...ENTS 699R: Lecture 1d support ENTS 699R Lecture 1d support: Fourier Transform Tables Alejandra Mercado June, 2013 1 Transform Pairs The following is a table of basic transform pairs that can be used as building blocks to derive more complicated transform pairs: Time domain function, with dummy variable t 1 2 3 4 5 6 7 F F F Frequency domain function, with dummy variable f δ(t) ⇐⇒ 1 1 ⇐⇒ δ(f ) δ(t − t0 ) ⇐⇒ e−j2πf t0 sin (2πf0 t + φ) ⇐⇒ F F j −jφ δ(f 2 [e 1 −jφ δ(f 2 [e + f0 ) − ejφ δ(f − f0 )] cos (2πf0 t + φ) ⇐⇒ + f0 ) + ejφ δ(f − f0 )] 1 |t| ≤ T F t 2 rect ( T ) = ⇐⇒ T sinc(f T ) = T sin(πf T ) πf T 0 o.w. sinc(βt) ⇐⇒ F 1 β f · rect ( β ) = 1 β ·1 |f | ≤ o.w. β 2 0 Page 1 ENTS 699R: Lecture 1d support 2 Properties For the table of Fourier Transform properties, assume that we already know that: g(t) ⇐⇒ G(f ) h(t) ⇐⇒ H(f ) and that α, β, T, φ, f0 , t0 are all arbitrary constants. Time domain function, with dummy variable t A B C D E F F G H I F F F F F Frequency domain function, with dummy variable f Property name time/frequency reversal duality time shift frequency shift linearity g(−t) ⇐⇒ G(−f ) G(t) ⇐⇒ g(−f ) g(t − t0 ) ⇐⇒ g(t)ej2πf0 t F F F e−j2πf t0 G(f ) ⇐⇒ G(f − f0 ) 1 2 j 2 αg(t) + βh(t) ⇐⇒ αG(f ) + βH(f ) g(t) cos(2πf0 t) ⇐⇒ g(t) sin(2πf0 t) ⇐⇒ F F F (G(f − f0 ) + G(f + f0 )) modulation (G(f + f0 ) − G(f − f0 )) modulation multipl. in time domain convolution in time domain time scaling g(t) × h(t)...
Words: 332 - Pages: 2
...PE, etc. Bio-composite materials that can be decomposed naturally will be a solution to solve these problems. The aim of this study was to utilize the waste shredded coconut after the coconut milk was extracted, and used as reinforcing agent bio-composite material with matrix of Polylacticacid(PLA) that can decompose naturally. During this time, grated coconut is simply discarded without further exploited. Alkalization chemical treatment with 5% NaOH 1 hour to Grated Coconut Milk Residue (GCMR) was done to improve compatibility with PLA matrix. Bio-composite material was made with a fraction of 0%, 15%, 30% w/w using compression molding technique. The chemical structure of GCMR before and after chemical treatment was observed with Fourier Transform Infrared. The mechanical property of bio-composite material was observed with tensile test. Whereas the morphological characteristics of GCMR and fracture on the surface of bio-composite observed using Field Emission Scanning Electron Microscope. Then, thermal properties of bio-composite observed with Simultaneous Thermal Analysis. Result showed the addition of grated coconut fibers improve the mechanical properties, thermal stability, speed recrystallization PLA and PLA interfacial bonding between the filler GCMR. Thus, this material has the potential to reduce the environmental crisis caused by non-biodegradable material and non-renewable. Kata Kunci—Instruksi; Poly(latic acid)(PLA), Reinforcing Agent, Grated Coconut Residue, Bio-composites...
Words: 265 - Pages: 2
...2007-2008 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING I YEAR COURSE STRUCTURE |Code |Subject |T |P/D |C | | |English |2+1 |- |4 | | |Mathematics - I |3+1 |- |6 | | |Mathematical Methods |3+1 |- |6 | | |Applied Physics |2+1 |- |4 | | |C Programming and Data Structures |3+1 |- |6 | | |Network Analysis |2+1 |- |4 | | |Electronic Devices and Circuits |3+1 |- |6 | | |Engineering Drawing |- |3 |4 | | |Computer Programming Lab. |- |3 |4 | | |IT Workshop |- |3 |4 | | |Electronic Devices and Circuits Lab |- |3...
