1 FHMM1014 Mathematics I UNIVERSITI TUNKU ABDUL RAHMAN ACADEMIC YEAR 2013/2014 (TRIMESTER 1) FHMM1014 MATHEMATICS I FOUNDATION IN SCIENCE EXTRA QUESTION Real Number 1. Evaluate each of the following expressions. (i) (ii) (iii) (iv) (v) 2.
2 3 4 2 3 4 1 2 5 3 1 2 2 3 4 3 2 35 2
Draw the region for the following statements. (i) (ii) (iii) (iv)
3 x 5 1 x 3 5 x 2 2 x 6
Exponents and Logarithms 3. Simplify the expressions. (i)
4 xy 3x
3 1
y
1 2
(ii)
3x
y 3 27 x 4
1
2
3
(iii) (iv) (v)
xx 1 2 x 1 x2
1 2
5n1 10 n 20 2n 23n
9
1 n 2
3
n 3
32
1 5
4.
Solve the following equations: (i) (ii) (iii)
2 2 x 64 x 1 32x+ 2 – 28 (3x) + 3 = 0
2(4 x ) (2 x ) 3 0
2 FHMM1014 Mathematics I (iv) (v) 5.
5 2 x 1 6(5 x ) 1 0
3 x 1 4 2 x 1
Solve the following equations: (i) (ii) (iii) (iv) (v)
2(log 9 x log x 9) 5 log2 x + 3logx 2 = 4 log 4 x 12 log x 4 7 log 4 x 4 log x 4 2 log( x 1) log( x 2) log( 2 x 1)
6.
Solve the following equations. (i) 2ln x ln 9 5 e4x 6 (ii) (iii) e 3 x1 e 5 x4 (iv) 3ln x 3x (v) ln x 1 ln 3x 1 ln x Solve the following simultaneous equations: (i)
7.
log 8 ( xy ) 3,
(log 2 x)(log 2 y) 18.
(ii)
log 4 ( xy )
1 , 2
(log 2 x)(log 2 y) 2.
(iii)
x 5 y 0,
(1 log 5 y) log x 5 1.
8.
(a) (b)
If 10 x 10 x 4 , prove that x log10 (2 3 ) . Given
1 , solve for x. 2e x e x 5
e x 2e x
Answers: 1. (i) (iv) 2. (i) 14 (ii) (v) (ii) 20 14 (iii) 6