Free Essay

Ofdm

In:

Submitted By hardikkapadiya16
Words 2381
Pages 10
Document Type: Prentice Hall
Author: John G. Proakis and Masoud Salehi
Book: Communication Systems Engineering
Copyright: 2002
ISBN: 0-13-061793-8
NI Supported: No
Publish Date: Sep 6, 2006

Multicarrier Modulation and OFDM
Overview
This tutorial is part of the National Instruments Signal Generator Tutorial series. Each tutorial in this series, will teach you a specific topic of common measurement applications, by explaining the theory and giving practical examples. This tutorial covers multicarrier modulation and OFDM. For additional signal generator concepts, refer to the Signal Generator Fundamentals main page.
Table of Contents
1. Multicarrier Modulation and OFDM
2. Further Reading
3. Relevant NI products
Multicarrier Modulation and OFDM
In the preceding sections, we considered digital transmission through nonideal channels and observed that such channels cause intersymbol interference when the reciprocal of the system rate is significantly smaller than the time dispersion (duration of the impulse response) of the nonideal channel. In such a case, a channel equalizer is employed at the receiver to compensate for the channel distortion. If the channel is a bandpass channel with a specified bandwidth, the information-bearing signal may be generated at the baseband and then translated in frequency to the passband of the channel. Thus, the information-bearing signal is transmitted on a single carrier. We also observed that intersymbol interference usually results in some performance degradation, even in the case where the optimum detector is used to recover the information symbols at the receiver.
An alternative approach to the design of a bandwidth-efficient communication system in the presence of channel distortion is to subdivide the available channel bandwidth into a number of equal-bandwidth subchannels, where the bandwidth of each subchannel is sufficiently narrow so that the frequency response characteristics of the subchannels are nearly ideal. Such a subdivision of the overall bandwidth into smaller subchannels is illustrated in Figure 8.49. Thus, we create K = W/Df subchannels, where different information symbols can be transmitted simultaneously in the
K subchannels. Consequently, the data is transmitted by frequency-division multiplexing (FDM).
With each subchannel, we associate a carrier

where fk is the mid-frequency in the kth subchannel. By selecting the symbol rate 1/ T on each of the subchannels to be equal to the separation D f of adjacent subcarriers, the subcarriers are orthogonal over the symbol interval T, independent of the relative phase relationship between subcarriers; i.e.,

Figure 8.49 Subdivision of the channel bandwidthW into narrowband subchannels of equal width Df.

where fk – fj = n/T, n = 1, 2, ..., independent of the values of the phases fk and fj . In this case, we have orthogonal frequency-division multiplexing (OFDM).
With an OFDM system having K subchannels, the symbol rate on each subcarrier is reduced by a factor of N relative to the symbol rate on a single carrier system that employs the entire bandwidth
W and transmits data at the same rate as OFDM. Hence, the symbol interval in the OFDM system is T = KTs, where Ts is the symbol interval in the single-carrier system. By selecting K to be sufficiently large, the symbol interval T can be made significantly larger than the time duration of the channel-time dispersion. Thus, intersymbol interference can be made arbitrarily small by selection of K. In other words, each subchannel appears to have a fixed frequency response C(fk), k = 0, 1, ..., K – 1.
As long as we maintain time synchronization among the subcarriers, OFDM allows us to transmit a different number of bits/symbol on each subcarrier. Hence, subcarriers that yield a higher SNR due to a lower attenuation can be modulated to carry more bits/symbol than subchannels that yield a lower SNR (high attenuation). For example, QAM with different constellation sizes may be used in an OFDM system.
The modulator and demodulator in an OFDM system can be implemented by use of a parallel bank of filters based on the discrete Fourier transform (DFT). When the number of subchannels is large, say K > 25, the modulator and demodulator in an OFDM system are efficiently implemented by use of the fast Fourier transform algorithm (FFT) to compute the DFT. Next, we describe an
OFDM system in which the modulator and demodulator are implemented based on the DFT.
A major problem with the multicarrier modulation in general and OFDM system in particular is the high peak-to-average power ratio (PAR) that is inherent in the transmitted signal. Large signal