Words: 26947 - Pages: 108
...Lovely Professional University, Punjab Course Code MTH251 Course Category Course Title FUNCTION OF COMPLEX VARIABLE AND TRANSFORM Courses with Numerical focus Course Planner 16423::Harsimran Kaur Lectures 3.0 Tutorials Practicals Credits 2.0 0.0 4.0 TextBooks Sr No T-1 Title Advanced Engineering Mathematics Reference Books Sr No R-1 R-2 Other Reading Sr No OR-1 Journals articles as Compulsary reading (specific articles, complete reference) Journals atricles as compulsory readings (specific articles, Complete reference) , Title Higher Engineering Mathematics Advanced Modern Engineering Mathematics Author Grewal, B. S. Glyn James Edition 40th 3rd Year 2007 2011 Publisher Name Khanna Publishers Pearson Author Jain R. K. and Iyenger S. R. K. Edition 3rd Year 2007 Publisher Name Narosa Relevant Websites Sr No RW-1 RW-2 (Web address) (only if relevant to the course) www2.latech.edu/~schroder/comp_var_videos.htm freescienceonline.blogspot.com/2010_04_01_archive.html Salient Features Topic videos available Complex Analysis Reference Material Available LTP week distribution: (LTP Weeks) Weeks before MTE Weeks After MTE Spill Over 7 6 2 Detailed Plan For Lectures Week Number Lecture Number Broad Topic(Sub Topic) Chapters/Sections of Text/reference books Other Readings, Lecture Description Relevant Websites, Audio Visual Aids, software and Virtual Labs Introduction Functions of a Complex Variable Learning Outcomes Pedagogical Tool Demonstration/ Case Study...
Words: 3054 - Pages: 13
...of the Fourier transform and the frequency domain, and how they apply to image enhancement. Background Introduction to the Fourier Transform and the Frequency Domain DFT Smoothing Frequency-Domain Filters Sharpening Frequency-Domain Filters 4.1 Background • Any function that periodically repeats itself can be expressed as the sum of sines and/or cosines of different frequencies, each multiplied by a different coefficient (Fourier series). • Even functions that are not periodic (but whose area under the curve is finite) can be expressed as the integral of sines and/or cosines multiplied by a weighting function (Fourier transform). • The advent of digital computation and the “discovery” of fast Fourier Transform (FFT) algorithm in the late 1950s revolutionized the field of signal processing, and allowed for the first time practical processing and meaningful interpretation of a host of signals of exceptional human and industrial importance. • The frequency domain refers to the plane of the two dimensional discrete Fourier transform of an image. • The purpose of the Fourier transform is to represent a signal as a linear combination of sinusoidal signals of various frequencies. = Any function that periodically repeats itself can be expressed as a sum of sines and cosines of different frequencies each multiplied by a different coefficient – a Fourier series 4.2 Introduction to the Fourier Transform and the Frequency Domain • The one-dimensional Fourier transform...
Words: 3417 - Pages: 14
...student version of MATLAB 7.x available under general software in the UCCS bookstore. Other specific programming tools will be discussed in class. 1.) 2.) 3.) 4.) 5.) 6.) Graded homework worth 20%. Quizzes worth 15% total Laboratory assignments worth 20% total. Mid-term exam worth 15%. Final MATLAB project worth 10%. Final exam worth 20%. Topics Text 1.1–1.4 2.1–2.9 3.1–3.9 4.1–4.6 5.1–5.9 6.1–6.9 7.1–7.10 8.1–8.12 9.1–9.10 10.1–10.6 11.1–11.11 12.1–12.4 Weeks 0.5 1.0 1.0 1.0 1.5 1.5 (exam) 1.0 2.0 1.5? 0.5? 1.5? 1.5 (project) 1. Course Overview and Introduction 2. Sinusoids 3. Spectrum Representation 4. Sampling and Aliasing 5. FIR filters 6. Frequency response of FIR filters 7. z-Transforms 8. IIR Filters 9. Continuous-Time Signals and Systems 10. Frequency Response 11. Continuous-Time Fourier Transform 12. Filtering, Modulation, and Sampling Note: that topics 9–12 will most likely only be overviewed at the end of the semester....
Words: 276 - Pages: 2
...Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt Copyright © 2001 John Wiley & Sons, Inc. ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic) DIGITAL IMAGE PROCESSING DIGITAL IMAGE PROCESSING PIKS Inside Third Edition WILLIAM K. PRATT PixelSoft, Inc. Los Altos, California A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright 2001 by John Wiley and Sons, Inc., New York. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM. This publication is designed...
Words: 173795 - Pages: 696
...Information Hiding – Steganography Steganography Types and Techniques Abstract— Information hiding has been one of the most crucial element of information technology in recent years. Unlike Cryptography, Steganography does not only keep the content of information secret, its also keeps the existence of the information secret. This is achieved by hiding information behind another information. This paper gives an overview of Steganography and its techniques, types, and also its advantages and disadvantages. Keywords-component; steganography; information hiding; security; confidentiality; techniques. INTRODUCTION Steganography help hides the fact that communication is taking place by hiding some information behind another information thereby making the communication invisible. The origin of the word “steganography” is from the Greek words “steganos” and “graphia” which is interpreted as “covered” and “writing” respectively thereby defining steganography as “covered writing”. Steganography and cryptography are both part of information hiding but neither alone is without flaws. The goal of steganography is defeated once the hidden message is found or noticed even while still in the original message (carrier). For safely transmission of hidden messages or information in steganography, multimedia files like audio, video and images are mostly used has the carrier or cover source. METHODOLOGY The Methodology used for this paper is based on the...
