Premium Essay

Protein Structure-Task 2

In:

Submitted By madevmc
Words 792
Pages 4
Protein Structure
Horacio Madera
Western Governors University
-C624

July 2, 2015

A. Original model of the essential amino acid Threonine.

B. Original diagram of the different levels of protein structure.

C. Original diagram demonstrating how a peptide bond is made through dehydration.

D. Original diagram that demonstrates how a peptide bond is broken through hydrolysis.

E. Explanation of the four forces that stabilize a protein’s structure at the tertiary level of protein structure.

Disulphide bridges are form very strong covalent bonds that are found in between Sulphur atoms in the amino acid cysteine molecules.
Ionic bonds occur between a carboxyl and amino group that is not involved in a peptide bond.
Hydrogen bonds result from the bonding of an electronegative oxygen atom and electropositive H atom. Hydrogen bonds can occur in either –OH or –NH groups.
Hydrophobic interactions are created from certain non-polar hydrophobic amino acids that move to the center of the protein and away from the watery medium. This results in twists or folds of the polypeptide chain.

Toole, G., & Toole, S. 2004, p. 38. Essential As Biology for OCR ( ed.). Cheltenham, United Kingdom : Nelson Thornes Ltd.

F. Bovine spongiform encephalopathy (BSE) at a molecular level. Part F-Disease at the Molecular Level * Bovine spongiform encephalopathy (BSE) is an infectious disease that is known as Mad Cow Disease. * The disease is primarily transmitted to cattle by consumption of meat and bone meal (MBM) contaminated with an infectious protein named prion (PrPSc). * Animals infected with the prion are sometimes sacrificed and used as fed propagating further BSE.

Part F1-Role of Misfolding and Aggregation * Misfolding is the

Similar Documents

Free Essay

Biochemistry Task 2

...BIOCHEMISTRY TASK 2                 Running head:  BIOCHEMISTRY TASK 2                                                                           1  A.           BIOCHEMISTRY TASK 2                                                                                                           2  B.             BIOCHEMISTRY TASK 2                                                                                                           3  C.                     BIOCHEMISTRY TASK 2                                                                                                           4  D.                   BIOCHEMISTRY TASK 2                                                                                                           5  E.          The four forces that stabilize a protein’s structure at the tertiary level are as followed:  Hydrophobic is the interaction between nonpolar amino acids (Borges, 2014).  These amino  acids are not capable of hydrogen bonding, however their hydrocarbon regions interact closely  by pulling together tightly tucking away from the exterior of the cell (Borges, 2014).  This is the  weakest of bonds (Borges, 2014).  Next, Hydrogen bonds are polar or charged amino acids  (Borges, 2014).  This is where one amino acid is sharing its hydrogen atom with another oxygen  atom (Borges, 2014).  This is a stronger bond than hydrophobic interaction but still weak  (Borges, 2014).  The third bond is called Ionic Bond...

Words: 756 - Pages: 4

Free Essay

Biochem Task

...Nancy Bosch Task 2 Student #000514178 Task 2: Protein Structure A. ("Amino Acids") B.   (Rafael) (Wolfe) (Rafael) C. (Wolfe) D. (Wolfe) E.  Explain the four forces (i.e., bonds or interactions) that stabilize a protein’s structure at the tertiary level. Hydrophobic interactions- R group in the amino acid is non-polar and therefore will avoid contact with water by joining together in the interior of the molecule, it will avoid contact with water. Van der Waals- this interaction occurs when the hydrophobic R groups that are packed together have a weak attraction that helps to reinforce the hydrophobic bond. Ionic bonding- The R group must have a charge. In this case the opposites attract (positive to negative/ negative to positive) forming a very strong bond.Disulfide bridges- These bonds are formed with the help of cysteine. One of the sulfur atoms from cysteine forms a single covalent bond with a second sulfur atom from another cycsteine located in the protein chain. (Wolfe) F.  Explain how bovine spongiform encephalopathy (BSE) occurs at a molecular level by doing the following: 1. Explain the role of prions in BSE, including each of the following: ●  how prions are formed A prion is a protein that causes infection. They are formed when a mutation occurs. A normal prion protein called PrPc is found in our neurons in our brains. This normal protein gets altered and becomes a PrPsc protein which then binds to another normal PrPc...