1/ 3

www.ni.com

peaks occur in the transmitted signal when the signals in the K subchannels add constructively in phase. Such large signal peaks may saturate the power amplifier at the transmitter and, thus, cause intermodulation distortion in the transmitted signal. Intermodulation distortion can be reduced and, generally, avoided by reducing the power in the transmitted signal and, thus, operating the power amplifier at the transmitter in the linear range. Such a power reduction results in inefficient operation of the OFDM system.
A variety of methods have been devised to reduce PAR in multicarrier systems. A relatively simple method is to insert different phase shifts in each of the subcarriers, where the phase shifts are selected pseudorandomly, or by means of some algorithm, to reduce the PAR. Additional methods are cited in the references cited in Section 8.8.
An OFDM System Implemented via the FFT Algorithm
In this section, we describe an OFDM system in which QAM is used for data transmission on each of the subcarriers and the FFT algorithm is used in the implementation of the modulator and demodulator. The basic block diagram of the OFDM is illustrated in Figure 8.50 . A serial-to-parallel buffer subdivides the information sequence into frames of Bf bits. The Bf bits in each frame are parsed into K groups, where the i th group is assigned bi bits.

Figure 8.50 Block diagram of a multicarrier OFDM digital communication system.

Hence,

We may view the multicarrier modulator as generating K independent QAM subchannels, where the symbol rate for each subchannel is 1/ T and the the signal in each subchannel has a distinct QAM constellation. Hence, the number of signal points for the i th subchannel is
. Let us denote the complex-valued signal points corresponding the information signals on the K subchannels by
Xk , k = 0, 1, ..., K – 1. These information symbols {Xk} represent the values of the discrete Fourier transform (DFT) of a multicarrier OFDM signal x(t), where the modulation on each subcarrier is
QAM. Since x(t) must be a real-valued signal, its N-point DFT {Xk} must satisfy the symmetry property

. Therefore, we create N = 2K symbols from K information symbols by defining

Note that the information symbol X0 is split into two parts, both of which are real. If we denote the new sequence of symbols as the real-valued sequence

where

, the N-point inverse DFT (IDFT) yields

is simply a scale factor. This sequence {xn, 0 £ n £ N – 1} corresponds to samples of the multicarrier OFDM signal x(t), consisting of K subcarriers, which may be expressed as

where T is the signal duration and xn = x(nT/N), n = 0, 1, ..., N – 1. The subcarrier frequencies are fk = k/T, k = 0, 1, ..., K – 1. The signal samples {xn} generated by computing the IDFT are passed through a digital-to-analog (D/A) converter, where output, ideally, is the OFDM signal waveform x(t).
With x(t) as the input to the channel, the channel output at the receiver may be expressed as

where c(t) is the impulse response of the channel and denotes convolution. Since the bandwidth Df of each subchannel is selected to be very small relative to the overall channel bandwidth W = K
Df, the symbol duration T = 1/Df is large compared to the duration of the channel impulse response. To be specific, suppose that the channel impulse response spans m + 1 signal samples, where
. A simple way to completely avoid intersymbol interference (ISI) is to insert a time guard of duration mT/N between transmission of successive data blocks. This allows the response of the channel to die out before the next block of K symbols are transmitted.
An alternative method to avoid ISI is to append a so-called cyclic prefix to each block of N signal samples {xn , 0 £ n £ N – 1}. The cyclic prefix for the block of samples consists of the samples XN –
, XN – m +1, ..., XN – 1. These samples are appended to the beginning of the block, thus, creating a signal sequence of length N + m samples, which may be indexed from n = –m to n = N – 1, m 2/ 3

www.ni.com

where the first m samples constitute the cyclic prefix. Then, if the sample values of the channel response are { cn, 0 £ n £ m}, the convolution of {cn} with {xn, –m £ n £ N – 1} produce the received signal {rn}. Since the ISI in any pair of successive signal transmission blocks affects the first m signal samples, we discard the first m samples of {rn} and demodulate the signal based on the received signal samples {rn, 0 £ n £ N – 1}.
If we view the channel characteristics in the frequency domain, the channel frequency response at the subcarrier frequencies fk = k/T is

Since the ISI is eliminated by the use of either the cyclic prefix or the time guard band, the demodulated sequence of symbols may be expressed as

where

is the output of the N-point DFT computed by the demodulator and { hk) is the additive noise corrupting the signal.

