Free Essay

Cluster vs Share Nothing

In:

Submitted By toilet
Words 2248
Pages 9
IMPLEMENTASI VECTOR SPACE MODEL DAN BEBERAPA NOTASI METODE TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) PADA SISTEM TEMU KEMBALI INFORMASI Oka Karmayasa dan Ida Bagus Mahendra Program Studi Teknik Informatika, Jurusan Ilmu Komputer, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Udayana Email: oka.karmayasa@cs.unud.ac.id

ABSTRAK Sistem temu kembali informasi merupakan sistem yang digunakan untuk menemukan informasi yang relevan dengan kebutuhan dari penggunanya secara otomatis berdasarkan kesesuaian dengan query dari suatu koleksi informasi. Penelitian ini bertujuan untuk mengenal karakteristik beberapa notasi pembobotan TF-IDF serta mengimplementasikan model ruang vektor menggunakan beberapa notasi pada metode pembobotan TF-IDF pada sistem temu kembali informasi. Notasi TF-IDF yang digunakan pada penelitian ini adalah anc.ntc, lnc.ltc dan ltc.ltc. Pada Model Ruang Vektor, pembobotan term dilakukan disisi dokumen dan query. Pembobotan yang dihasilkan pada algoritma TF-IDF akan menjadi variabel dalam perhitungan cosine similarity. Hasil dari cosine similarity pada masing-masing dokumen terhadap query akan diurutkan secara descending, sehingga hasil pencarian akan menampilkan dokumen yang paling mendekati kata kunci. Sistem ini dikembangkan menggunakan bahasa pemrograman PHP dan dokumen yang digunakan sebagai data uji sebanyak 50 artikel berita yang penulis kutip dari beberapa situs di internet. Penelitian ini telah berhasil mengimplementasikan vector space model dan tiga notasi pembobotan TF-IDF. Hasil dari penelitian ini menunjukkan bahwa tiap notasi pembobotan TF-IDF memiliki karekteristik yang berbeda-beda dan menghasilkan urutan dokumen relevan yang berbeda, antara notasi satu dengan notasi lainnya. Kata Kunci : Model Ruang Vektor, TF-IDF, Sistem temu kembali informasi ABSTRACT Information retrieval system is a system used to automatically find some relevant information based on query, from the information collections. This study aims to identify some of the characteristics of the TF-IDF weighting notation and implement a vector space model using some notation on the TF-IDF weighting method in information retrieval. Notation used in this study is anc.ntc, lnc.ltc and ltc.ltc. In the Vector Space Model, term weighting calculated on the documents and queries side. Weighting generated on TF-IDF algorithm will become a variable in the calculation of cosine similarity. The results of the cosine similarity of each document to the query will be sorted in descending order, so the search results will display the most relevant documents first. The system was developed using the PHP programming language and used 50 news articles as test data, that quoted from several sites on the internet. This study has successfully implemented the vector space model and three TF-IDF weighting notation. The results of this study indicate that each notation TF-IDF weighting has different characteristics and generate a sequence of relevant documents, which different between each notation. Keywords: Vector Space Model, TF-IDF, Information Retrieval

PENDAHULUAN Sistem temu kembali informasi

dokumen tertentu dan inverse frekuensi dokumen yang mengandung kata tersebut. Terdapat beberapa cara atau metode dalam melakukan pembobotan kata pada metode TF-IDF, yaitu melalui skema pembobotan query dan dokumen. Skema pembobotan query dan dokumen

(information retrieval system) merupakan sistem yang dapat digunakan untuk

menemukan informasi yang relevan dengan kebutuhan dari penggunanya secara

otomatis dari suatu koleksi informasi (Mandala dan Setiawan, 2002). Sistem temu kembali menerima masukan (input) berupa kata-kata kunci dari informasi yang dicari, dan dalam waktu yang relatif singkat sistem akan menampilkan daftar dokumen yang sesuai dengan kebutuhan informasi pengguna. Metode Ruang Vektor adalah suatu metode untuk merepresentasikan sistem temu kembali informasi ke dalam vektor dan memperhitungkan fungsi similarity dalam proses pencocokan beberapa vektor. Suatu sistem temu kembali informasi terdiri atas dua bagian, yaitu penyimpanan

merupakan salah satu jenis pembobotan kata pada System for the Mechanical Analysis and Retrieval of Text (SMART) atau sering disebut sebagai SMART