Words: 785 - Pages: 4

Premium Essay

Biochemistry Task 2

...Biochemistry Task Two Sarah Taylor 000504232 9/11/2015 Task 2: Protein Structure Introduction: Bovine spongiform encephalopathy (BSE), also known as mad cow disease, is a worldwide problem. While the United States and many countries in the European Union have regulatory legislation in place to combat the spread of BSE, many other countries do not yet have the ability to enact such regulations, making the import and use of possibly tainted beef a health risk. You should compile your work for this task in a single document (e.g., Microsoft Word, Google Document) that will include diagrams, models, text explanations, and references. If a requirement asks for an explanation, you should provide a written response in a narrative style (i.e., complete sentences rather than bullet points). Note: Multimedia presentations (e.g., PowerPoint, Keynote) will not be accepted due to potential originality concerns. Note: Please save submission documents as *.doc, *.docx, *.rtf, or *.pdf files. If you are using Google Documents, you must save the file in *.pdf format and upload the *.pdf file. Scenario: As a specialist in biochemistry, you have been asked to be part of a team that will assist a country that currently does not have regulatory legislation. You will help the other workers in understanding BSE at a chemical level. Because these workers are unfamiliar with the basic biochemistry concepts necessary...

Words: 1433 - Pages: 6

Premium Essay

Biochemistry

...Heather Mandigo Biochemistry task 2 Student ID #000598641 BIOCHEMISTRY TASK 2 2 A. (Yatherajam, 2015)     B. (Wolfe, 2000) (Khan Academy, 2016) B. (Khan Academy, 2016) C & D.  (Hudon-Miller, 2012)     E.  The four forces that stabilize the protein structure at the tertiary level are hydrophobic interactions, ionic bonding, disulfide bridges and hydrogen bonds (Wolfe, 2000) Hydrophobic interactions occur when the amino acids have a R group that is hydrophobic/nonpolar (Wolfe, 2000). These hydrophobic groups migrate to the inside of the molecule since they are rejected by water (Wolfe, 2000). These hydrophobic molecules are water fearing. Ionic bonding occurs when the R group is charged and there is an attraction between positive and negative charges (Wolfe, 2000). Disulfide bridges occur between 2 cysteine molecules and only occurs between these 2 molecules (Wolfe, 2000). These types of bonds have very strong covalent bonds (Wolfe, 2000). Hydrogen bonds occur between R groups that are polar or charged (Borges, 2014). What happens is, a hydrogen atom is shared with another amino acid between a nitrogen atom or an oxygen atom, creating the hydrogen bond (Borges, 2014). These are the weakest of the bonds (Borges, 2014). F. Prions play a significant role in the development of bovine spongiform encephalopathy or Mad Cow Disease. Prions are proteins which cause disease (Wolfe...

Words: 770 - Pages: 4

Premium Essay

Biochemistry Wgu

...This document is designed to help you organize your task as you work through the cohort. Please make a copy of this document, which will then appear in your Google Drive. (See below.) If you would like a tutorial on using Google Drive, please click here. Then insert your work into the copied document as instructed. We recommend you do your work in black, and delete all of the blue text prior to submitting your task. When your document is ready to go, save it as a PDF. You can upload this PDF to Taskstream and submit! Protein Structure A. Insert your original model of an essential amino acid that shows all atoms and bonds in both the backbone and the side chain. Click here to learn how to insert images into a Google Document. (Insert in-text citation here). 1 Characteristics of Leucine: Hydrophobic Oxygenation Insert your description of two characteristics (e.g., reactivity, hydrophobicity, how it affects the structure or functions of a protein) for the amino acid model you created in part A. (Insert in-text citation here). B. Insert your original diagram, or series of original diagrams, of the different levels of protein structure. 1. Check to see that you labeled the primary, secondary, tertiary, and quaternary structures in your diagram(s). Primary Secondary Tertiary quaterrnary (Insert in-text citation here). C. Insert your original diagram, or series...