As illustrated in Figure 8.50, the received signal is demodulated by computing the DFT of the received signal after it has been passed through an analog-to-digital (A/D) converter. As in the case of the OFDM modulator, the DFT computation at the demodulator is performed efficiently by use of the FFT algorithm.
In order to recover the information symbols from the values of the computed DFT, it is necessary to estimate and compensate for the channel factors { Ck}. The channel measurement can be accomplished by initially transmitting either a known modulated sequence on each of the subcarriers or, simply, transmitting the unmodulated subcarriers. If the channel characteristics vary slowly with time, the time variations can be tracked by using the decisions at the output of the detector in a decision-directed manner. Thus, the multicarrier OFDM system can be made to operate adaptively. The transmission rate on each of the subcarriers can be optimized by properly allocating the average transmitted power and the number of bits that are transmitted by each subcarrier.
The SNR per subchannel may be defined as

where T is the symbol duration, Pk is the average transmitted power allocated to the kth subchannel,

is the squared magnitude of the frequency response of the kth subchannel, and

is the

corresponding noise variance. In subchannels with high SNR, we transmit more bits/symbol by using a larger QAM constellation compared to subchannels with low SNR. Thus, the bit rate on each subchannel can be optimized in such a way that the error-rate performance among the subchannels is equalized to satisfy the desired specifications.
Multicarrier OFDM using QAM modulation on each of the subcarriers as described above has been implemented for a variety of applications, including high-speed transmission over telephone lines, such as digital subcarrier lines. This type of multicarrier OFDM modulation has also been called discrete-multitone (DMT) modulation. Multicarrier OFDM is also used in digital audio broadcasting in Europe and other parts of the world and in digital cellular communication systems.
Further Reading
The pioneering work on signal design for bandwidth-constrained channels was done by Nyquist (1928). The use of binary partial response signals was originally proposed in the paper by Lender
(1963) and was later generalized by Kretzmer (1966). The problem of optimum transmitter and receiver filter design was investigated by Gerst and Diamond (1961), Tufts (1965), Smith (1965), and
Berger and Tufts (1967).
Adaptive equalization for digital communication was introduced by Lucky (1965, 1966). Widrow (1966) devised the LMS algorithm for adaptively adjusting the equalizer coefficients.
The Viterbi algorithm was devised by Viterbi (1967) for the purpose of decoding convolutional codes, which are described in Chapter 9. Its use as the ML sequence detector for partial response signals and, more generally, for symbols corrupted by intersymbol interference, was proposed and analyzed by Forney (1972) and Omura (1971). A comprehensive treatment of adaptive equalization algorithms is given in the book by Proakis (2001).
There is a large amount of literature on multicarrier digital communication systems. One of the earliest systems, described by Doeltz et al. (1957) and called Kineplex, was used for digital transmission in the high-frequency radio band. Other early work on the multicarrier system design is described in the papers by Chang (1966) and Saltzberg (1967). The use of DFT for modulation and demodulation of multicarrier OFDM systems was proposed by Weinstein and Ebert (1971). More recent references on applications of OFDM in practical systems are the papers by Chow et al.
(1995) and Bingham (1990). The recent book by Bahai and Saltzberg (1999) provides a comprehensive treatment of OFDM.
The problem of PAR reduction in multicarrier systems has been investigated by many people. The interested reader may refer to the papers by Boyd (1986), Popovic (1991), Jones et al. (1994),
Wilkinson and Jones (1995), Wulich (1996), Tellado and Cioffi (1998), and Tarokh and Jafarkhani (2000).
Relevant NI products
Customers interested in this topic were also interested in the following NI products:
Function, Arbitrary, and RF Signal Generators
Other Modular Instruments (digital multimeters, digitizers, switching, etc...)
LabVIEW Graphical Programming Environment
SignalExpress Interactive Software Environment

For the complete list of tutorials, return to the NI Signal Generator Fundamentals Main page.