Words: 1519 - Pages: 7
...Abstract. We propose, analyze, and test an alternating minimization algorithm for recovering images from blurry and noisy observations with total variation (TV) regularization. This algorithm arises from a new half-quadratic model applicable to not only the anisotropic but also the isotropic forms of TV discretizations. The per-iteration computational complexity of the algorithm is three fast Fourier transforms. We establish strong convergence properties for the algorithm including finite convergence for some variables and relatively fast exponential (or q-linear in optimization terminology) convergence for the others. Furthermore, we propose a continuation scheme to accelerate the practical convergence of the algorithm. Extensive numerical results show that our algorithm performs favorably in comparison to several state-of-the-art algorithms. In particular, it runs orders of magnitude faster than the lagged diffusivity algorithm for TV-based deblurring. Some extensions of our algorithm are also discussed. Key words. half-quadratic, image deblurring, isotropic total variation, fast Fourier transform AMS subject classifications. 68U10, 65J22, 65K10, 65T50, 90C25 DOI. 10.1137/080724265 1. Introduction. In this paper, we propose a fast algorithm for reconstructing images from blurry and noisy observations. For simplicity, we assume that the underlying images have square domains, but all discussions can be equally applied to rectangle domains. Let 2 2 2 u0 ∈ Rn be an original n×n grayscale...
Words: 12310 - Pages: 50
...Task 1: Task one was intended to build off of ideas implemented in the previous lab. More specifically formulating a V-I curve for the resistor circuit displayed in the prelab. Graph 1 shows the resulting V-I curve. Graph 1: V-I curve for the potentiometer. Like the previous lab, the signal was generated by a function generator and then sent through a potentiometer followed by a precision resistor in series. Figure 1 shows the LabView Block diagram that was used to record voltages of the two resistors. Figure 1: LabView Block diagram used to record voltages across the precision resistor and potentiometer. Because the resistance of the precision resistor was known to be 10Ω the recorded voltage was used to calculate the current using Ohm’s Law shown in equation 1. V=I*R Equation 1: Ohm’s law. Used to calculate the current. Task 2: Task two was designed to demonstrate how different sampling rates and different frequencies affect data and how it appears. In this section, the function generator was set to 5 Vpp with a frequency of 1000Hz and plugged into the compact DAQ module. Next the experiment was performed using five sampling rates (500, 1000, 2000, 3752, & 20000 ) with samples of 10, 40, 50, 200, and 2000. The LabView block diagram shown in figure 2 was responsible for collecting the mean and standard deviation of the amplitude and frequency. ...
Words: 868 - Pages: 4
...present. * * Microsoft Excel carries many qualitative tools used to analyze data. One tool is the Random Number Generation analysis tool. This tool fills a range with random numbers that a drawn from one of several different dispersals. For example you can use this tool in business to show the difference of a coin flip. The next tool is Rank and Percentile. This tool is used to analyze a set of data in an arrange set. The next tool is the Moving Average analysis tool. This tool projects values in the forecast period which is based on the average value. For example, you are able to create algebraic equations using this tool. The final example I chose is Fourier Analysis tool. This tool solves problems of linear systems and also analyzes periodic data by using the FFT (Fast Fourier Transform) method which actually transforms the data. These tools greatly assist users with their business decisions by allowing companies to create data that can assist with payroll, expense reports, employee time management, customer information and can help complete...
Words: 729 - Pages: 3
...% % % dt = 1/100; % sampling rate % et = 4; % end of the interval % t = 0:dt:et; % sampling range % y = 3*sin(4*2*pi*t) + 5*sin(2*2*pi*t); % % Y = fft(y); % compute Fourier transform % n = size(y,2); % 2nd half are complex conjugates % amp_spec = abs(Y)/n; % % % figure; % subplot(3,1,1); % first of two plots % plot(t,y); grid on % plot with grid % axis([0 et -8 8]); % adjust scaling % % subplot(3,1,2); % second of two plots % freq = (0:size(amp_spec,2)-(1/(n*dt)))/(n*dt); % abscissa viewing window % plot(freq,amp_spec); grid on % % subplot(3,1,3); % second of two plots % freq1 = ((-size(amp_spec,2)+1)/2:(size(amp_spec,2)-1)/2)/(n*dt); % abscissa viewing window % FTy = fftshift(amp_spec) % plot(freq1,FTy); grid on % clear all close all clc x=[] for i = -5:1/1000:5 if i > 0.5 | i < -0.5 x = [x 0]; else x = [x 1]; end end figure;plot(-5:1/1000:5,x) dt = 1/1000; Xf1 = fft(x); n= length(Xf1); Xf = abs(Xf1)/n; Freq = (0:size(Xf,2)-1)/(n*dt) figure; plot(Freq ,Xf) freq1 = ((-size(Xf,2)+1)/2:(size(Xf,2)-1)/2)/(n*dt) Xf = fftshift(Xf) figure; plot(freq1,Xf) f=[-2:0.01:2] H1 = 1./sqrt(1 + (f/1).^2); figure;plot(f,H1); H = 1./sqrt(1 + (freq1/100).^2); REP_mod = H.* Xf; figure;plot(freq1,abs(REP_mod)); Xf1 = fftshift(Xf1) REP = H.*Xf1; REP = ifftshift(REP); IXF = ifft(REP); %IXF = abs(IXF); figure;...