notation (notasi SMART). Pada notasi SMART, merepresentasikan pembobotan ke dalam bentuk ddd.qqq (Manning et al, 2009). Berdasarkan sebelumnya, penerapan menemukan formula yang metode banyak penelitian-penelitian membahas TF-IDF. terdapat tentang Penulis variasi

dalam

mengimplementasikan

metode TF-IDF pada pembobotan kata. Jika varian formula tersebut direpresentasikan ke dalam bentuk ddd.qqq, secara umum terdapat beberapa jenis notasi yang

dokumen dan pemrosesan query. Baik query maupun dokumen-dokumen yang disimpan, dinyatakan dalam bentuk vektor (Zafikri, 2008). Elemen vektor tersebut adalah hasil dari pembotan kata (term) pada dokumen dan query. Metode TF-IDF (Term Frequncy

dikembangkan antara lain, nnc.nnc, anc.ntc, ltc.ltc dan lnc.ltc. Penelitian ini bertujuan untuk mengenal karakteristik beberapa notasi pembobotan TF-IDF serta meng-implementasikan model ruang vektor menggunakan beberapa notasi pada metode pembobotan TF-IDF pada sistem temu kembali informasi.

Inverse Document Frequency) merupakan suatu cara untuk suatu memberikan (term) bobot

hubungan

kata

terhadap

dokumen (Robertson, 2005). Metode ini menggabungkan perhitungan dua konsep yaitu, untuk frekuensi

bobot

kemunculan sebuah kata didalam sebuah

MATERI DAN METODE Sistem temu kembali informasi secara umum terdiri dari dua tahapan besar, yaitu melakukan database metode dan tertentu preprocessing kemudian untuk terhadap menerapkan menghitung

mengandung suatu kata (inverse document frequency) (Mandala dan Setiawan, 2002). Faktor terakhirnya adalah faktor

normalisasi terhadap panjang dokumen. Dokumen dalam suatu koleksi memiliki karakteristik panjang yang beragam.

kedekatan (relevansi atau similarity) antara dokumen di dalam database yang telah dipreprocess dengan query pengguna.

Ketimpangan terjadi karena dokumen yang panjang akan cenderung mempunyai

frekuensi kemunculan kata yang besar. Sehingga untuk mengurangi ketimpangan tersebut dalam diperlukan pembobotan faktor normalisasi dan

Sebagai hasilnya, sistem mengembalikan suatu daftar dokumen terurut descending (ranking) sesuai nilai kemiripannya dengan query pengguna. Proses preprocessing meliputi

(Mandala

Setiawan, 2002). Terdapat beberapa cara atau metode dalam melakukan pembobotan kata pada metode TF-IDF, yaitu melalui skema pembobotan query dan dokumen. Skema pembobotan query dan dokumen

tokenisasi, stop-word removal, stemming, dan term weighting. Pembobotan kata (term weighting) adalah proses pembobotan pada kata. Pembobotan dasar dilakukan dengan

merupakan salah satu jenis pembobotan kata pada System for the Mechanical Analysis and Retrieval of Text (SMART) atau sering disebut sebagai SMART

menghitung frekuensi kemunculan term dalam dokumen. Frekuensi kemunculan (term frequency) merupakan petunjuk

sejauh mana term tersebut mewakili isi dokumen. Semakin besar kemunculan suatu term dalam dokumen akan memberikan nilai kesesuian yang semakin besar. Faktor lain yang diperhatikan dalam pemberian bobot adalah kejarangmunculan kata (term scarcity) dalam koleksi. Kata yang muncul pada sedikit dokumen harus dipandang sebagai kata yang lebih penting (uncommon tems) daripada kata yang muncul pada banyak dokumen.

notation (notasi SMART). Pada notasi SMART, merepresentasikan pembobotan ke dalam bentuk ddd.qqq (Manning et al, 2009). Tiga huruf pertama pada ddd.qqq yaitu ddd merupakan pembobotan kata pada vektor dokumen dan tiga huruf selanjutnya yaitu qqq menunjukkan pembobotan pada vektor query. Masing-masing dari tiga huruf pada tiap kelompok menunjukkan kode untuk penggunaan term frequency (tf), inverse document frequency (IDF), dan jenis normalisasi yang digunakan.