Legal
Excerpt from the book published by Prentice Hall Professional ( http://www.phptr.com).
Copyright Prentice Hall Inc., A Pearson Education Company, Upper Saddle River, New Jersey 07458.
This material is protected under the copyright laws of the U.S. and other countries and any uses not in conformity with the copyright laws are prohibited, including but not limited to reproduction,
DOWNLOADING, duplication, adaptation and transmission or broadcast by any media, devices or processes.

3/ 3

www.ni.com

Similar Documents

Free Essay

Ofdm

...CHAPTER: 1 INTRODUCTION 1.1 Some basics elements of communication systems: In [1] [21], it is mentioned that communication system means a system where transmission of data or information is done from one point to another by several processes. The processes consist of generation of an information signal, description of the information signal through a defined set of symbols, encoding of the symbols through communication channels, decoding and reproduction of original symbols and finally re-creation of the original information signal. All these features of a communication system can be described by three basic elements such as transmitter, channel and receiver. Figure 1.1: Basic structure of communication system 1.2 Wireless communication background In 1921, Detroit Michigan Police Dept. made the earliest significant use of Mobile radio in a vehicle in the United States. The system operated at a frequency close to 2 MHz. The channels soon became overcrowded. In 1940, new frequencies between 30 and 40 MHz were made available. Increasing the available channels encouraged a substantial buildup of police systems. Shortly thereafter other users found a need for this form of communication. Private individuals, companies and public agencies purchased and operated their own mobile units. In 1945, first public mobile telephone system in the U.S. was inaugurated in St. Louis, Missouri with three channels at 150 MHz. Six channels spaced 60 kHz apart were allocated for this service...

Words: 15258 - Pages: 62

Free Essay

A Novel Channel Estimation Algorithm for 3gpp Lte Downlink System Using Joint Time-Frequency Two-Dimensional Iterative Wiener Filter

...A Novel Channel Estimation Algorithm for 3GPP LTE Downlink System Using Joint Time-Frequency Two-Dimensional Iterative Wiener Filter Jinfeng Hou, Jian Liu School of Communication and Information Engineering University of Electronic Science and Technology of China (UESTC) Chengdu 611731, China Email: houjinfeng@gmail.com, liuj@uestc.edu.cn Abstract—The channel estimation algorithms are employed in 3GPP Long Term Evolution (LTE) downlink system to assist the coherent demodulation of Orthogonal Frequency Division Multiplexing (OFDM) symbols. Based on the comparison of several exiting different channel estimation algorithms, we propose a joint time-frequency two-dimensional iterative Wiener filter (IWF) channel estimation algorithm for 3GPP LTE downlink system. In this scheme, we first apply the linear minimum mean square error (LMMSE) algorithm based on singular value decomposition (SVD) for IWF in frequency domain, and then the values after the first filtering in frequency domain are used to achieve the second IWF in time domain. Comparing to the conventional algorithms, the channel estimation algorithm proposed by this paper brings up lower bit error rate (BER) and adds little computational complexity. I. I NTRODUCTION In December 2004, the Third Generation Partnership Program (3GPP) members started a feasibility study on the enhancement of the Universal Terrestrial Radio Access (UTRA) in the aim of continuing the long time frame competitiveness of the 3G Universal Mobile Telecommunications...

