...Distinguishing factors between Euclidean and non- Euclidean spaces: The space we inhabit cannot solely be determined by a priori Hassanah Smith Professor Mandik Philosophy of space and time There are a plethora of ways to distinguish the differences between Euclidean and non- Euclidean geometries. Understanding both geometries can help one determine our physical space rather than inferring because of past experiences, or in this instance postulates of geometry. Euclidean geometry studies planes and solid figures based on a number of axioms and theories. This is explained using flat spaces, hence the usage of paper, and dry erase boards in classrooms, and other flat planes to illustrate these geometrical standards. Some of Euclid’s concepts are 1. The shortest distances between two points is a straight line. 2. The sum of all angles in a triangle equals one hundred eighty degrees. 3. Perpendicular lines are associated with forming right angles. 4. All right angles are equal 5. Circles can be constructed when the point for the center and a distance of the radius is given. But Euclid is mostly recognized for the parallel postulate. This states that through a point not on a line, there is no more than one line parallel through the line. (Roberts, 2012) These geometries went unchallenged for decades until other forms of geometry was introduced in the early nineteen hundreds, because Euclid’s geometry could not be applied to explain all physical...
Words: 1523 - Pages: 7
...Alternatives to Euclidean Geometry and Its Applications Negations to Euclid’s fifth postulate, known as the parallel postulate, give rise to the emergence of other types of geometries. Its existence stands in the respective models which their originators have imagined and designed them to be. The development of these geometries and its eventual recognition give humans some mathematical systems as alternative to Euclidean geometry. The controversial Euclid’s fifth postulate is phrased in this manner, to wit: “If a straight line crossing two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if extended indefinitely, meet on that side on which is the angles less than the two right angles.” which has been rephrased, and what is known as the parallel postulate as follows: “Given a line L and an external point P not on L, there exists a unique line m passing through P and parallel to L.” With the sphere as its model, is spherical (also called reimannian or elliptic) geometry being advanced by German mathematician, Bernhard Riemann who proposes the absence of a parallel line with Euclid’s fifth postulate as reference. His proposition is as follows: “ If L is any line and P is any point not on L, then there are no lines through P that are parallel to L” It contradicts Euclid’s fifth postulate mainly because no matter how careful one in constructing a line with a straightedge- as straight as it is- that line...
Words: 783 - Pages: 4
...postulate (a.k.a. Euclid’s fifth postulate) in Euclidean Geometry states that if one cuts a line segment with 2 lines, and the interior angles add up to less than 180 degrees, then the two lines will eventually meet if extended infinitely (Euclid’s parallel postulate exact words: if a line segment intersects two straight lines forming two interior angles on the same side that sum to less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles). Mathematicians such as Aristotle tried to prove this prove the parallel postulates, but they always ended up using the postulate itself in proving it, causing great controversies. In the late 19th century, mathematicians began to question if the postulate was true, which gave rise to the Non-Euclidean geometries. Elliptic geometry is a form of Non-Euclidean Geometry. It is different from Euclidean Geometry because it replaces the parallel postulate with the statement, "through any point in the plane, there exist no lines parallel to a given line” (there are basically no parallel lines), and because it modifies Euclid’s second postulate (there are no infinate lines in elliptical geometry). Bernard Riemmannian, the man who founded Elliptical (a.k.a. Riemmanian Geometry) Geometry had a lecture in 1854 discussing the ideas currently called manifolds, Riemmanian metric, and curvature. He also made many Non-Euclidean Geometries based on a formula for a family...
Words: 422 - Pages: 2
...30 St Mary Axe, also known as the “Gherkin,” is one of Norman Foster’s works that has sparked London’s new architectural movement. This movement consists of structures with steel and glass, a round-shape, and unused designs. I chose this structure because of its odd-shape and towering height; it’s not very common to see this specific design in major cities around the world. The Gherkin is a missile-shaped skyscraper that incorporates Foster’s combination of steel and glass; its height and shape draws the eyes of every Londoner. The building tends to stand out to many due to its surrounding of outdated, smaller structures. While there are many older buildings surrounding it, the Gherkin is also located in one of the more updated parts of the...