Pembobotan akan memperhitungkan faktor kebalikan frekuensi dokumen yang

ddd.qqq
Document tf Document IDF Document Normalization Query tf Query IDF Query Normalization

Gambar 1. Penjelasan Notasi SMART

Tabel 1. Notasi pada TF-IDF (Sumber : Yogatama, 2008) Term Frequency Abjad pertama n l b a ( ) Persamaan Deskripsi Raw term frequency Logarithm term frequency Binary term frequency Augmented term frequency

( ) Inverse Document Frequency

Abjad pertama n t

Persamaan

Deskripsi IDF tidak diperhitungkan

(

( ⁄

)

)

Nilai logaritmik dari IDF

Normalisasi Abjad pertama n c √ Persamaan Deskripsi Normalisasi tidak diperhitungkan Normalisasi terhadap panjang dokumen beberapa jenis notasi yang dapat

Pada tabel 2.1 terdapat jenis-jenis notasi yang dapat diguakan untuk

dikembangkan antara lain, ntc.ntc, ltc.ltc dan lnc.ltc. Metode Ruang Vektor adalah suatu metode untuk merepresentasikan sistem

menyusun metode pembobotan TF-IDF, banyak kombinasi pembobotan umum dapat terdapat

dikembangkan.

Secara

temu

kembali

informasi.

Penentuan

dengan sudut yang dibentuk. Nilai cosinus yang cenderung besar mengindikasikan bahwa dokumen cenderung sesuai query. Nilai cosinus sama dengan 1

relevansi dokumen dengan query dipandang sebagai pengukuran kesamaan (similarity measure) antara vektor dokumen dengan vektor query. Semakin sama suatu vektor dokumen dengan vektor query maka

mengindikasikan bahwa dokumen sesuai dengan query.

dokumen dapat dipandang semakin relevan dengan query. HASIL DAN PERANCANGAN Pada penelitian ini, penulis melakukan implementasi vector space model terhadap masing-masing notasi IDF. Sistem ini pembobotan TFdikembangkan

menggunakan tiga buah notasi pembobotan TF-IDF, yaitu anc.ntc, lnc.ltc dan ltc.ltc. Data yang digunakan adalah data dalam bentuk dokumen. Dokumen yang Gambar 2. Representasi Dokumen dan Query pada Ruang Vektor (Sumber : Mandala dan Setiawan, 2002) Perhitungan kesamaan antara akan dijadikan sumber data adalah yang

dokumen

berbahasa

Indonesia

berformat teks / HTML dan berupa koleksi data uji. Data uji yang dipilih adalah artikel berita berbahasa Indonesia dari situs berita di media internet Adapun rancangan penelitian yang dilakukan dalam melakukan implementasi vector space model terhadap metode TFIDF ditunjukkan oleh gambar . Dari gambar

vektor query dan vektor dokumen dilihat dari sudut yang paling kecil. Sudut yang dibentuk oleh dua buah vektor dapat dihitung dengan melakukan perkalian

dalam (inner product), sehingga rumus relevansinya, adalah: ( ) ................ (1)

tersebut dapat dilihat bahwa sistem terdiri dari dua tahapan utama yaitu: 

dimana: Q = bobot query D = bobot dok |Q| = panjang query |D| = panjang dok

subsistem pembentukan vektor query dan dokumen, yaitu meliputi proses preprocessing dan pembobotan

Proses perangkingan dari dokumen dapat dianggap sebagai proses pemilihan (vektor) dokumen yang dekat dengan (vektor) query, kedekatan ini diindikasikan



subsistem processing, disini dilakukan impmentasi vector space model.

mulai

PEMBAHASAN Dalam melakukan implementasi vector space model terhadap metode pembobotan TF-IDF pada suatu sistem temu kembali informasi, penulis menggunakan bahasa pemrograman web yaitu PHP (PHP

Pembentukan vector query & dokumen

input query

notasi

Hypertext Pre-Processor). Hal ini bertujuan untuk menciptakan sistem yang informatif dan familiar dengan penggunanya, karena sebagian besar sistem temu kembali

tokenisasi query

hapus stop-word

daftar stopword

informasi, berbasis web. Serta dapat diakses dari berbagai platform. Penggunaan bahasa

stemming query

daftar kata dasar

pemrograman PHP dikombinasikan dengan bahasa pemrograman CSS dan Javascript,

pengitungan bobot TF-IDF kata (query)

Inverted index

untuk memberikan tampilan yang menarik kepada pengguna agar dapat lebih mudah menganalisis performa dari beberapa notasi

pengitungan Bobot TF-IDF kata (dokumen)

daftar bobot dokumen

pembobotan yang digunakan. Penelitian ini menggunakan tiga notasi pembobotan, yaitu anc.ntc, lnc.ltc dan ltc.ltc. Sehingga dalam implementasi

Perhitungan (cosine similarity)

program dikembangkan beberapa fungsi
Processing

untuk menghitung beberapa pembotan TF, yaitu pembobotan TF notasi a, n, dan l. Dan untuk pembobotan IDF dikembangkan fungsi untuk menghitung pembobotan IDF

urutkan nilai cosine

Tampilkan dukumen terturut

Evaluasi hasil dari output sistem

Hitung IAP dan NIAP

notasi n dan t. Untuk normalisasi, hanya dikembangkan untuk notasi c. Berikut

selesai

Tampilkan hasil evaluasi

merupakan

pseudocode

fungsi

untuk

mengghitung notasi TF-IDF.