Words: 2979 - Pages: 12

Free Essay

Energy Based Detection Scheme for Orthogonal Frequency Division Multiplexing

...Professor, Dept. of ECE, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore – 641105. 1 2 ABSTRACT Orthogonal Frequency Division M ultiplexing (OFDM ) has been accepted as the modulation scheme of choice for the next generation high-speed wireless communication systems due to the advantages that it offers like high spectral efficiency, resistance to multipath fading and resistance to frequency selective fading. M oreover, it lends itself to simple channel equalization. Conventional single carrier systems do not provide such advantages and hence, OFDM would almost ubiquitously be used for high speed wireless data transmission. However, the main drawback of such systems over single carrier systems is that in the presence of noise, there is an increased computational complexity at the receiver end to decode the data. In this paper, a low complexity detection algorithm is proposed for OFDM systems. M aximum likelihood detection is taken as the baseline detection algorithm and the proposed algorithm is compared with M L detection algorithm. Comparison results are plotted and conclusions are drawn. Reference [4] provides an iterative detection scheme for OFDM in presence of impulsive noise while [5] proposes an impulsive noise mitigation scheme for over-sampled OFDM systems. Performance and design of impulse noise detector for OFDM systems is provided in [6]. Reference [7] proposes an MM SE detection...

Words: 2583 - Pages: 11

Free Essay

Introduction to Ofdm

...Introduction to OFDM, II edition 10/30/98/TUD-TVS 1 OFDM as a possible modulation technique for multimedia applications in the range of mm waves Duš Matiæ an Abstract - In this paper is given an overview of a multiple carrier modulation technique known as OFDM (Orthogonal Frequency Division Multiplex). It focuses on problems that are specific for its use in the future mobile multimedia communications (MMC) in the range of 60 GHz. I Introduction Multimedia is effectively an infrastructure technology with widely different origins in computing, telecommunications, entertainment and publishing. New applications are emerging, not just in the wired environment, but also in the mobile one. At present, only low bit-rate data services are available to the mobile users. However, demands of the wireless multimedia broadband system are anticipated within both public and private sector. This report discusses possible ways to enable multimedia communications in the mobile environment. Multimedia communication has a rather large demands upon bandwidth and quality of service (QoS) compared to what is available today to the mobile user. Bitrates for multimedia span from a few Kb/s, for voice, to about 20 Mb/s for HDTV, or even more in the peaks. When solving this problem, first question is how to put this large bit stream on air with sufficient QoS guaranties, i.e. which modulation can compromise all contradicting requirements in the best manner. The radio environment is harsh,...

Words: 8198 - Pages: 33

Free Essay

Introduction to Ofdm

...E225C – Lecture 16 OFDM Introduction EE225C Introduction to OFDM l Basic idea » Using a large number of parallel narrow-band subcarriers instead of a single wide-band carrier to transport information l Advantages » Very easy and efficient in dealing with multi-path » Robust again narrow-band interference l Disadvantages » Sensitive to frequency offset and phase noise » Peak-to-average problem reduces the power efficiency of RF amplifier at the transmitter l Adopted for various standards – DSL, 802.11a, DAB, DVB 1 Multipath can be described in two domains: time and frequency Time domain: Impulse response time time time Impulse response Frequency domain: Frequency response time time time Sinusoidal signal as input f Frequency response time Sinusoidal signal as output Modulation techniques: monocarrier vs. multicarrier Channel Channelization Guard bands N carriers Similar to FDM technique B Pulse length ~ N/B – Data are shared among several carriers and simultaneously transmitted Advantages Furthermore – Flat Fading per carrier – N long pulses – ISI is comparatively short – N short EQs needed – Poor spectral efficiency because of band guards – It is easy to exploit Frequency diversity – It allows to deploy 2D coding techniques – Dynamic signalling B Pulse length ~1/B – Data are transmited over only one carrier Drawbacks – Selective Fading – Very short pulses – ISI is compartively long – EQs are then very long – Poor...