Words: 308 - Pages: 2
...Difference Between Euclidean and Spherical Trigonometry 1 Non-Euclidean geometry is geometry that is not based on the postulates of Euclidean geometry. The five postulates of Euclidean geometry are: 1. Two points determine one line segment. 2. A line segment can be extended infinitely. 3. A center and radius determine a circle. 4. All right angles are congruent. 5. Given a line and a point not on the line, there exists exactly one line containing the given point parallel to the given line. The fifth postulate is sometimes called the parallel postulate. It determines the curvature of the geometry’s space. If there is one line parallel to the given line (like in Euclidean geometry), it has no curvature. If there are at least two lines parallel to the given line, it has a negative curvature. If there are no lines parallel to the given line, it has a positive curvature. The most important non-Euclidean geometries are hyperbolic geometry and spherical geometry. Hyperbolic geometry is the geometry on a hyperbolic surface. A hyperbolic surface has a negative curvature. Thus, the fifth postulate of hyperbolic geometry is that there are at least two lines parallel to the given line through the given point. 2 Spherical geometry is the geometry on the surface of a sphere. The five postulates of spherical geometry are: 1. Two points determine one line segment, unless the points are antipodal (the endpoints of a diameter of the sphere), in which case ...
Words: 4736 - Pages: 19
...Alternatives to Euclidean Geometry Student name: Institution: Alternatives to Euclidean Geometry According to Johnson (2013) Euclidean Geometry , commonly known as high school geometry, is a mathematical study of geometry based on undefined terms such as points, lines and or planes; definitions and other theories of a mathematician known as Euclid (330 B.C.) While a number of Euclid’s research findings had been earlier stated by Greek Mathematicians, Euclid has received a lot of recognition for developing the very first comprehensive deductive systems. Euclid’s approach to mathematical geometry involved providing all the theorems from a finite number of axioms (postulates). Euclidean Geometry is basically a study of flat surfaces. Geometrical concepts can easily be illustrated by drawings on a chalkboard or a piece of paper. A number of concepts are known in a flat surface. These concepts include, the shortest distance between points, which is known to be one unique straight line, the angle sum of a triangle, which adds up to 180 degrees and the concept of perpendicular to any line.( Johnson, 2013, p.45) In his text, Mr. Euclid detailed his fifth axiom, the famous parallel axiom, in this manner: If a straight line traversing any two straight lines forms interior angles on one side less than two right angles, the two straight lines, if indefinitely extrapolated, will meet on that same side where the angles smaller than the two right angles. In today’s mathematics, the parallel...
Words: 835 - Pages: 4
...of plants and animals occupy niches defined by the availability of resources. The resources might be defined in terms of factors such as temperature, moisture, degree of acidity, amounts of nutrients, 225 226 Applications of Discrete Mathematics and so on. These factors are subject to constraints such as temperature lying in a certain range, pH lying within certain limits, etc. The combination of all these constraints for a species then defines a region in n-dimensional Euclidean space, where n is the number of factors. We can call this region the ecological niche of the species in question. For example, suppose we restrict ourselves to three factors, such as temperature, nutrients, and pH. Assume that the temperature must be between t1 and t2 degrees, the amount of nutrients between n1 and n2 and the pH between a1 and a2 . Then the ecological niche these define occupies the region of 3-dimensional Euclidean space shown in Figure 1. Figure 1. An ecological niche. Euclidean space which has as dimensions the various factors of temperature, pH, etc., is...
Words: 4994 - Pages: 20
...Minutes Supplement! Math Pickup Lines! I don’t like my current girlfriend. Mind if I do a you-substitution? Archimedes cried out “eureka” and ran around naked and filled with joy when he discovered that the volume of a solid can be determined by how much it displaces. Spend more time with me and you will do the same. Here is a proof by seduction. Being a mathematician is tough work. Is there any chance that you can provide me with an easier kind of job? Euclid said that two parallel planes don’t touch. Let’s go back to my room and study some non-Euclidean geometry. Why don’t you be the numerator and I be the denominator and both of us reduce to simplest form? I don’t care what Godel’s Incompleteness Theorem says, because I know that you complete me. There are many proofs of my theorem, but you are far and away the most elegant. Let me show you that the function of my love for you is one to one and on to. I have a solution to Fermat’s Theorem written on the inside of my pants. Want a hot Euler body massage? Shall I iterate using Newton’s method to find your 0? In game theory I study situations in which both players can win. You want to be a part of one? You have one compact set. You give me a positive derivative (Also: my vector field has a positive divergence when I am around you). Ever wonder what L’Hopital’s rule has to say about limits in the form of me over you? If you don’t want to go all the way, ...
