...[pic] • What is an alloy? An alloy is a mixture or metallic solid solution composed of two or more elements. Complete solid solution alloys give single solid phase microstructure, while partial solutions give two or more phases that may or may not be homogeneous in distribution, depending on thermal (heat treatment) history. Alloys usually have different properties from those of the component elements. Alloy constituents are usually measured by mass. Alloys are usually classified as substitutional or interstitial alloys, depending on the atomic arrangement that forms the alloy. They can be further classified as homogeneous, consisting of a single phase, heterogeneous, consisting of two or more phases, or intermetallic, where there is no distinct boundary between phases Examples: • Bronze (tin, aluminium or other element) • Aluminium bronze (aluminium) • Arsenical bronze • Florentine bronze (aluminium or tin) • Gunmetal (tin, zinc) • Glucydur • Phosphor bronze (tin and phosphorus) • Ormolu (Gilt Bronze) (zinc) • Speculum metal (tin) [pic] 1. Steel Composition: (Iron and other metals such as carbon) Properties: Hard, Less Ductile & have high Tensile Strength. Applications: Steel is used widely in the construction of roads, railways, other infrastructure, appliances, and buildings. Most large modern structures, such as stadiums and skyscrapers, bridges, and airports, are supported by...
Words: 1286 - Pages: 6
...In this experiment you will be making measurements of voltage and current for a piece of metal wire, together with the physical dimensions of the wire, from which you will calculate the resistivity of the metal. Theory The resistance R of a component in a circuit is given by the equation V = IR where V is the potential difference across the component and I is the current in the component. The resistance of a wire is given by the equation R = ρl / A where ρ is the resistivity of the metal from which the wire is made, l is the length of the wire and A is its cross-sectional area. Using the circuit below, you will make measurements of current and voltage for different lengths of wire. You will plot a graph of resistance against length and from this you will calculate the resistivity. A V flying lead zero end of the metre rule tape to hold wire into place resistance wire 70 © University of Cambridge International Examinations 2006 Teaching AS Physics Practical Skills Resistivity of a wire Student Worksheet Making measurements and observations Use the micrometer screw gauge to measure the diameter d of the resistance wire in several places along the length. Each time you take a measurement at a new place, rotate the wire slightly. 1 Tape the wire to the metre rule so it cannot slip and the markings of the rule are visible. 2 Connect the circuit shown in the diagram above. The flying lead should have a...
Words: 802 - Pages: 4
...Background In this investigation I am going to investigate what affect the resistance of a wire. Electricity flows in metals. Metal wires are made of millions of tiny metal crystals. Each crystal’s atoms are arranged in a regular pattern. The metal is full of ‘free’ electrons that do not stick to any particular atom. They fill the space between atoms in a metal. When these electrons move they create an electric current. Conductors have resistance, but some are worse than others. The free electrons keep bumping into atoms. A wires resistance depends on four main factors which are: Resistivity The length of the wire Cross sectional area The temperature of the wire I am going to investigate how the length of the wire affects the resistance. I have done a preliminary experiment to help me decide the best way to do my investigation. The results should also help me make a prediction. Preliminary Investigation Below are my results from the preliminary experiment (see table 1). I have taken three readings each from the Volts and current to make sure it is as accurate as possible Table 1 From the results I can see that as the length of the wire increases, the resistance increases as well. Furthermore I have noticed that if you double the length of the wire, the resistance is roughly doubled. E.g. when the length of the wire is 20cm the resistance is 3.14 ohms, when the length of the wire is 40cm the resistance is 6.18 ohms which is roughly double 3.14 ohms....
Words: 1588 - Pages: 7
...Assignment On Engineering Materials (Glass) Introduction Glass is a non-crystalline solid material. Glasses are typically brittle, and often optically transparent. The most prevalent type of glass, used for centuries in windows and drinking vessels, is soda-lime glass, made of about 75% silica (SiO2) plus Na2O, CaO, and several minor additives. Often, the term glass is used in a restricted sense to refer to this specific use. [pic] [pic]Roman Cage Cup from the 4th century A.D. In science, however, the term glass is usually defined in a much wider sense, including every solid that possesses a non-crystalline (i.e. amorphous) structure and that exhibits a glass transition when heated towards the liquid state. In this wider sense, glasses can be made of quite different classes of materials: metallic alloys, ionic melts, aqueous solutions, molecular liquids, and polymers. Of these, polymer glasses (acrylic glass, polyethylene terephthalate) are the most important; for many applications (bottles, eyewear) they are a lighter alternative to traditional silica glasses. Glasses play an essential role in science and industry. Their chemical, physical, and in particular optical properties make them suitable for applications such as flat glass, container glass, optics and optoelectronics material, laboratory equipment, thermal insulator (glass wool), reinforcement fiber (glass-reinforced plastic, glass fiber reinforced concrete), and glass art (art glass, studio glass). ...