Words: 656 - Pages: 3

Free Essay

Nucleic Acid

...Nucleic acid Task 2: Each person on the earth has its own unique genetic information, when stretched out we see that it’s is organised and tightly packed whilst also allowing it access to appropriate genes. The genetic information is stored in the DNA which is a chemical structure which has two backbone which form a spiral around each other so that it is held in place also it has 4 bases which are adenine, thymine, cytosine and guanine(1). There are also bridges across the bases which are hydrogen bonds which hold the base pairings together. The sequences of the 4 bases are the genetic information for making any substance in the body, the variability within these codes which makes who we are and different to another person is the variation of the coding of the bases (1). Task 3: The DNA stores all of the information for protein synthesis and the RNA carries out the instructions which are encoded in the DNA most of the body activities are carried out by proteins, and for the protein to be correct the sequence of the amino acid has to be therefore right. There are three kinds of RNA molecules which carry out different functions in the process of protein synthesis. One type is messenger RNA which carries the genetic information from the DNA in the form of 3 base code which the codes for an amino acid. The second is transfer RNA which is essential when deciphering the code from the mRNA so an amino acid has it won different tRNA which binds to it and takes it to the mRNA when...

Words: 524 - Pages: 3

Premium Essay

Mrs Ambreen Akhtar

...unit of an organism, which gets organised to make the tissues, organs and organ systems. The organ systems are interdependent on each other. | Tasks: | Design a report analysing cells, tissues and major organ systems (1800– 2,500 words) | The report could be structured under the following headings : | Structure and Function of Animal Cell organelles ,Structure of Tissues , Function of Tissues, Main Organs of the Body, Analysing Examples of Organs and Tissues. | Task 1. | | Design a tabular column to explain the main structural features/components of a typical animal cell, and the functions of the main components of an animal cell as seen under the electron microscope. (L.O1,A.C1.1) | | Name of Organelle | Structural Features | Function | Nucleus Nucleolus Nuclear membrane Mitochondrion Endoplasmic Reticulum Rough endoplasmic reticulum Smooth Endoplasmic Reticulum Golgi Body Cell- membrane Lysosome Centrioles Centrosome Cytoplasm Ribosome Vacuole | NUCLEUSThe Nucleus is spherical in shape. It is surrounded by a structure called a nuclear envelop.NUCLEOLUSNucleolus is round shaped organelle situated inside the nucleus. It is a dense structure composed of RNA and protein.The nucleus is sourounded by two membrane.A inner memebrane and a outer memebrane which is called Nuclear membrane or...

Words: 2075 - Pages: 9

Premium Essay

Business

...CITY AND ISLINGTON COLLEGE Assignment BriefFront Cover Centre: | Centre for Applied Sciences | | | Learner name: | Mohamed elrraik | | | Course Code: | AS2212A11/AS2211A11 | | | Programme Level &Title: | BTEC Level 3 Extended Diploma in Applied Science | | | Unit Number & Title: | Unit 18 Genetics & Genetic Engineering | | | Assignment Title: | Assignment 1 – DNA & Protein synthesis | | | Assessor Name: | Jasmin Bongrani | | | Date Issued: | AS2212A11 12/09/11AS2211A11 30/01/12 | DateDue: | AS2212A11 10/10/11AS2211A11 05/03/12 | | | | | Turn It In Score: | | Referral Due Date: | | | | | | Internal Verifier Name: | Lee Walker | Date IVed: | 08/09/11 | Grading criteria | Y/N | Feedback(including action where necessary) | P1 | Compare and contrast the structure of various nucleic acids | | | M1 | Explain how genetic information an be stored in a sequence of nitrogenous bases in DNA | | | D1 | Explain the steps involved in biosynthesis of protein including the roles of RNA | | | Additional Feedback and/or Action Plan: Date marked: | | Learner Declaration | I declare that all the work submitted for this assignment is my own work or, in the case of group work,the work of myself and the other members of the group in which I worked, and that no part of it has beencopied from any source. I understand that if any part of the...

Words: 2569 - Pages: 11

Premium Essay

Grt Task 2: Biochemistry

...GRT task 2: Biochemistry (V. Undergrad-0814) Proteins are made up of smaller units called amino acids. Hundreds or thousands of amino acids in long chains form a protein molecule. There are 20 different types of amino acids that combine to make a protein. Amino acids are classified into three groups: essential amino acids, non-essential amino acids, and conditional amino acids. Essential amino acids cannot be made by the body and must come from food. Non-essential amino acids can be produced by the body even if not obtained through food ingested (Wolfe,2000). Conditional amino acids are needed at times of stress, like an illness. Proteins can be described as polar and non-polar depending on how they interact in the environment. Polar and non-polar chemical trait allows for the amino acid to direct themselves toward water (hydrophilic) or away from water (hydrophobic). Valine is an essential amino acid that enables chemical messages to be transmitted from the brain. Valine’s chemical structure is C5H11NO2 and is a branched chain amino acid. Valine is non-polar in nature so it is not a charged molecule. Valine is hydrophobic and if found deep inside the structure for this reason. Valine is important to muscle function as the muscle recovers from strenuous activity. The amino acids sequencing of a protein decides its structure and function. Protein function is also dependent on its structure but some changes can disrupt the structure. When a protein loses function it...