Words: 266 - Pages: 2
...------------------------------------------------- Contents * SECTION :2 * SECTION :3 * SECTION :4 * SECTION :5 ------------------------------------------------- SECTION :2 Multiply the following polynomials in z by using the fft algorithm a=1+2*z^{-1}+ 4*z^{-2}+7*z^{-3}+12*z^{-4}+25*z^{-5} b=1-3*z^{-1}+ 7*z^{-2}+15*z^{-3}-12*z^{-4}+13*z^{-5} Transform polynomials equation to vector ------------------------------------------------- a = [1 2 4 7 12 25]; ------------------------------------------------- b = [1 -3 7 15 -12 13]; ------------------------------------------------- % FFT function in Matlab using Circular Convolution, instead avoid the ------------------------------------------------- % affect of circular convolution, we add zero paddles at end of the vector ------------------------------------------------- ------------------------------------------------- a0 = [a zeros(1, 5)]; ------------------------------------------------- b0 = [b zeros(1 , 5)]; ------------------------------------------------- ------------------------------------------------- % Convolution in time domain equivalent the mutiply in frequency domain. ------------------------------------------------- % First equation doing convolution operation of two polynomials equation in ------------------------------------------------- ...
Words: 1316 - Pages: 6
...Jordan University of Science and Technology Faculty of Engineering Department of Mechanical Engineering Course: Graduation project Project Title: Experimental Modal Analysis Name: Hamzeh Ahmad Alqaisi I.D.: 20080025119 Instructor: Dr.Yousef Najjar Supervisor: Dr.Naem Alkhader Due date: 14/11/2012 EXPERIMENTAL MODAL ANALASYS ABSTRACT Experimental modal analysis has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s. Today, impact testing (or bump testing) has become widespread as a fast and economical means of finding the modes of vibration of a machine or structure. Contents TITLE PAGE NO. Nomenclature………………………………………………………………………………………………………………………………… CHAPTER 1: Introduction………………………………………………………………………………………………………………………………….. CHAPTER 2: Experiment setup……………………………………………………………………………………………………………………….. FRF Calculations……………………………………………………………………………………………………………………………. CHAPTER 3: Results………………………………………………………………………………………………………………………………………….. Conclusion…………………………………………………………………………………………………………………………………….. References…………………………………………………………………………………………………………………………………… Appendices Computer program………………………………………………………………………………………………………………………. CHAPTER 1: Introduction: Modes are used as a simple and efficient means...
Words: 2216 - Pages: 9
...TABLE OF CONTENTS PAGE NO. CHAPTER 1- INTRODUCTION 1.1 INTRODUCTION 6 1.2 WHAT IS OFDMA? 9 CHAPTER 2 - SUBCARRIER ALLOCATION SCHEMES 2.1 STATIC SUBCARRIER ALLOCATION 12 2.2 DYNAMIC SUBCARRIER ALLOCATION 14 2.2.1 THE PROPOSED DSA SCHEME 15 CHAPTER 3- FLOW CHART AND ALGORITHM 4.1 FLOW CHART 17 4.1.1 MAIN FLOWCHART 17 4.1.2 WHEN 2 USERS FALL IN RANGE NUMBERED 3,5,8,14 20 4.1.3 WHEN 3 USERS FALL IN RANGE NUMBERED 3,5,8,14 22 4.2 ALGORITHM 24 CHAPTER 5-BLOCK DIAGRAMS 5.1 CONTROL FRAME TRANSCEIVER 28 5.2 DATA TRANSMISSION 29 5.3 DATA RECEPTION 31 CHAPTER 6- IMPLEMENTATION AND RESULTS 6.1 MATLAB 34 6.1.1 INSTRUCTIONS USED IN CODE 35 6.2 CONTROL FRAME TRANSMISSION AND RECEPTION 39 6.3 DATA GENERATION...
Words: 7933 - Pages: 32