Words: 6654 - Pages: 27
...1/ ENERGY BANDS IN SOLIDS In this chapter we begin with a review of the basic atomic properties of matter leading to discrete electronic energy levels in atoms. We find that these energy levels are spread into energy bands in a crystal. This band structure allows us to distinguish between an insulator, a semiconductor, and a metal. 1-1 CHARGED PARTICLES The charge, or quantity, of negative electricity and the mass of the electron have been found to be 1.60 X 10- 19 C (coulomb) and 9.11 X 10- 31 kg, respectively. The values of many important physical constants are given in Appendix A, and a list of conversion factors and prefixes is given in Appendix B. Some idea of the number of electrons per second that represents current of the usual order of magnitude is readily possible. F'or example, since the charge per electron is 1.60 X 10- 19 C, the number of electrons per coulomb is the reciprocal of this nutnber, or approximately, 6 X 10 18 Further, since a current of 1 A (ampere) is the flow of 1 Cis, then a current of only 1 pA (1 picoampere, or 10- 12 A) represents the motion of approximately 6 million electrons per second. Yet a current of 1 pA is so small that considerable difficulty is experienced in attempting to measure it. The charge of a positive ion is an integral multiple of the charge of the electron, although it is of opposite sign. For the case of singly ionized particles, the charge is equal to that of the electron. For the case of doubly ionized particles...
Words: 63477 - Pages: 254
...8 2.7 4.74 1200 1.001 12.4 16 4–7 4.2 5.4 6.6 3.5 3 3.45 2.26 2.25 2.56 6 4.4 4 3.8 2.5–3 3.8 11.8 3.3 5.9 2.8 5.8 1.03 2.1 100 80 1 1.5–4 0.1 0.000 6 0.002 0.022 0.013 0.000 25 0.002 0.05 0.000 6 0.011 0.02 0.008 0.03 0.000 2 0.000 3 0.000 05 0.014 0.000 5 0.000 6 0.000 75 0.002 0.000 75 0.5 0.000 1 0.05 0.003 0.000 1 0.000 3 0.001 5 0.04 4 0 0.01 Conductivity (� ) Material Silver Copper Gold Aluminum Tungsten Zinc Brass Nickel Iron Phosphor bronze Solder Carbon steel German silver Manganin Constantan Germanium Stainless steel , S/m 6.17 × 107 4.10 × 107 3.82 × 107 1.82 × 107 1.67 × 107 1.5 × 107 1.45 × 107 1.03 × 107 1 × 107 0.7 × 107 0.6 × 107 0.3 × 107 0.227 × 107 0.226 × 107 0.22 × 107 0.11 × 107 5.80 × 107 Material Nichrome Graphite Silicon Ferrite (typical) Water (sea) Limestone Clay Water (fresh) Water (distilled) Soil (sandy) Granite Marble Bakelite Porcelain (dry process) Diamond Polystyrene Quartz , S/m 0.1 × 107 7 × 104 2300 100 5 10−2 5 × 10−3 10−3 10−4 10−5 10−6 10−8 10−9 10−10 2 ×...
Words: 177667 - Pages: 711
...*3963103* [3963] – 103 T.E. (Petroleum) (Semester – I) Examination, 2011 DRILLING & PRODUCTION OPERATIONS (2003 Course) Time : 3 Hours Max. Marks : 100 Instructions : 1) Question Nos. 1 and 5 are compulsory. Out of the remaining attempt 2 questions from Section I and 2 questions from Section II. 2) Answers to the two Sections should be written in separate books. 3) Neat diagrams must be drawn wherever necessary. 4) Black figures to the right indicate full marks. 5) Use of Logarithmic Tables, Slide Rule, Mollier Charts, Electronic Pocket Calculator and Steam Tables is allowed. 6) Assume suitable data, if necessary. SECTION – I 1. What are different systems on a drilling rig ? Explain any one in detail with suitable diagramme. 18 2. a) Calculate Bottom hole pressure if well depth is 2500 m and mud weight is 1.2 gm/cc. b) Calculate mud weight if mud gradient is 0.87 psi/ft. ′ c) Calculate volume bbl/meter for drill pipe O.D. = 5′ inch and I.D. = 4.276 inch. 2 2 2 10 8 8 16 d) Draw circulation system on a drilling rig. 3. a) Discuss IADC classification of a bit in details. b) Discuss different factors affecting rate of penetration in details. 4. Write short note on : i) Coring ii) Fishing tools iii) BOP iv) Directional well P.T.O. [3963] – 103 -2- *3963103* SECTION – II 5. a) Discuss different types of casings and function of the casings in brief. b) Discuss different types of well completion techniques. 6. a) Discuss primary cementation process with...
