2 © Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations...
Words: 114592 - Pages: 459
...Chaotic Growth with the Logistic Model of P.-F. Verhulst Hugo Pastijn Department of Mathematics, Royal Military Academy B-1000 Brussels, Belgium Hugo.Pastijn@rma.ac.be Summary. Pierre-Fran¸ois Verhulst was born 200 years ago. After a short biograc phy of P.-F. Verhulst in which the link with the Royal Military Academy in Brussels is emphasized, the early history of the so-called “Logistic Model” is described. The relationship with older growth models is discussed, and the motivation of Verhulst to introduce different kinds of limited growth models is presented. The (re-)discovery of the chaotic behaviour of the discrete version of this logistic model in the late previous century is reminded. We conclude by referring to some generalizations of the logistic model, which were used to describe growth and diffusion processes in the context of technological innovation, and for which the author studied the chaotic behaviour by means of a series of computer experiments, performed in the eighties of last century by means of the then emerging “micro-computer” technology. 1 P.-F. Verhulst and the Royal Military Academy in Brussels In the year 1844, at the age of 40, when Pierre-Fran¸ois Verhulst on November c 30 presented his contribution to the “M´moires de l’Acad´mie” of the young e e Belgian nation, a paper which was published the next year in “tome XVIII” with the title: “Recherches math´matiques sur la loi d’accroissement de la e population” (mathematical investigations of the law of...
Words: 138629 - Pages: 555