Gambar 3. Skema Rancangan Penelitian

function notasi_tf(nilai,notasi,freq) { if(notasi=="l") return log(nilai)+1 end if elseif(notasi=="a") return 0.5+(0.5*(nilai/freq)) end elseif elseif($notasi=="n") return nilai end elseif else return 0 end else } function notasi_idf(freq,nilai,notasi) { if(notasi=="t") return log(freq/nilai)+1 end if elseif(notasi=="n") return 1 end elseif else return 0 end else } function notasi_c(nilai,norm) { return nilai/norm; }

Pembobotan

yang

dihasilkan

pada

algoritma TF-IDF akan menjadi variabel dalam perhitungan cosine similarity.

Berikut merupakan pseudocode perhitungan cosine similarity bobot_q[] = hasil pembobotan term query bobot_d[][] = hasil pembobotan term dokumen nomalisasi_q = normalisasi query hasil pembobotan nomalisasi_d[] = normalisasi dokumen hasil pembobotan hasil_bobot = 0 berita = SELECT * FROM tb_berita ORDER BY Id while hasil query berita dok = berita kolom id while x != end of array term do cacah bobot_q vektor_d = bobot_d[key(bobot_q)][dok]/noma lisasi_d[dok] vektor_q = bobot_q[key(bobot_q)]/nomalisas i_q hasil_bobot=(vektor_q*vektor_d) + hasil_bobot end while nilai_tfidf[dok]=hasil_bobot end while

Pada

Model

Ruang

Vektor,

descending_sort(nilai_tfidf)

pembobotan term dilakukan disisi dokumen dan query. Berdasarkan rancangan Hasil dari cosine similarity pada masing-masing dokumen terhadap query akan diurutkan secara descending,

penelitian, pembobotan TF-IDF terdapat pada subsistem pembentukan vektor query dan dokumen. Pada subsistem processing, merupakan proses penerapan model ruang vektor.

sehingga hasil pencarian akan menampilkan dokumen yang paling mendekati kata kunci.

Gambar 4. Hasil pencarian query menggunakan notasi pembobotan lnc.ltc

Gambar 5. Perbandingan hasil pencarian query tiga notasi pembobotan Sistem telah berhasil database mySQL data sebagai pada yang web media server

diimplementasikan menggunakan bahasa pemrograman PHP dan menggunakan

penyimpanan XAMPP.

Dokumen

digunakan

sebagai data uji sebanyak 50 artikel berita yang penulis kutip dari beberapa situs di internet. Pengujian difokuskan pada prosesproses yang terjadi pada sistem. Mengecek apakah sistem telah memberikan hasil penghitungan bobot TF-IDF dan Vektor Space Model dengan benar dan akurat. Serta seperti memastikan parsing, setiap fungsi-fungsi removal, [3] [1]

DAFTAR PUSTAKA Mandala, Hendra. Rila 2002. dan Setiawan, Peningkatan

Performansi Sistem Temu-Kembali Informasi dengan Perluasan Query Secara Otomatis, Teknik Bandung :

Departemen

Informatika

Institut Teknologi Bandung. Manning, Christopher D, Prabhakar Raghavan dan Hinrich Schutze. 2009. An Introduction To

stopword

stemming, dll dapat berjalan dengan baik. Dari hasil pengujian sistem, setiap elemen atau fungsi yang ada dalam proses temu kembali informasi dapat dijalankan dengan baik. SIMPULAN yang dapat diambil dari penelitian yang telah dilakukan adalah sebagai [4] ini telah vector berhasil space [4]

Information Retreival, England : Cambridge University Press. Robertson, Stephen. 2005.

