...Earlier, people suffered a lot for collecting data. It was very difficult to get data, so people suggested various method, for collecting data, storing data and managing data, such as database management system (DBMS). But in today’s scenario, data is overwhelmingly enormous, DBMS is not compatible to handle such size of data. So we have situation where the data rich but information is poor. “If you don’t measure it, you can’t improve it”. This is a quote by Peter Drucker, a renowned management guru. In this new era, data collection is not as hard as earlier day. Data can be collected easily by various ways, such as, censor, bar code scanner, web browser, online survey, and many more. Business entity sitting on large amount of data wondering,...
Words: 1509 - Pages: 7
...CIS 500 Complete ClasCIS 500 Complete Class Assignments and Term Paper Click link Below To Download Entire Class: http://strtutorials.com/CIS-500-Complete-Class-Assignments-and-Term-Paper-CIS5006.htm CIS 500 Complete Class Assignments and Term Paper CIS 500 Assignment 1 Predictive Policing CIS 500 Assignment 2: 4G Wireless Networks CIS 500 Assignment 3 Mobile Computing and Social Networking CIS 500 Assignment 4 Data Mining CIS 500 Term Paper Mobile Computing and Social Networks CIS 500 Assignment 1 Predictive Policing Click link Below To Download: http://strtutorials.com/CIS-500-Assignment-1-Predictive-Policing-CIS5001.htm In 1994, the New York City Police Department adopted a law enforcement crime fighting strategy known as COMPSTAT (COMPuter STATistics). COMPSTAT uses Geographic Information Systems (GIS) to map the locations of where crimes occur, identify “hotspots”, and map problem areas. COMPSTAT has amassed a wealth of historical crime data. Mathematicians have designed and developed algorithms that run against the historical data to predict future crimes for police departments. This is known as predictive policing. Predictive policing has led to a drop in burglaries, automobile thefts, and other crimes in some cities. Write a four to five (45) page paper in which you Compare and contrast the application of information technology (IT) to optimize police departments’ performance to reduce crime versus random patrols of the streets...
Words: 2044 - Pages: 9
...Social Media Data: Network Analytics meets Text Mining Killian Thiel Tobias Kötter Dr. Michael Berthold Dr. Rosaria Silipo Phil Winters Killian.Thiel@uni-konstanz.de Tobias.koetter@uni-konstanz.de Michael.Berthold@uni-konstanz.de Rosaria.Silipo@KNIME.com Phil.Winters@KNIME.com Copyright © 2012 by KNIME.com AG all rights reserved Revision: 120403F page 1 Table of Contents Creating Usable Customer Intelligence from Social Media Data: Network Analytics meets Text Mining............................................................................................................................................ 1 Summary: “Water water everywhere and not a drop to drink” ............................................................ 3 Social Media Channel-Reporting Tools. .................................................................................................. 3 Social Media Scorecards .......................................................................................................................... 4 Predictive Analytic Techniques ............................................................................................................... 4 The Case Study: A Major European Telco. ............................................................................................. 5 Public Social Media Data: Slashdot ......................................................................................................... 6 Text Mining the Slashdot Data ..........
Words: 5930 - Pages: 24
...1 Video Data Mining JungHwan Oh University of Texas at Arlington, USA JeongKyu Lee University of Texas at Arlington, USA Sae Hwang University of Texas at Arlington, USA 8 INTRODUCTION Data mining, which is defined as the process of extracting previously unknown knowledge and detecting interesting patterns from a massive set of data, has been an active research area. As a result, several commercial products and research prototypes are available nowadays. However, most of these studies have focused on corporate data — typically in an alpha-numeric database, and relatively less work has been pursued for the mining of multimedia data (Zaïane, Han, & Zhu, 2000). Digital multimedia differs from previous forms of combined media in that the bits representing texts, images, audios, and videos can be treated as data by computer programs (Simoff, Djeraba, & Zaïane, 2002). One facet of these diverse data in terms of underlying models and formats is that they are synchronized and integrated hence, can be treated as integrated data records. The collection of such integral data records constitutes a multimedia data set. The challenge of extracting meaningful patterns from such data sets has lead to research and development in the area of multimedia data mining. This is a challenging field due to the non-structured nature of multimedia data. Such ubiquitous data is required in many applications such as financial, medical, advertising and Command, Control, Communications and Intelligence...