Words: 952 - Pages: 4

Free Essay

Protein Structure

...Biochemistry Task 2  Donna Whittington  000337251  July 22 , 2016                                    A.                                 (Wolfe 2000)  B.     (Borges 2014)      (Wolfe 2000a)                    (Wolfe 2000c)  (Wolfe  2000b)              C.     (Hudon­Miller 2012)                                    D.   (Hudon­Miller 2012)                                E.   Hydrophobic Interactions: Proteins are composed of amino acids that contain  either hydrophilic or hydrophobic R­groups.  It is the nature of the interaction of  the R­groups in the water environment that plays the major role in shaping  protein structure.  The folded state of globular proteins is due to the balance  between the opposing energy of hydrogen bonding between hydrophilic  R­groups and the aqueous environment and the repulsion from the aqueous  environment by the hydrophobic R­groups.  As a result, certain hydrophobic  amino acid R­groups then drive them away from the exterior of proteins and  into the interior.  This force restricts how a protein may fold. (King 2003)    Van der Waals Interactions: Protein folding is controlled by van der Wall forces.  Van der Wall forces can be both attractive and repulsive.  Attractive van der  Waals forces involve the interaction among induced dipoles that arise from  changes in the charge densities that occur between adjacent uncharged  ...

Words: 1060 - Pages: 5

Premium Essay

Nt1310 Unit 3 Lab Report

...THE CELL Task 1 – The difference between electron and light microscopes Electron microscope Light Microscope Illumination Electrons Light Focused by Magnets Lenses Maximum magnification X50 000 000 X1500 Resolving power 78 picometres 200 nanometres or 0.2 µm Type of specimen A dead specimen is used The specimen can be either alive or dead Preparation needed for the specimen A lot more complex It is simple The cost of the equipment It’s very expensive Cheaper Are the images in colour? No but it can be added onto the image by using the computer Yes 1. Main tube inclined head 2. Body tube inclined head 3. Revolving nosepiece 4. Objective lenses 5. Specimen stage 6. Sub-stage condenser with an iris diaphragm 7. Mirror /Illuminator 8. Base 9. Eye piece or Ocular lense 10. Arm 11. Coarse adjustment 12. Fine adjustment Structures that can be seen with a light microscope. Organelle Function Animal Cell Plant Cell...

Words: 807 - Pages: 4

Free Essay

Biochemistry

...Running head: BIOCHEMISTRY TASK 2 Biochemistry Task 2 Terry Buckman Western Governor's University Biochemistry Task 2 I want to talk about 4 of the bonds or interaction that stabilize a protein’s structure at the tertiary level. The first bond is the ionic bonding which is most sensitive to pH changes and can occur between oppositely charged R groups. The next one is disulfide bonds which are covalent bonds that can take place between two cysteine R groups. Another one is hydrophobic interactions which is nonpolar. These R groups will cluster together on the interior of the protein and this will minimize their contact with water. The last one is van der Waals interactions takes place between the tightly packed nonpolar R groups on the interior of the protein. I would like to talk about BSE or bovine spongiform encephalopathy, in other words mad cow disease. This disease is called by misfolding prions at the molecular level. There are harmful and nonharmful forms of prions. The nonharmful form is PrPc and the harmful form is PrPsc. The PrPsc are hydrophobic and will cause the normal proteins to conform to their misfolding and harmful prion shape. This happens by way of a chaperonin. A polypeptide chain will enter the chaperonin and with proper environment of chaperonin, the polypeptide chain will fold correctly and exit as the normal prion, PrPc. Now in BSE, a polypeptide chain will enter into a “bad” chaperonin, the prion, and will get a misfolded prion to exit, PrPsc...