Understanding Inverse Document Frequency: On theoretical

arguments for IDF, England : Journal of Documentation, Vol. 60, pp. 502–520 Yogatama, Penggunaan Dani. 2008. Studi untuk

berikut: 1. Penelitian

Stemming

mengimplementasikan

Meningkatkan Performansi Sistem Temu Balik Informasi, Bandung : Departemen Teknik Informatika

model dan tiga notasi pembobotan TF-IDF , yaitu yaitu anc.ntc, lnc.ltc dan ltc.ltc pada sistem temu kembali [5]

Institut Teknologi Bandung. Zafikri, A. 2008. Implementasi Metode Term Frequency Inverse Document pada Frequency Temu (TF-IDF) Kembali

informasi 2. Notasi pembobotan TF-IDF memiliki karekteristik yang berbeda-beda dan menghasilkan urutan dokumen relevan yang berbeda antara notasi satu dengan notasi lainnya. 3. Dalam menentukan notasi yang terbaik perlu adanya penelitan tentang analisis beberapa notasi pembobotan TF-IDF.

Sistem

Informasi, Medan : Universitas Sumatra Utara.

Similar Documents

Premium Essay

Capsim

...NORTH- HOLLAND Marketing Orientation and Company Performance Industrial vs. C o n s u m e r G o o d s C o m p a n i e s George J. Avlonitis Spiros P. Gounaris Marketing orientation, still an intriguing concept for man),, carries the pledge of superior company performance through the satisfaction of customer's needs. This article draws conclusions from an empirical investigation showing that this relationship does really exist and, in the case of industrial markets, building a marketing orientation it is indeed a significant contributor to the company's performance. © 1997 Elsevier Science Inc. INTRODUCTION Recent studies [1-3] have tried to collect empirical evidence to investigate whether the adoption of marketing Address correspondence to Dr. George J. Avlonitis, Athens University of Economics and Business, Department of Management Science and Marketing, 76 Patission Str., Athens 104 34. Greece. orientation leads to better performance in the market. However, the way that marketing orientation is conceptualized tends to differ. For instance, while Hooley, Lynch, and Shepherd [1] conceptualized marketing orientation as a set of specific beliefs that form a certain company attitude/culture, Narver and Slater [2], as well as Kohli and Jaworski [3], explained the concept as a certain behavior. Furthermore, most of the available empirical investigations of the association between marketing orientation and company performance tend to draw general conclusions about...

Words: 11900 - Pages: 48

Premium Essay

Managment

.... — You are a marketing manager for a brokerage company — Problem: Churn is too high > Turnover (after six month introductory period ends) is 40% — Customers receive incentives (average cost: $160) when account is opened — Giving new incentives to everyone who might leave is very expensive (as well as wasteful) — Bringing back a customer after they leave is both difficult and costly 4 2 … A Solution — One month before the end of the introductory period is over, predict which customers will leave — If you want to keep a customer that is predicted to churn, offer them something based on their predicted value > The ones that are not predicted to churn need no attention — If you don’t want to keep the customer, do nothing — How can you predict future behavior? — Tarot Cards — Magic 8 Ball 5 The Big Picture — Lots of hype & misinformation about data mining out there — Data mining is part of a much larger process — 10% of 10% of 10% of 10% — Accuracy not always the most...

Words: 3180 - Pages: 13

Free Essay

It332 Kaplan Unit 10

...Running head: Computer Systems Architectures Computer Systems Architectures Kaplan University Abstract Computer architecture is a set of rules that say how software and hardware interact to create a network or platform. In other words computer architecture is the design of the network base on the needs of the user, the system if it is there or needs to be built, and the technology that needs to go into the project. System design is all how all the hardware is set up while the instruction set architecture is the program language. Table of Contents Introduction What OS file system should we use? What types of processors? Cluster Architecture? Data Backup LAN or WAN Web-based diagram Introduction to Coast to Coast computing We can get in a plane and be across the country in a few hours but what if we need to work together faster than a few hours? Is it possible? How hard is it to have users in California work with users in Washington, New York, and Florida? What has to be done to make this happen? How secure will it be to have such a network? This and many other questions come up when a company starts thinking of expansion beyond the building or city they headquartered at. When looking at a network a business wants to be sure it is using the most cost effective form for the network. The base of a network is the architecture. For small businesses a peer to peer architecture would be best. There are three types of peer-to-peer architecture: collaborative computing...

