Free Essay

Curl and Div

In:

Submitted By 11009541
Words 969
Pages 4
Divergence and Curl of a Vector Field
Recall that a vector field F on R3 can be expressed as F(x, y, z) =< F1 (x, y, z), F2 (x, y, z), F3 (x, y, z) >, where the component functions are scalar functions from R3 to R. For the sake of brevity, we will often use x to denote the vector < x, y, z > and write F(x) =< F1 (x), F2 (x), F3 (x) > or even drop the variables altogether and write F =< F1 , F2 , F3 >. Let F =< F1 , F2 , F3 > : R3 → R3 be a differentiable vector field. The divergence of F is the scalar function div F = and the curl of F is the vector field curl F = ∂F3 ∂F2 − ∂y ∂z i+ ∂F1 ∂F3 − ∂z ∂x j+ ∂F2 ∂F1 − ∂x ∂y k ∂F1 ∂F2 ∂F3 + + . ∂x ∂y ∂z

Note that the divergence can be defined for any vector field F : Rn → Rn , while the curl is only defined on vector fields in 3-space. There is a nice second way to deal with these functions. Define the operator , called the “del” operator, by = ∂ ∂ ∂ i+ j+ k= ∂x ∂y ∂z ∂ ∂ ∂ , , ∂x ∂y ∂z

The action of the del operator on a scalar function f : R3 → R is just the gradient: f= ∂f ∂f ∂f i+ j+ k= ∂x ∂y ∂z ∂f ∂f ∂f , , ∂x ∂y ∂z = grad(f )

The divergence and the curl of a vector field are given by the two vector products that we have: the curl is the dot product and the curl is the cross product. div(F) = ·F curl(F ) = × F.

Theorem 1 Let f be a differentiable scalar function and F be a differentiable vector field on R3 . 1. curl(grad f ) = 0 or 2. div(curl F) = 0 or × ( f ) = 0. ·( × F) = 0.

The Laplacian operator on a scalar function is defined to be f = div(grad f ) = 1 · f=
2

f.

The Laplacian of a vector field F is F= F1 , F2 , F3 .

Geometrically, the curl F is a measurment of the tendency of a fluid to swirl around an axis. A field F with curl F = 0 at a point P is called irrotational at P . The divergence of a vector field measures the incompressibility of a vector field and we can often interpret the divergence of a vector field as the total outflow per unit area. The Laplacian operator helps to describe the diffusion process that is going on in that particular vector field, such as the concentration of a liquid changing as a chemical is dissolved in it or the heat of a solid diffusing from warmer to cooler regions. Theorem 2 The operators described above are linear operators: grad(f + g) div(F + G) curl(F + G)( (f + g) (F + G) = grad f + grad g, = div F + div G, = curl F + curl G, = (f ) + (g), = (F) + (G), grad(cf ) = c grad f div(cF0 = c div F curl(cF) = c curl F (cf ) = c (f ) (cF) = c (F)

There are some very intriquing properties of the operators. We see a few in the following theorems. The first theorem we have already covered. Theorem 3 grad(f g)(x) = g(x) grad(f )(x) + f (x) grad(g)(x) g(x) grad(f )(x) − g(x) grad(f )(x) f grad( )(x) = g g(x)2 Given two vector fields F and G, we will let the expression (F · field whose components are (F · Theorem 4 grad(F · G) div(f F) div(F × G) curl(f F) curl(F × G) (f g) (F · G) = = = = = = = (F · )(G) + (G · )(F) + F × curl G + G × curl F f div(F) + F · grad(f ) G · curl(F) − F · curl(G) f curl(F) + grad(f ) × F F div(G) − G div(F) + (G · )(F) − (F · )(G) g f + f g + 2 grad(f ) · grad(g) G · F + F G + 2 grad F · grad G 2 (3) (4) (5) (6) (7) (8) (9) (1) if g(x) = 0 (2)

)(G) denote the vecor

)(G) =< F · grad G1 , F · grad G2 , F · grad G3 > .

where
3

grad F · grad G = i=1 grad(Fi ) · grad(Gi ).