Words: 394 - Pages: 2

Premium Essay

Biochemistry Task 2

...Biochemistry Task 2 October 17, 2015 (Yatherajam, 2015) (Yatherajam, 2015) Organic Compounds. Retrieved October 16, 2015, from http://legacy.owensboro.kctcs.edu/gcaplan/anat/Notes/API Notes D organic chem.htm Polypeptides (n.d.) Retrieved October 16, 2015, from http://www.sparknotes.com/testprep/books/sat2/biology/chapter5section5.rhtml Pepsin Enzyme: Structure, Function, and Important Facts. (2014, September 25). Retrieved October 16, 2015, from http://www.buzzle.com/articles/pepsin-enzyme-structure-function-and-important-facts.html There are four forces, both bonds and interactions, which help stabilize or hold together a tertiary structure.  These four forces include hydrophobic interactions, hydrogen bonds, ionic bonds, and disulfide bonds.  Hydrophobic interactions are the weakest of the four forces and they occur between nonpolar amino acids.  According to Borges (2014) these hydrophobic interactions occur in amino acids such as leucine and phenylalanine.  The amino acids involved in hydrophobic interactions are amino acids which are not capable of hydrogen bonding.   The next force is hydrogen bonding, which occurs between polar or charged amino acids like tyrosine and aspartate, according to Borges (2014).  At the oxygen level the amino acids share their hydrogen atom with one another, one hydrogen atom becomes the donor and the other the recipient.  The hydrogen bond is stronger that...

Words: 929 - Pages: 4

Premium Essay

Biochem

...Biochemistry Task 2 Paul A. Lebeck 000490213 January 26, 2016 A. B. (Borges, 2014, Wolfe, 2015). C. (Wolfe, 2015). D. (Wolfe, 2015). E. The forces, bonds, and interactions by protein structures at the Tertiary level. There are Hydrophobic (nonpolar), Ionic bonds, Hydrogen (covalent) bonds, and Disulfide bonds, also called Disulfide Bridges. Hydrophobic are nonpolar bonds, meaning they cannot interact with water or aqueous solutions. Hydrophobic interactions will cause the protein to change shape to avoid making contact with such solutions. Considered weak bonds, but the proteins cluster tightly together on the interior of the protein, Van der Waals interaction take place between the proteins, again these are the weakest of the molecular bonds. Ionic Bonds are by definition bonds that are made up of charged particles. There are 20 Amino Acids, some with negatively charged terminals, some with positively charged terminals. This is a basic chemistry property that opposites attract. These are considered stronger bonds, but not the strongest. Next are hydrogen bonds. Considered stronger bonds than hydrophobic bonds, but weak compared to ionic and disulfide bonds. Hydrogen bonds are formed from Polar Covalent interactions. Two amino acids share a hydrogen electron and connect on the second amino acid oxygen atom. There must be a hydrogen donor on one amino acid, and a hydrogen acceptor on a second amino acid to complete the bond. The strongest...

Words: 776 - Pages: 4

Premium Essay

Biochemistry Task 2 Wgu

...Biochemistry Task 2 Brandy McDowell 000499302 November 30, 2015 A. (Lyman, 2013) B. (Wolfe, 2000) (Wolfe, 2000) B. (Wolfe, 2000) (Wolfe, 2000) C. (Hudon-Miller, 2012) D. (Hudon-Miller, 2012) E. The four forces that stabilize a protein. * Hydrophobic interactions which are interactions by nonpolar amino acids. The weakest of the four types of bonds. * Hydrogen bond made up of interactions of polar or charged amino acids. The amino acids share their hydrogen. This is also a weak bond, but it is stronger than the hydrophobic interaction. * Ionic bonds are made up of charged amino acids. A positive charge of an amino acid attracts to a negative charge of another amino acid. This bond is a little stronger than the hydrogen bond, but not as strong as the polypeptide bond. * Disulfide bond only occurs between two cysteine amino acids. Two cysteine amino acids form a sulfa-sulfa bridge. This is a strong covalent interaction. (Borges, 2014) F1.  Explain the role of prions in BSE, including each of the following: ●How prions are formed – Prions are malformed proteins. Instead of reproducing, the prions cause normal proteins to change to the malformed version. The normal prion (PrPc) is bound to the surface of neurons. PrPc can be altered and become misfolded taking on a different conformation which is then known as PrPsc. ●The connection between misfolding and aggregation – Because the misfolded prions are hydrophobic...

Words: 664 - Pages: 3