Words: 1513 - Pages: 7

Premium Essay

Nt1330 Unit 3 Assignment 1

...resources in workstations connected to servers. c. Mobile computers Power Consumption: Handheld Computers use compact, portable and small batteries as a source of power. It is important to manage power Consumption in such devices to be able to make their use efficient and easy. Memory Resources: Due to being small in size, the memory devices use in such computers are also small, thus deteriorating its storage capacity. This makes memory resource management and important requirement in handheld devices. Answer 1.15: Symmetric Multiprocessing Asymmetric Multiprocessing Primary Difference All the processor in the system run tasks in OS Only Master processor run the tasks of Operating System. Process All processors are peers and they share same memory. All processors runs a copy of operating system. Processor takes processes from a common ready queue, or there may be a private ready queue for each processor. Processor will have master-slave relationship scheme. Master processor assign processes to the slave processors, or they have some predefined processes since the master processor controls the data structure of the system. Architecture All processor has the same architecture All processor may have same or different architecture Communication All processors communicate with another processor by a shared memory as needed. Processors need not communicate as they are controlled by the master processor Failure A processor failure results in reduced computing capacity. If a...

Words: 1265 - Pages: 6

Premium Essay

Culture 's Effect in Jordan's Economy

...structure and in the people who work in the organisation. The culture of an organisation is derived from its aims and purpose, its past, its present and its current ways of managing its people and resources. Because every organisation is unique in terms of these features, each will have a culture that is unique. Analysis of culture is important within an organisation because, as we will see in this unit, it impacts on everything the organisation does. But very often these values and beliefs are not explicit and people take them for granted. This ‘taken-for-grantedness’ is what frequently makes culture problematic in organisations. People assume that everyone views things in the same way. But as you will see as you work through this unit, nothing could be further from the truth.National culture, in turn, is the culture that exists outside the organisation at the level of a society or country. National culture is made up of the societal values and belief system of a country and is influenced by several factors, including its languages, religions, gender roles, age profiles of its population, socio-economic groups and government policy.The aim of this unit is to look at aspects of both national culture and organisational culture. As you...

Words: 1242 - Pages: 5

Free Essay

Big Data

...Lecture on Big Data Guest Speaker Simon Trang Research Member at DFG RTG 1703 and Chair of Information Management Göttingen University, Germany 2014 The City City of Göttingen • Founded in the Middle Ages • True geographical center of Germany • 130,000 residents Chair of Information Management Lecture on Big Data at Macquarie University 2 2 The University Georg-August-Universität Göttingen (founded in 1737) • • • • One of nine Excellence Universities in Germany 13 faculties, 180 institutes 26,300 students (2013) 11.6% students from abroad (new entrants: approximately 20%) • 13,000 employees (including hospital and medical school), including 420 professors • 115 programs of study from A as in Agricultural Science to Z as in Zoology are offered (73 bachelor / 22 master programs) Chair of Information Management Lecture on Big Data at Macquarie University 3 “The Göttingen Nobel Prize Wonder” Over 40 Nobel prize winners have lived, studied, and/or lived, studied or/and researched 41 Prize researched at the University of Göttingen, among them… at the University of Göttingen, among them… • • • • • • • • • • • • • • Max von Laue, Physics, 1914 Max von Laue, physics, 1914 Max Planck, physics, 1918 Max Planck, Physics, 1918 Werner Heisenberg, physics, 1932 Werner Heisenberg, Physics, 1932 Otto Hahn, chemistry 1944 Otto Hahn, Chemistry 1944 Max Born, physics, 1954 Max Born, Physics, 1954 Manfred Eigen, chemistry, 1967 Manfred Eigen, Chemistry, 1967 Erwin...

Words: 1847 - Pages: 8

Free Essay

4495 Notes

...problem with the same differently, more people will chose the risky plan D. options worded *This inconsistency is a preference reversal and reveals the framing effect. Almost any decision can be reframed as a gain or a loss relative to sth. Decision makers’ reference points for defining gain and loss are often arbitrary. -Overconfidence In the team, overconfidence leads people less to focus on their teammates’ strength, as opposed to their weaknesses and neglect the strength and weakness of members of competitor teams. -Confirmation bias It is a tendency for people to consider evidence that support their position, hypothesis or desire and disagree or discount evidence that against their belief. 3. Individual VS group decision making in demonstrable tasks -Demonstrable task It is a task that has an obvious, correct answer. Group performs better than independent individuals on a wide range of demonstrable task. And group who use a structured approach...

Words: 8652 - Pages: 35

Free Essay

Nature vs Nurture

...factors and how they influence development, the third a look at how environmental interaction might influence personality and finally some criticism towards this field of study. Main Body The research of genetics and heredity is often difficult due to the vast amount of variables in the development of human beings, to keep variables to a minimum the most popular method of research in this field the study of twins. Twin studies involve comparing data produced by monozygotic (Identical) twins , these are twins who come from the same human ovum, to data from dizygotic (fraternal) twins who are born simultaneously despite not sharing a human ovum (GeneWatch, n.d) . Dizygotic twins share about 50% of their genes, where monozygotic twins share 100% (Winerman, 2004). When a particular trait is being investigated, data from Identical twins are compared to that of fraternal twins, if there is a higher correlation between the...