Words: 639 - Pages: 3
...1 Dividing a number by zero doesn't produce an infinitely large number as an answer. The reason is that division is defined as the inverse of multiplication; if you divide by zero, and then multiply by zero, you should regain the number you started with. However, multiplying infinity by zero produces only zero, not any other number. There is nothing which can be multiplied by zero to produce a nonzero result; therefore, the result of a division by zero is literally “undefined.” 1a Renee was looking out the window when Mrs. Rivas approached. “Leaving after only a week? Hardly a real stay at all. Lord knows I won't be leaving for a long time.” Renee forced a polite smile. “I'm sure it won't be long for you.” Mrs. Rivas was the manipulator in the ward; everyone knew that her attempts were merely gestures, but the aides wearily paid attention to her lest she succeed accidentally. “Ha. They wish I'd leave. You know what kind of liability they face if you die while you're on status?” “Yes, I know.” “That's all they're worried about, you can tell. Always their liability-” Renee tuned out and returned her attention to the window, watching a contrail extrude itself across the sky. “Mrs. Norwood?” a nurse called. “Your husband's here.” Renee gave Mrs. Rivas another polite smile and left. 1b Carl signed his name yet another time, and finally the nurses took away the forms for processing. He remembered when he had brought Renee in to be admitted, and thought of all the stock...
Words: 5735 - Pages: 23
...arXiv:math.DG/0207039 v1 3 Jul 2002 Exterior Differential Systems and Euler-Lagrange Partial Differential Equations Robert Bryant Phillip Griffiths July 3, 2002 Daniel Grossman ii Contents Preface Introduction 1 Lagrangians and Poincar´-Cartan Forms e 1.1 Lagrangians and Contact Geometry . . . . . . . . . 1.2 The Euler-Lagrange System . . . . . . . . . . . . . . 1.2.1 Variation of a Legendre Submanifold . . . . . 1.2.2 Calculation of the Euler-Lagrange System . . 1.2.3 The Inverse Problem . . . . . . . . . . . . . . 1.3 Noether’s Theorem . . . . . . . . . . . . . . . . . . . 1.4 Hypersurfaces in Euclidean Space . . . . . . . . . . . 1.4.1 The Contact Manifold over En+1 . . . . . . . 1.4.2 Euclidean-invariant Euler-Lagrange Systems . 1.4.3 Conservation Laws for Minimal Hypersurfaces 2 The 2.1 2.2 2.3 2.4 2.5 Geometry of Poincar´-Cartan Forms e The Equivalence Problem for n = 2 . . . . . . . Neo-Classical Poincar´-Cartan Forms . . . . . . e Digression on Affine Geometry of Hypersurfaces The Equivalence Problem for n ≥ 3 . . . . . . . The Prescribed Mean Curvature System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v vii 1 1 7 7 8 10 14 21 21 24 27 37...
Words: 82432 - Pages: 330
...Natural Computing Series Series Editors: G. Rozenberg Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink Leiden Center for Natural Computing Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen T. Head L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer E. Oja G. P˘ un J. Reif H. Rubin A. Salomaa M. Schoenauer H.-P. Schwefel C. Torras a D. Whitley E. Winfree J.M. Zurada For further volumes: www.springer.com/series/4190 Franz Rothlauf Design of Modern Heuristics Principles and Application Prof. Dr. Franz Rothlauf Chair of Information Systems and Business Administration Johannes Gutenberg Universität Mainz Gutenberg School of Management and Economics Jakob-Welder-Weg 9 55099 Mainz Germany rothlauf@uni-mainz.de Series Editors G. Rozenberg (Managing Editor) rozenber@liacs.nl Th. Bäck, J.N. Kok, H.P. Spaink Leiden Center for Natural Computing Leiden University Niels Bohrweg 1 2333 CA Leiden, The Netherlands A.E. Eiben Vrije Universiteit Amsterdam The Netherlands ISSN 1619-7127 Natural Computing Series ISBN 978-3-540-72961-7 e-ISBN 978-3-540-72962-4 DOI 10.1007/978-3-540-72962-4 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011934137 ACM Computing Classification (1998): I.2.8, G.1.6, H.4.2 © Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations...