Words: 172166 - Pages: 689
...NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR Bachelor of Technology Programmes amï´>r¶ JH$s g§ñWmZ, m¡Úmo{ à VO o pñ Vw dZ m dY r V ‘ ñ Syllabi and Regulations for Undergraduate PROGRAMME OF STUDY (wef 2012 entry batch) Ma {gb Course Structure for B.Tech (4years, 8 Semester Course) Civil Engineering ( to be applicable from 2012 entry batch onwards) Course No CH-1101 /PH-1101 EE-1101 MA-1101 CE-1101 HS-1101 CH-1111 /PH-1111 ME-1111 Course Name Semester-1 Chemistry/Physics Basic Electrical Engineering Mathematics-I Engineering Graphics Communication Skills Chemistry/Physics Laboratory Workshop Physical Training-I NCC/NSO/NSS L 3 3 3 1 3 0 0 0 0 13 T 1 0 1 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 4 1 1 0 0 0 0 0 0 2 0 0 0 0 P 0 0 0 3 0 2 3 2 2 8 0 0 0 0 0 2 2 2 2 0 0 0 0 0 2 2 2 6 0 0 8 2 C 8 6 8 5 6 2 3 0 0 38 8 8 8 8 6 2 0 0 40 8 8 6 6 6 2 2 2 40 6 6 8 2 Course No EC-1101 CS-1101 MA-1102 ME-1101 PH-1101/ CH-1101 CS-1111 EE-1111 PH-1111/ CH-1111 Course Name Semester-2 Basic Electronics Introduction to Computing Mathematics-II Engineering Mechanics Physics/Chemistry Computing Laboratory Electrical Science Laboratory Physics/Chemistry Laboratory Physical Training –II NCC/NSO/NSS Semester-4 Structural Analysis-I Hydraulics Environmental Engg-I Structural Design-I Managerial Economics Engg. Geology Laboratory Hydraulics Laboratory Physical Training-IV NCC/NSO/NSS Semester-6 Structural Design-II Structural Analysis-III Foundation Engineering Transportation Engineering-II Hydrology &Flood...
Words: 126345 - Pages: 506
...62118 0/nm 1/n1 2/nm 3/nm 4/nm 5/nm 6/nm 7/nm 8/nm 9/nm 1990s 0th/pt 1st/p 1th/tc 2nd/p 2th/tc 3rd/p 3th/tc 4th/pt 5th/pt 6th/pt 7th/pt 8th/pt 9th/pt 0s/pt a A AA AAA Aachen/M aardvark/SM Aaren/M Aarhus/M Aarika/M Aaron/M AB aback abacus/SM abaft Abagael/M Abagail/M abalone/SM abandoner/M abandon/LGDRS abandonment/SM abase/LGDSR abasement/S abaser/M abashed/UY abashment/MS abash/SDLG abate/DSRLG abated/U abatement/MS abater/M abattoir/SM Abba/M Abbe/M abbé/S abbess/SM Abbey/M abbey/MS Abbie/M Abbi/M Abbot/M abbot/MS Abbott/M abbr abbrev abbreviated/UA abbreviates/A abbreviate/XDSNG abbreviating/A abbreviation/M Abbye/M Abby/M ABC/M Abdel/M abdicate/NGDSX abdication/M abdomen/SM abdominal/YS abduct/DGS abduction/SM abductor/SM Abdul/M ab/DY abeam Abelard/M Abel/M Abelson/M Abe/M Aberdeen/M Abernathy/M aberrant/YS aberrational aberration/SM abet/S abetted abetting abettor/SM Abeu/M abeyance/MS abeyant Abey/M abhorred abhorrence/MS abhorrent/Y abhorrer/M abhorring abhor/S abidance/MS abide/JGSR abider/M abiding/Y Abidjan/M Abie/M Abigael/M Abigail/M Abigale/M Abilene/M ability/IMES abjection/MS abjectness/SM abject/SGPDY abjuration/SM abjuratory abjurer/M abjure/ZGSRD ablate/VGNSDX ablation/M ablative/SY ablaze abler/E ables/E ablest able/U abloom ablution/MS Ab/M ABM/S abnegate/NGSDX abnegation/M Abner/M abnormality/SM abnormal/SY aboard ...
Words: 113589 - Pages: 455