Words: 1767 - Pages: 8

Premium Essay

Anna O. Psychoanalysis

...04/28/2016 Steffen Fuller, PH. D. Neuropsychological and Personality Assessment. CASE 1#: * 33 years old female, Master’s degree-level education. * She and husband in process of divorcing; have 2 small children * Pt. report increased anxiety in recent month, manifesting in interrupted sleep, worry over possible custody battle with husband, and paranoid thoughts that husband is stalking her. * Pt. also reports that she has new boyfriend, is attracted to other men and feels guilty about this. * Husband reports that pt. is emotionally unstable and has threatened, at different times, both his and her own safety. Questions: 1. Does pt. have an anxiety disorder or is she merely reactive to situation stress? 2. Is there evidence in the test data of bipolar disorder? Depression? Generalized Anxiety Disorder? Acute Stress Disorder? Paranoia? 3. Comment on possible Axis II (personality disorder) features. 4. What recommendations would you make for this woman with respect to her marriage relationship, her parenting issues and needs/ directions for psychotherapy? What specific treatment options would you recommend regarding these areas of functioning and why? WAIS IV RESULTS: VERBAL COMPRENSATION: 115 PERCEPUAL REASONING: 124 WORKING MEMORY: 110 PROCESSING SPEED: 128 RORCHACH RESULTS: 1. A bug. That’s it. W F+ AD(ANIMAL DETAILS) 2. A dead bug. … be it’s bleeding. That’s it. W FMC (SPECIAL PHENOMENUS=BLOOD) 3. A praying...

Words: 2781 - Pages: 12

Free Essay

Aaaaaa

...PURPOSE OF CHAPTER Consumers’ perceptions are highly subjective, and consumers can be quite unpredictable.The complex nature of consumers makes the study and understanding of consumer behavior imperative. Sweden and Colombia have both attempted to affect consumer perceptions. The Juan Valdez campaign of the Federation of Colombian Coffee Growers has been successful in creating a desirable image for its product and using it to communicate with consumers. Volvo, likewise, has successfully nurtured an image of safety. Because the influence of culture has already been discussed in depth in Chapter 6, this chapter covers other relevant concepts. The focus is on the major approaches used to study consumer behavior. The basic purpose of this chapter is to acknowledge the role that determinants other than culture play in influencing consumer behavior. The chapter thus examines the psychological and social dimensions, and these include motivation, learning, personality, psychographics, perception, attitude, social class, group, family, opinion leadership, and the diffusion process of innovations. PERSPECTIVES ON CONSUMER BEHAVIOR Consumer behavior may be defined as a study of human behavior within the consumer role and includes all the steps in the decision-making process. The study must go beyond the explicit act of purchase to include an examination of less observable processes, as well as a discussion of why, where, and how a particular purchase occurs. Domestically, marketing...

Words: 7615 - Pages: 31

Free Essay

Final

... Charter School is intended to help at-danger learners who are not succeeding in the customary setting. Customary instruction is Traditional training, is known as government funded schools conventional/traditional (Hoxby, 2004) Does the school framework needs to change? Which is better, Alternative or Traditional Education? Is sanction school the better formula for what's to come for our youngsters or is traditional/conventional training the better course for our kids. Research have demonstrated that scholars who went to contract schools for a long time have indicated a change scholastically superior to state funded school understudy in math and proficiency (Fryer, 2012). Research takes a gander at sanction schools vs. state funded schools in a cluster of states, including Florida, Massachusetts, and New Jersey. Charter school scholars overshadow their standard state funded school associates. Students in New Jersey enlisted in urban sanction schools take in altogether all the more in both math and perusing contrasted with their conventional state funded school associates. More and more the weight is shifting more towards charter schools. The data is showing that it seems that students are really getting a better education in charter school system. Should parents consider taking their children to charter schools? This is a question that I hope will be answered during the essay? April Browne is a 3rd grade charter school teacher in a Newark charter school; this is...