Words: 776 - Pages: 4

Free Essay

Performance Evaluation of Ofdm System for Different Channel and Different Modulation Techniques

...Performance Evaluation of OFDM System for Different Channel and Different Modulation Techniques Thesis Report Department of Electronic and Telecommunication Engineering (ETE) Submitted By Foysal Bin Wadud (T-093011) Gazi Shamsul Arefeen Shams (T-093016) Supervised By Engr. Mohammad Jashim Uddin Contact Information: Foysal Bin Wadud (Mamun), Dept. of ETE, International Islamic University Chittagong, Metric No.: T093011, Email: mamunmoon19@yahoo.com Contact No.: +8801717934676 Gazi Shamsul Arefeen (Shams) Dept. of ETE, International Islamic University Chittagong, Metric No.: T093016, Email: shams.ete@gmail.com Contact No.: +8801676848247 Contact Information of Supervisor: Md. Jashim Uddin Dept. Of ETE, International Islamic University Chittagong. Contact No. +8801716-823959 Email: jashimcuet@yahoo.com Abstract The demand for high-speed mobile wireless communications is rapidly growing. Orthogonal Frequency Division Multiplexing (OFDM) technology promises to be a key technique for achieving the high data capacity and spectral efficiency requirements for wireless communication systems in the near future. An Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to fading environments. In OFDM the data is modulated using multiple numbers of sub-carriers that are orthogonal to each other because of which the problems associated with other modulation schemes such as Inter Symbol Interference (ISI) and Inter Carrier Interference...

Words: 16266 - Pages: 66

Free Essay

Re: Week 2 Discussion 222

...Modern Wireless Signals Earl McCune RF Communications Consulting, 2383 Pruneridge Ave., Santa Clara, CA, 95050, USA Abstract — With the evolution of wireless systems and services, the on-air signals themselves are also undergoing very significant transformations. This paper provides a survey of the active and coming-soon signal types adopted for wireless systems around the world. Focus is on modulation schemes, along with various measures used to characterize the signals before and after power amplification. Cost-benefit tradeoff information is introduced to provide perspective on this signal evolution. I. INTRODUCTION As two-way wireless communication becomes ubiquitous from relative obscurity 20 years ago, the signals used have evolved from those which are very simple to now include very complicated and high order modulations. And with economics demanding that older systems are not taken down before newer ones are installed, many of these signals must exist and operate side by side. This demands that the actual radio hardware used in any network infrastructure, as well as that in the mobile, remote, or subscriber devices, must usually be much more general purpose than optimized specifically for one signal type. In the design and test of this radio hardware it is very important to understand the fundamental characteristics of the signal(s) that it must support. With such a wide variety of signals, even the metrics used in their characterization are not uniform in type and...

Words: 5096 - Pages: 21

Free Essay

My Paper

...17, NO. 12, DECEMBER 2013 2229 Selective HARQ Transceiver Design for OFDM System Zia Muhammad, Hasan Mahmood, Awais Ahmed, and Nazar Abbas Saqib Abstract—We present a novel selective Hybrid Automatic Repeat reQuest (HARQ) based transceiver design for orthogonal frequency division multiplexing (OFDM) system. The proposed method is bandwidth efficient and has lower complexity as compared to conventional HARQ method adopted by communication standards such as long-term evolution (LTE). Our transceiver design introduces an additional retransmission layer at OFDM modulation level, which is independent of conventional HARQ methods. Instead of calculating computationally expensive soft information and applying forward error correction (FEC) on the soft information, receiver requests retransmission of information symbols corresponding to the subcarriers that have signal-tonoise ratio (SNR) below a set threshold at modulation level. We also provide criteria for selective retransmission and throughput analysis with new selective retransmission approach. We demonstrate that with limited feedback at modulation layer level, the proposed method enhances throughput of the system in all SNR regimes. The proposed selective HARQ method provides great flexibility for an application to optimize throughput based on its bit error rate (BER) requirement. Index Terms—Hybrid ARQ, partial retransmission, LDPC codes, OFDM, LTE, joint detection. I. I NTRODUCTION VER the past decade, multiple-input...