How do these differential operators behave in different curvilinear coordinate systems? I will just present the results here. It is not particularly hard, but time-consuming to work throught the details. Let’s consider only cylindrical and spherical coordinates. In cylindrical coordinate systems, with F = Fr er + Fθ eθ + Fz ez we have grad f = div(F) = 1 ∂f ∂f ∂f er + eθ + ez ∂r r ∂θ ∂z 1 ∂(rFr ) 1 ∂Fθ ∂Fz + + r ∂r r ∂θ ∂z er reθ ez 1 ∂ ∂ ∂ r ∂r ∂θ ∂z Fr rFθ Fz 1 ∂ ∂f ∂ 1 ∂f ∂ r + + r ∂r ∂r ∂θ r ∂θ ∂z 2 2 2 ∂ f 1 ∂f 1∂ f ∂ f + + 2 2 + 2 2 ∂r r ∂r r ∂θ ∂z

curl(F) =

f = =

r

∂f ∂z

For spherical coordinates, the expressions for the different differential operators are (with F = Fρ eρ + Fθ eθ + Fφ eφ ): 1 ∂f 1 ∂f ∂f eρ + eθ + eφ ∂ρ ρ sin(φ) ∂θ ρ ∂φ 1 ∂ 2 ∂ ∂ div(F) = 2 (ρ sin(φ)Fρ ) + (ρFθ ) + (ρ sin(φ)Fφ ) ρ sin(φ) ∂ρ ∂θ ∂φ 1 ∂ 1 ∂ 1 ∂ = 2 (ρ2 Fρ ) + (Fθ ) + (sin(φ)Fφ ) ρ ∂ρ ρ sin φ ∂θ ρ sin φ ∂φ eρ ρeθ ρ sin φeφ ∂ ∂ ∂ 1 curl(F) = 2 ∂θ ρ sin φ ∂ρ ∂φ Fρ ρFφ ρ sin φFθ grad f = f = 1 ∂ ∂f ∂ 1 ∂f ∂ ρ2 sin φ + + sin φ ∂ρ ∂ρ ∂θ sin φ ∂θ ∂φ 2 2 2 ∂ f ∂ f 2 ∂f 1 1 ∂ f cot φ ∂f = + + 2 2 + 2 2+ 2 2 2 ∂ρ ρ ∂ρ ρ sin φ ∂θ ρ ∂φ ρ ∂φ ρ2 sin φ ∂f ∂φ

3

Similar Documents

Free Essay

Fluid Mechanics

...This is page i Printer: Opaque this A Mathematical Introduction to Fluid Mechanics Alexandre Chorin Department of Mathematics University of California, Berkeley Berkeley, California 94720-3840, USA Jerrold E. Marsden Control and Dynamical Systems, 107-81 California Institute of Technology Pasadena, California 91125, USA ii iii A Mathematical Introduction to Fluid Mechanics iv Library of Congress Cataloging in Publication Data Chorin, Alexandre A Mathematical Introduction to Fluid Mechanics, Third Edition (Texts in Applied Mathematics) Bibliography: in frontmatter Includes. 1. Fluid dynamics (Mathematics) 2. Dynamics (Mathematics) I. Marsden, Jerrold E. II. Title. III. Series. ISBN 0-387 97300-1 American Mathematics Society (MOS) Subject Classification (1980): 76-01, 76C05, 76D05, 76N05, 76N15 Copyright 1992 by Springer-Verlag Publishing Company, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer-Verlag Publishing Company, Inc., 175 Fifth Avenue, New York, N.Y. 10010. Typesetting and illustrations prepared by June Meyermann, Gregory Kubota, and Wendy McKay The cover illustration shows a computer simulation of a shock diffraction by a pair of cylinders, by John Bell, Phillip Colella, William Crutchfield, Richard Pember, and Michael Welcome...

Words: 50231 - Pages: 201

Free Essay

Student

...INTRODUCTION TO THE ESSENTIALS OF TENSOR CALCULUS ******************************************************************************** I. Basic Principles ...................................................................... 1 II. Three Dimensional Spaces ............................................................. 4 III. Physical Vectors ...................................................................... 8 IV. Examples: Cylindrical and Spherical Coordinates .................................. 9 V. Application: Special Relativity, including Electromagnetism ......................... 10 VI. Covariant Differentiation ............................................................. 17 VII. Geodesics and Lagrangians ............................................................. 21 ******************************************************************************** I. Basic Principles We shall treat only the basic ideas, which will suffice for much of physics. The objective is to analyze problems in any coordinate system, the variables of which are expressed as qj(xi) or q'j(qi) where xi : Cartesian coordinates, i = 1,2,3, ....N for any dimension N. Often N=3, but in special relativity, N=4, and the results apply in any dimension. Any well-defined set of qj will do. Some explicit requirements will be specified later. An invariant is the same in any system of coordinates. A vector, however, has components which depend upon the system chosen. To determine how the components change (transform)...