Words: 3477 - Pages: 14
...512 Use of Data Mining in the field of Library and Information Science : An Overview Roopesh K Dwivedi Abstract Data Mining refers to the extraction or “Mining” knowledge from large amount of data or Data Warehouse. To do this extraction data mining combines artificial intelligence, statistical analysis and database management systems to attempt to pull knowledge form stored data. This paper gives an overview of this new emerging technology which provides a road map to the next generation of library. And at the end it is explored that how data mining can be effectively and efficiently used in the field of library and information science and its direct and indirect impact on library administration and services. R P Bajpai Keywords : Data Mining, Data Warehouse, OLAP, KDD, e-Library 0. Introduction An area of research that has seen a recent surge in commercial development is data mining, or knowledge discovery in databases (KDD). Knowledge discovery has been defined as “the non-trivial extraction of implicit, previously unknown, and potentially useful information from data” [1]. To do this extraction data mining combines many different technologies. In addition to artificial intelligence, statistics, and database management system, technologies include data warehousing and on-line analytical processing (OLAP), human computer interaction and data visualization; machine learning (especially inductive learning techniques), knowledge representation, pattern recognition...
Words: 3471 - Pages: 14
...Similarity based Analysis of Networks of Ultra Low Resolution Sensors Relevance: Pervasive computing, temporal analysis to discover behaviour Method: MDS, Co-occurrence, HMMs, Agglomerative Clustering, Similarity Analysis Organization: MERL Published: July 2006, Pattern Recognition 39(10) Special Issue on Similarity Based Pattern Recognition Summary: Unsupervised discovery of structure from activations of very low resolution ambient sensors. Methods for discovering location geometry from movement patterns and behavior in an elevator scheduling scenario The context of this work is ambient sensing with a large number of simple sensors (1 bit per second giving on-off info). Two tasks are addressed. Discovering location geometry from patterns of sensor activations. And clustering activation sequences. For the former, a similarity metric is devised that measures the expected time of activation of one sensor after another has been activated, on the assumption that the two activations are resulting from movement. The time is used as a measure of distance between the sensors, and MDS is used to arrive at a geometric distribution. In the second part, the observation sequences are clustered by training HMMs for each sequence, and using agglomerative clustering. Having selected an appropriate number of clusters (chosen by the domain expert) the clusters can be used to train new HMM models. The straightforward mapping of the cluster HMMs is to a composite HMM, where each branch of...
Words: 2170 - Pages: 9
...com/locate/techsoc Data mining techniques for customer relationship management Chris Rygielski a, Jyun-Cheng Wang b, David C. Yen a,∗ a Department of DSC & MIS, Miami University, Oxford, OH, USA b Department of Information Management, National Chung-Cheng University, Taiwan, ROC Abstract Advancements in technology have made relationship marketing a reality in recent years. Technologies such as data warehousing, data mining, and campaign management software have made customer relationship management a new area where firms can gain a competitive advantage. Particularly through data mining—the extraction of hidden predictive information from large databases—organizations can identify valuable customers, predict future behaviors, and enable firms to make proactive, knowledge-driven decisions. The automated, future-ori- ented analyses made possible by data mining move beyond the analyses of past events typically provided by history-oriented tools such as decision support systems. Data mining tools answer business questions that in the past were too time-consuming to pursue. Yet, it is the answers to these questions make customer relationship management possible. Various techniques exist among data mining software, each with their own advantages and challenges for different types of applications. A particular dichotomy exists between neural networks and chi-square automated interaction detection (CHAID). While differing approaches abound in the realm of data mining, the...