Words: 3616 - Pages: 15

Premium Essay

Account

...Protect & Share Your Internet Connection Wirelessly Share Your Internet Connection D-Link’s eXtended Range (XR) Technology for Better Wireless Signal Coverage2 Built-in Cable Tester for Troubleshooting Advanced Security and Parental Control Features Keep Your Network Safe D-Link, an industry leader in networking, introduces another performance breakthrough in wireless connectivity – the AirPlus Xtreme G® series of wireless networking devices. Based on D-Link 108G Technology, these 802.11g compatible devices are capable of delivering maximum wireless signal rates of up to 108Mbps1 when used together. The award-winning DI-624 Wireless Router creates an 802.11g wireless network and wirelessly share a single broadband Internet connection throughout your home or office. Furthermore, the DI-624 has the superior performance capability to transfer large files and handle heavy network traffic. The Wi-Fi certified DI-624 features extremely high performance as well as industry-wide compatibility. With this certification, this router remains compatible with a wider range of networking devices. The built in 4-port switch allows you to connect up to four Ethernet-enabled devices such as additional computers or network storage devices. The DI-624 also features D-Link’s Extended Range (XR) Technology designed to provide increased wireless signal range as well as fewer dead spots2. When used with XR-enabled client devices, enjoy wireless coverage in areas where...

Words: 780 - Pages: 4

Free Essay

Antenna Design

...TABLE OF CONTENTS PAGE NO. CHAPTER 1- INTRODUCTION 1.1 INTRODUCTION 6 1.2 WHAT IS OFDMA? 9 CHAPTER 2 - SUBCARRIER ALLOCATION SCHEMES 2.1 STATIC SUBCARRIER ALLOCATION 12 2.2 DYNAMIC SUBCARRIER ALLOCATION 14 2.2.1 THE PROPOSED DSA SCHEME 15 CHAPTER 3- FLOW CHART AND ALGORITHM 4.1 FLOW CHART 17 4.1.1 MAIN FLOWCHART 17 4.1.2 WHEN 2 USERS FALL IN RANGE NUMBERED 3,5,8,14 20 4.1.3 WHEN 3 USERS FALL IN RANGE NUMBERED 3,5,8,14 22 4.2 ALGORITHM 24 CHAPTER 5-BLOCK DIAGRAMS 5.1 CONTROL FRAME TRANSCEIVER 28 5.2 DATA TRANSMISSION 29 5.3 DATA RECEPTION 31 CHAPTER 6- IMPLEMENTATION AND RESULTS 6.1 MATLAB 34 6.1.1 INSTRUCTIONS USED IN CODE 35 6.2 CONTROL FRAME TRANSMISSION AND RECEPTION 39 6.3 DATA GENERATION...

Words: 7933 - Pages: 32

Free Essay

Smart Grid

...Broadband over Power Line: An Overview By Shamim Ziaee and Xavier N. Fernando, Senior member of IEEE Ryerson University, Toronto, ON Abstract Broadband over Power Line (BPL) communication systems can deliver high-speed voice, data and video communications to end-users by transmitting radio frequency energy over existing electrical power lines. Although this technology is not new, the new achievements in deploying BPL has made it more practical in recent years. The existing infrastructure for BPL is the most considerable advantage of this technology. Since electrical power lines have reached mostly all rural areas, BPL technology can provide broadband services in those areas where the use of other technologies like cable or DSL can not be justified economically. BPL is also used in management of power distribution grids by monitoring and facilitating control of them remotely. In this paper a brief history of this technology and a general overview of it will be presented. Also some issues related to the deployment of this technology and the current status of the technology in the world will be addressed. Introduction The purpose of power line communications is to use power supply system for communication purpose. The demand for broadband communication is increasing rapidly. According to KOHL group, less than 30% of US residences and 40% of industries use broadband services. However these percentages will be doubled within the next 10 years. Currently, there are several methods...