Words: 4719 - Pages: 19

Premium Essay

Human Resource

...<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html><head><title>Business Policy And Strategic Management - G. V. Satya Sekhar - Google Books</title><script>(function(){(function(){function d(a){this.t={};this.tick=function(a,c,b){b=void 0!=b?b:(new Date).getTime();this.t[a]=[b,c]};this.tick("start",null,a)}var a=new d;window.jstiming={Timer:d,load:a};if(window.performance&&window.performance.timing){var a=window.performance.timing,c=window.jstiming.load,b=a.navigationStart,a=a.responseStart;0<b&&a>=b&&(c.tick("_wtsrt",void 0,b),c.tick("wtsrt_","_wtsrt",a),c.tick("tbsd_","wtsrt_"))}try{a=null,window.chrome&&window.chrome.csi&&(a=Math.floor(window.chrome.csi().pageT), c&&0<b&&(c.tick("_tbnd",void 0,window.chrome.csi().startE),c.tick("tbnd_","_tbnd",b))),null==a&&window.gtbExternal&&(a=window.gtbExternal.pageT()),null==a&&window.external&&(a=window.external.pageT,c&&0<b&&(c.tick("_tbnd",void 0,window.external.startE),c.tick("tbnd_","_tbnd",b))),a&&(window.jstiming.pt=a)}catch(e){}})();})(); </script><script>(function() {var preloadImg = document.createElement('img');preloadImg.src = 'http://books.google.com/books?id=nYNPtZNnx9YC&pg=PR2&img=1&zoom=3&hl=en&sig=ACfU3U1vGx3jE1apd2pjAdwnJ_85sunasA&w=685';window['_OC_preload_image_url']...

Words: 27178 - Pages: 109

Free Essay

Calc Iii Lecture Notes

...MATH 275: Calculus III Lecture Notes by Angel V. Kumchev Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lecture 1. Lecture 2. Lecture 3. Lecture 4. Lecture 5. Lecture 6. Lecture 7. Lecture 8. Lecture 9. Lecture 10. Lecture 11. Lecture 12. Lecture 13. Lecture 14. Lecture 15. Lecture 16. Lecture 17. Lecture 18. Lecture 19. Lecture 20. Lecture 21. Lecture 22. Lecture 23. Three-Dimensional Coordinate Systems . . . . . . . . . . . . . . . . . . . . . iii 1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Lines and Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Space Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Multivariable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Directional Derivatives and Gradients . . . . . . . . . . . . . . . . . . . . . . . 77 Tangent Planes and Normal Vectors . . . . . . . . . . . . . . . . . . . . . . . 81 Extremal Values of Multivariable Functions . . . . . . . . . . . . . . . . . . . 91 Lagrange Multipliers* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Double Integrals...

Words: 74376 - Pages: 298

Free Essay

Tugas Proyek Matematika Ll

...TUGAS PROYEK GRADIEN KELOMPOK VIII Disusun oleh : Adik Niko Heri Mukti Kusuma (5215122652) Asmara Yoga (5215122687) Lidya Setiawati (5215122680) Mochammad Aldi Mauludin (5215122659) Urfi Muthiah (5215122677) Yusuf Syani (5215122628) PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNIVERSITAS NEGERI JAKARTA 2013/2014 27 Mei 2013 [M A T E M A T I K A II] KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Kuasa.Berkat rahmat, nikmat, serta limpahan karuniaNya Makalah Proyek Gradien ini dapat diselesaikan tepat pada waktunya Penulisan makalah proyek ini sebagai sarana pemenuhan tugas mata kuliah pendidikan matematika II, pendidikan teknik elektronika semester 098 tahun pelajaran 2013/2014 Dalam penyelesaian makalah proyek ini penulis banyak mengalami kesulitan karena kurangnya materi yang diperoleh.Namun berkat bantuan dari berbagai pihak,akhirnya makalah ini dapat diselesaikan.Oleh karena itu, penulis mengucapkan terima kasih kepada 1. Dr.Ir.Rusmono sebagai Dosen Pembimbing Matematika II 2. Tim sebagai pencari informasi tambahan Penulis menyadari makalah proyek ini masih jauh dari sempurna.Oleh karena itu,penulis meminta kritik dan saran yang membangun makalah proyek ini menjadi lebih baik. Semoga makalah ini dapat bermanfaat bagi yang membaca , khususnya penulis. Jakarta,27 mei 2013 PENULIS GRADIEN ii 27 Mei 2013 [M A T E M A T I K A II] DAFTAR ISI Cover..................