Words: 114592 - Pages: 459
...A Statistical Perspective on Data Mining Ranjan Maitra∗ Abstract Technological advances have led to new and automated data collection methods. Datasets once at a premium are often plentiful nowadays and sometimes indeed massive. A new breed of challenges are thus presented – primary among them is the need for methodology to analyze such masses of data with a view to understanding complex phenomena and relationships. Such capability is provided by data mining which combines core statistical techniques with those from machine intelligence. This article reviews the current state of the discipline from a statistician’s perspective, illustrates issues with real-life examples, discusses the connections with statistics, the differences, the failings and the challenges ahead. 1 Introduction The information age has been matched by an explosion of data. This surfeit has been a result of modern, improved and, in many cases, automated methods for both data collection and storage. For instance, many stores tag their items with a product-specific bar code, which is scanned in when the corresponding item is bought. This automatically creates a gigantic repository of information on products and product combinations sold. Similar databases are also created by automated book-keeping, digital communication tools or by remote sensing satellites, and aided by the availability of affordable and effective storage mechanisms – magnetic tapes, data warehouses and so on. This has created a situation...
Words: 22784 - Pages: 92
...Preface During the past century, the impact of mathematics on humanity has been more tremendous than ever since Galileo's agonizing fight against the old establishment and the revolution which physics experienced after Newton's subsequent synthesis. At the beginning of the last century, mathematical ideas and techniques were spread to theoretical and applied physics by the influence of two of the greatest mathematicians of all times, D. Hilbert and H. Poincar6, being then at the zenith of their careers. Their ability to establish very deep at first glance often hidden connections between a priori separated branches of science convinced physicists to adopt and work with the most powerful existing mathematical tools. Whereas the 20th century really was the century of physics, mathematics enjoyed a well deserved reputation from its very beginning, so facilitating the huge impact it had subsequently on humanity. This reputation has been crucial for the tremendous development of science and technology. Although mathematics supported the development of weapons of mass destruction, it simultaneously promoted the advancement of computers and high technology, without which the substantial improvement of the living conditions humanity as a whole has experienced, could not have been realized. In no previous time the world has seen such a spectacular growth of scientific knowledge as during the last century, with mathematics playing a central role in most scientific and...
Words: 40272 - Pages: 162
...Discrete Mathematics Lecture Notes, Yale University, Spring 1999 L. Lov´sz and K. Vesztergombi a Parts of these lecture notes are based on ´ ´ L. Lovasz – J. Pelikan – K. Vesztergombi: Kombinatorika (Tank¨nyvkiad´, Budapest, 1972); o o Chapter 14 is based on a section in ´ L. Lovasz – M.D. Plummer: Matching theory (Elsevier, Amsterdam, 1979) 1 2 Contents 1 Introduction 2 Let 2.1 2.2 2.3 2.4 2.5 us count! A party . . . . . . . . Sets and the like . . . The number of subsets Sequences . . . . . . . Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 7 9 12 16 17 21 21 23 24 27 27 28 29 30 32 33 35 35 38 45 45 46 47 51 51 52 53 55 55 56 58 59 63 64 69 3 Induction 3.1 The sum of odd numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Subset counting revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Counting regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Counting subsets 4.1 The number of ordered subsets . . . . 4.2 The number of subsets of a given size 4.3 The Binomial Theorem . . . . . . . . 4.4 Distributing presents . . . . . . . . . . 4.5 Anagrams . . . . . . . . . . . . . . . . 4.6 Distributing money . . . . . . . . . . ...
Words: 59577 - Pages: 239
...Calculus From Wikipedia, the free encyclopedia This article is about the branch of mathematics. For other uses, see Calculus (disambiguation). Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem [show]Differential calculus [show]Integral calculus [show]Vector calculus [show]Multivariable calculus Calculus (Latin, calculus, a small stone used for counting) is a branch of mathematics focused on limits,functions, derivatives, integrals, and infinite series. This subject constitutes a major part of modernmathematics education. It has two major branches,differential calculus and integral calculus, which are related by the fundamental theorem of calculus. Calculus is the study of change,[1] in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations. A course in calculus is a gateway to other, more advanced courses in mathematics devoted to the study of functions and limits, broadly called mathematical analysis. Calculus has widespread applications in science,economics, and engineering and can solve many problems for which algebra alone is insufficient. Historically, calculus was called "the calculus of infinitesimals", or "infinitesimal calculus". More generally, calculus (plural calculi) refers to any method or system of calculation guided by the symbolic manipulation of expressions. Some examples of other well-known calculi are propositional calculus...
Words: 5650 - Pages: 23