Words: 2904 - Pages: 12

Premium Essay

Cognitive Radio Network

...POWER ALLOCATION FOR THE NETWORK CODED COGNITIVE COOPERATIVE NETWORK by Major Awal Uddin Ahmed (ID: 1003) Major Md Shariful Islam(ID: 1004) Major K M Hasnut Zamil (ID: 1006) A Project Report submitted to the department of Electrical Electronic and Communication Engineering in partial fulfillment of the requirements for the degree of Bachelor of Engineering in Electrical Electronic and Communication Engineering Advisor: M. Shamim Kaiser Military Institute of Science and Technology Mirpur Cantonment, Dhaka December 2010 To Our Beloved Parents ii DECLARATION This thesis is a presentation of my original research work. Wherever contributions of others are involved, every effort is made to indicate this clearly, with due reference to the literature, and acknowledgement of collaborative research and discussions. The work was done under the guidance of Dr. M. Shamim Kaiser, at the Mililary Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka. (Major Awal Uddin Ahmed (ID: 1003)) (Major Md Shariful Islam(ID: 1004)) (Major K M Hasnut Zamil (ID: 1006)) iii CERTIFICATE This is to certify that the thesis entitled POWER ALLOCATION FOR THE NETWORK CODED COGNITIVE COOPERATIVE NETWORK and submitted by Major Awal Uddin Ahmed (ID: 1003), Major Md Shariful Islam(ID: 1004), Major K M Hasnut Zamil (ID: 1006) for the degree of Bachelor of Engineering in Electrical Electronics and Communication Engineering. They embody original work under my supervision...

Words: 9257 - Pages: 38

Free Essay

Energy Harvesting Systems

...Energy Harvesting Systems Tom J. Ka´ mierski · Steve Beeby z Editors Energy Harvesting Systems Principles, Modeling and Applications 123 Editors Tom J. Ka´ mierski z School of Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK tjk@ecs.soton.ac.uk Steve Beeby School of Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK spb@ecs.soton.ac.uk ISBN 978-1-4419-7565-2 e-ISBN 978-1-4419-7566-9 DOI 10.1007/978-1-4419-7566-9 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938327 c Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Energy harvesting...

Words: 8296 - Pages: 34

Free Essay

Lte Complete Tutorial

...(Prepared from website Radio-Electronics.com with thanks http://www.radio-electronics.com/) 3G LTE Tutorial - 3GPP Long Term Evolution - developed by 3GPP, LTE, Long Term Evolution is the successor to 3G UMTS and HSPA providing much higher data download speeds and setting the foundations for 4G LTE Advanced.. LTE, Long Term Evolution, the successor to UMTS and HSPA is now being deployed and is the way forwards for high speed cellular services. In its first forms it is a 3G or as some would call it a 3.99G technology, but with further additions the technology can be migrated to a full 4G standard and here it is known as LTE Advanced. There has been a rapid increase in the use of data carried by cellular services, and this increase will only become larger in what has been termed the "data explosion". To cater for this and the increased demands for increased data transmission speeds and lower latency, further development of cellular technology have been required. The UMTS cellular technology upgrade has been dubbed LTE - Long Term Evolution. The idea is that 3G LTE will enable much higher speeds to be achieved along with much lower packet latency (a growing requirement for many services these days), and that 3GPP LTE will enable cellular communications services to move forward to meet the needs for cellular technology to 2017 and well beyond. Many operators have not yet upgraded their basic 3G networks, and 3GPP LTE is seen as the next logical step for many operators...

Words: 18462 - Pages: 74

Premium Essay

Wireless Technologies

...Wireless Technologies Introduction As wireless technology has begun to mature, the demand for wireless products has increased as new applications for the technology are realized. One application for wireless technology at the U.S. Naval Academy is to use the wireless capability to enhance classroom instruction. Currently the Electrical Engineering and Physics Departments have wireless access points and wireless laptops/desktops available for classroom instruction. The purpose of this report is to provide the technical research necessary to aid decision makers in determining which wireless technologies the Naval Academy should invest. Background In a wireless network, computers communicate with the network through a radio path vice a cable. The device that contains the radio and connects to the wired network is called the “Access Point”. Each client that communicates with the access point must have a wireless PCMCIA card. Once both devices communicate via radio transmission, network access can begin. Each client is configured to communicate with a single access point. A client can move from one access point to another. Roaming from access point to access point (cell to cell), similar to cellular telephone technology, is possible. Technology Discussion There are three wireless technology standards on the market today: Bluetooth, 802.11b, and 802.11a. A new standard, 802.11g, was recently approved by IEEE and products using this technology are expected...

Words: 1089 - Pages: 5