Words: 1822 - Pages: 8

Premium Essay

Mobile Computing and Social Networks Term Paper

...Mobile Computing and Social Networks. Abstract Mobile computing has rapidly evolved for the last two decades with the use of wireless technology making the location irrelevant and increasing the opportunities for business to streamline business processes, reduce operational processing times and provide better customer service. Mobile revolution has also forced many industries to reengineer their business processes to accommodate the many mobile devices. Mobile computing and social networks are part of the daily lives of millions of Americans. 42% of American adults own a mobile and tablet computing device. “Additional research shows that about three quarters of U.S. adults are online, with about 66% of them using social networking sites” (Brenner, 2012). Specific methods for how IT departments and mobile app developers and designers can decide on supporting different mobile platforms like the Apple iPhone, Apple iPad, Windows Phone, or Android supported smartphones and tablets will be discussed. Other topics addressed in this paper include the issue of “high availability” for mobile app users’ Based on these considerations organizations and businesses are nowadays focusing on the implementation of these applications, while replacing their desktop platforms to the mobile devices (Shih, et.al. n.d). “On the other hand, it is also observed that, these applications may also enhance various risks and vulnerabilities,...

Words: 4537 - Pages: 19

Free Essay

Growth Pattern of Outsourcing

...You are to enter all answers or Prtscrn requirements into this Word Document. You are not permitted to submit any other document format, e.g., Wordpad, PDFs, etc. that is not based on this original Word document. This document contains hidden internal markers and applications that will track the version of this assignment and your assignment progress. You MUST submit the assignments using the Word document(s) provided you. You may not use any other word processor, except Microsoft Word. Do not use Open Office DOCX files. When an instructor has possession of an electronic document it is very easy to detect plagiarism. Many instructors use Turnitin assignments, which is applicable to assignments that permit cut-and-paste as this assignment. It is very easy to compare multiple copies of word documents (see link below). Microsoft provides a variety of FREE anti-plagiarizing tools. And there is a wide variety of tools that can analyze hidden information within a Word document (see sample link below). Changing fonts, margins and spacing does not do it anymore. Even when individuals try to artificially change content, a Word document contains hidden markers that may provide an audit trail to find previous authors and computer systems who have edited the document. Comparing and merging Microsoft Word documents - http://support.microsoft.com/kb/306484 Compare documents side by side - http://office.microsoft.com/en-us/word-help/compare-documents-side-by-side-HA010102251...

Words: 6416 - Pages: 26

Premium Essay

Phsco

...www.it-ebooks.info www.it-ebooks.info Praise “A must-read resource for anyone who is serious about embracing the opportunity of big data.” — Craig Vaughan Global Vice President at SAP “This timely book says out loud what has finally become apparent: in the modern world, Data is Business, and you can no longer think business without thinking data. Read this book and you will understand the Science behind thinking data.” — Ron Bekkerman Chief Data Officer at Carmel Ventures “A great book for business managers who lead or interact with data scientists, who wish to better understand the principals and algorithms available without the technical details of single-disciplinary books.” — Ronny Kohavi Partner Architect at Microsoft Online Services Division “Provost and Fawcett have distilled their mastery of both the art and science of real-world data analysis into an unrivalled introduction to the field.” —Geoff Webb Editor-in-Chief of Data Mining and Knowledge Discovery Journal “I would love it if everyone I had to work with had read this book.” — Claudia Perlich Chief Scientist of M6D (Media6Degrees) and Advertising Research Foundation Innovation Award Grand Winner (2013) www.it-ebooks.info “A foundational piece in the fast developing world of Data Science. A must read for anyone interested in the Big Data revolution." —Justin Gapper Business Unit Analytics Manager at Teledyne Scientific and Imaging “The authors, both renowned experts in data science before it had a name, have...

Words: 146629 - Pages: 587

Premium Essay

Mpls

...IP/MPLS-Based VPNs Layer-3 vs. Layer-2 IP/MPLS-Based VPNs Layer-3 vs. Layer-2 Table of Contents WHITE PAPER 1. 2. 3. 4. 5. 6. Objective ..................................................................................................................... 3 Target Audience .......................................................................................................... 3 Pre-Requisites.............................................................................................................. 3 Introduction ................................................................................................................. 3 MPLS Layer-3 VPNs .................................................................................................. 4 MPLS Layer-2 VPNs .................................................................................................. 7 6.1. Point-to-Point Connectivity ................................................................................. 8 6.2. Multi-Point Connectivity...................................................................................... 9 7. Which Way to Go: The Layer-3 or The Layer-2 Way.............................................. 12 8. Summary ................................................................................................................... 15 FOUNDRY NETWORKS Page 2 of 16 IP/MPLS-Based VPNs Layer-3 vs. Layer-2 WHITE PAPER 1. Objective To give the reader an insight into the pros...

Words: 5621 - Pages: 23