Words: 8031 - Pages: 33
...studies that examine trends and emerging topics in CS research or the impact of papers on the field. In contrast, in this article, we take a closer look at the entire CS research in the past two decades by analyzing the data on publications in the ACM Digital Library and IEEE Xplore, and the grants awarded by the National Science Foundation (NSF). We identify trends, bursty topics, and interesting inter-relationships between NSF awards and CS publications, finding, for example, that if an uncommonly high frequency of a specific topic is observed in publications, the funding for this topic is usually increased. We also analyze CS researchers and communities, finding that only a small fraction of authors attribute their work to the same research area for a long period of time, reflecting for instance the emphasis on novelty (use of new keywords) and typical academic research teams (with core faculty and more rapid turnover of students and postdocs). Finally, our work highlights the dynamic research landscape in CS, with its focus constantly moving to new challenges arising from new technological developments. Computer science is atypical science in that its universe evolves quickly, with a speed that is unprecedented even for engineers. Naturally, researchers follow the evolution of their artifacts by adjusting their research interests. We want to capture this vibrant co-evolution in this paper. 1 Introduction...
Words: 15250 - Pages: 61
...Faculty of Science and Engineering Department of Mining and Engineering and Mine Surveying Western Australia School of Mines 12585 - Mine Planning 532 Research Paper 1 – Mine Planning Process and the Carbon Tax Due Date : Friday 19-8-2011 Word Count: 2470 Abstract On 15 December 2008, the Federal Government launched its 2020 target for greenhouse gas emissions and its White Paper on the Carbon Pollution Reduction Scheme (CPRS) as the start of the policy and legislation process. The mining sector in Australia has been cited as being a major contributor to greenhouse gases. The introduction of the CPRS means carbon emissions of a mining project should be considered from the initial stages of mine planning. The traditional approach to mine planning involves consideration of technical and economic data as inputs to the process. This paper considers the effect of the CPRS on various technical and economic factors related to the mine planning process. The results of this paper imply that the introduction of the CPRS makes it is imperative for mining companies to assess the impact of carbon emissions on a mining project during mine planning. Introduction Climate change has become an increasingly topical issue in recent times. Mounting scientific evidence suggests that human activities are causing a buildup of greenhouse gases and that this in turn is causing changes to the world’s climate (Gregorczu, 1999). Further complicating the issue, there are economic costs, scientific...
Words: 2496 - Pages: 10
...Data Mining Data Mining THE BUSINESS SCHOOL, KASHMIR UNIVERSITY 5/18/2014 THE BUSINESS SCHOOL, KASHMIR UNIVERSITY 5/18/2014 Umer Rashid Roll No 55 Umer Rashid Roll No 55 Abstract: Generally, data mining (sometimes called data or knowledge discovery) is the process of analyzing data from different perspectives and summarizing it into useful information - information that can be used to increase revenue, cuts costs, or both. Data mining software is one of a number of analytical tools for analyzing data. It allows users to analyze data from many different dimensions or angles, categorize it, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. CRM: In today’s competitive scenario in corporate world, “Customer Retention” strategy in Customer Relationship Management (CRM) is an increasingly pressed issue. Data mining techniques play a vital role in better CRM. This paper attempts to bring a new perspective by focusing the issue of data mining Applications, opportunities and challenges in CRM. It covers the topic such as customer retention, customer services, risk assessment, fraud detection and some of the data mining tools which are widely used in CRM. Supply Chain Management (SCM) environments are often dynamic markets providing a plethora of Information, either complete or incomplete. It is, therefore, evident that such environments demand...
Words: 2588 - Pages: 11
...UNIVERSITY OF MUMBAI Bachelor of Engineering Information Technology (Third Year – Sem. V & VI) Revised course (REV- 2012) from Academic Year 2014 -15 Under FACULTY OF TECHNOLOGY (As per Semester Based Credit and Grading System) University of Mumbai, Information Technology (semester V and VI) (Rev-2012) Page 1 Preamble To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development. Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO‟s) and give freedom to affiliated Institutes to add few (PEO‟s) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner‟s learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state...
Words: 10444 - Pages: 42
...Text mining is the process of extracting interesting and non-trivial knowledge or information from unstructured text data. Text mining is the multidisciplinary field which draws on data mining, machine learning, information retrieval, computational linguistics and statistics. This research paper discussed about one of the text mining preprocessing techniques. The initial process of text mining systems is preprocessing steps. Pre-processing reduces the size of the input text documents significantly. It involves the actions like sentence boundary determination, natural language specific stop-word elimination, tokenization and stemming. This research paper established the comparative analysis of document tokenization tools. I. Introduction Tokenization...
Words: 1209 - Pages: 5
...Mon 6pm Data Mining As smartphones became more advanced and second nature in our everyday lives the opportunity to be apart of this new technology began to open doors for many people such as software developers, manufacturing of parts and accessories, and jobs to market and sell smartphones. The one I considered the most to me was repairing them. If you have ever shattered the screen of your smartphone, the experience of having it repaired in a quick allotted time can be painstaking. Not so often but once in a while, repair shops may not have a particular model because either they are not aware of it being sold as much in a particular region or more often the repairer does not want to take the chance in ordering overstock. These particular circumstances led me to ask can data mining be used to collect a census of how many people request a certain model smartphone to be repaired in a particular area? The purpose of collecting data would be to determine the amount of material that should be purchased each month to produce a faster turn around time for the customer and further results to less overspending. Data mining is the analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data owner. In a more understandable term data mining can be used to observe the relationship between two items to see their correlation between each other. For instance data can be collected...
Words: 1068 - Pages: 5
...someone else’s work, seems rare; I can recall reading about only three confirmed cases of it in the almost sixty years I have spent as an economist. Both the risk of exposure and feelings of conscience provide plausible explanations for this scarcity. Soft plagiarism in the sense of making unacknowledged THOMAS MAYER is professor emeritus of economics at University of California–Davis. A more detailed working-paper version of this article is available at www.econ.ucdavis.edu. Challenge, vol. 52, no. 4, July/August 2009, pp. 16–24. © 2009 M.E. Sharpe, Inc. All rights reserved. ISSN 0577–5132 / 2009 $9.50 + 0.00. DOI: 10.2753/0577–5132520402 16 Challenge/July–August 2009 Honesty and Integrity in Academic Economics use of someone else’s ideas is probably much more common, both because it is considerably less likely to be detected (and the punishment, if the act is indeed detected, is apt to be much less severe) and because it is less heinous, so one’s conscience will protest less. Another temptation is to produce a publishable paper through outright cheating by making up data out of thin air or by lying about the results of analyzing legitimate...
Words: 3023 - Pages: 13
...Business Intelligence and Data Warehouses Kevin Gainey Mr. Brown CIS 111 Data warehouses support business decisions by collecting, consolidating, and organizing data for reporting and analysis with tools such as online analytical processing (OLAP) and data mining. Although data warehouses are built on relational database technology, the design of a data warehouse database differs substantially from the design of an online transaction processing system (OLTP) database. The topics in this paper address approaches and choices to be considered when designing and implementing a data warehouse. The paper begins by contrasting data warehouse databases with OLTP databases and introducing OLAP and data mining, and then adds information about design issues to be considered when developing a data warehouse with Microsoft® SQL Server™ 2000. A data warehouse supports an OLTP system by providing a place for the OLTP database to offload data as it accumulates, and by providing services that would complicate and degrade OLTP operations if they were performed in the OLTP database. Without a data warehouse to hold historical information, data is archived to static media such as magnetic tape, or allowed to accumulate in the OLTP database. If data is simply archived for preservation, it is not available or organized for use by analysts and decision makers. If data is allowed to accumulate in the OLTP so it can be used for analysis, the OLTP database continues to grow in size and...
Words: 721 - Pages: 3