Words: 2665 - Pages: 11

Free Essay

My Secret

...My Secret To most of existence there is an inner and outer world. Skin, bark, surface of the ocean open to reveal other realities. What is inside shapes and sustains what appears. I walk off the subway. Cars, people, ambitions charge by. City thrashes without hesitation or apology. No stillness. No pause. Peop le do not see where they are. Traffic stumbles by and feet carry forgotten objects. Eyes see only the next walk signal, the next cash register, the upward battle ahead. They tell me I am home. Some salamander species are fully aquatic throughout life, som e take to water intermittently, and some are entirely terrestrial as adults. Uniquely among vertebrates, they are capable of regenerating lost limbs, as well as other body parts. The apartment. My parents sit still in their chairs, bodies frozen, emotions flooding towards me. Walls of memories line our apartment. Classes, friends, thoughts? They are excited to have me back, to remember what it was like with me here and them there. A nd while they deserve news, their questions ring chaotic in my ears. Remind ers of the commotion outside, of people expecting more, pushing ahead. A non - stop pace. Existence outside oneself. I pause and tell them I need a minute. Just one second and the door closes. Eyes and ears shut. I am alone again. City melts, and questions q uietly float away. I can remember the soft wind and red stones. With silence around, I can breathe again. To a certain kind of mind...

Words: 2143 - Pages: 9

Free Essay

Lokjmhnbvc

...MEAP Edition Manning Early Access Program Node.js in Action version 16 Copyright 2013 Manning Publications For more information on this and other Manning titles go to www.manning.com ©Manning Publications Co. Please post comments or corrections to the Author Online forum: http://www.manning-sandbox.com/forum.jspa?forumID=790 Licensed to Roger Chen brief contents PART 1: NODE FUNDAMENTALS Chapter 1: Welcome to Node.js Chapter 2: Building a multi-room chat application Chapter 3: Node programming fundamentals PART 2: WEB APPLICATION DEVELOPMENT WITH NODE Chapter 4: Buiding Node web applications Chapter 5: Storing Node application data Chapter 6: Testing Node applications Chapter 7: Connect Chapter 8: Connect’s built-in middleware Chapter 9: Express Chapter 10: Web application templating Chapter 11: Deploying Node web applications PART 3: GOING FURTHER WITH NODE Chapter 12: Beyond web servers Chapter 13: The Node ecosystem APPENDIXES Appendix A: Installing Node and community add-ons Appendix B: Debugging Node ©Manning Publications Co. Please post comments or corrections to the Author Online forum: http://www.manning-sandbox.com/forum.jspa?forumID=790 Licensed to Roger Chen 1 Welcome to Node.js 1 This chapter covers: What Node.js is JavaScript on the server Asyncronous and evented nature of Node Types of applications Node is designed for Sample Node programs So what is Node.js? It’s likely you have heard the term. Maybe you use Node...

Words: 105776 - Pages: 424

Free Essay

Reflection Paper About Precious

...This page intentionally left blank Physical Constants Quantity Electron charge Electron mass Permittivity of free space Permeability of free space Velocity of light Value e = (1.602 177 33 ± 0.000 000 46) × 10−19 C m = (9.109 389 7 ± 0.000 005 4) × 10−31 kg �0 = 8.854 187 817 × 10−12 F/m µ0 = 4π10−7 H/m c = 2.997 924 58 × 108 m/s Dielectric Constant (�r� ) and Loss Tangent (� �� /� � ) Material Air Alcohol, ethyl Aluminum oxide Amber Bakelite Barium titanate Carbon dioxide Ferrite (NiZn) Germanium Glass Ice Mica Neoprene Nylon Paper Plexiglas Polyethylene Polypropylene Polystyrene Porcelain (dry process) Pyranol Pyrex glass Quartz (fused) Rubber Silica or SiO2 (fused) Silicon Snow Sodium chloride Soil (dry) Steatite Styrofoam Teflon Titanium dioxide Water (distilled) Water (sea) Water (dehydrated) Wood (dry) � r �� / � 1.0005 25 8.8 2.7 4.74 1200 1.001 12.4 16 4–7 4.2 5.4 6.6 3.5 3 3.45 2.26 2.25 2.56 6 4.4 4 3.8 2.5–3 3.8 11.8 3.3 5.9 2.8 5.8 1.03 2.1 100 80 1 1.5–4 0.1 0.000 6 0.002 0.022 0.013 0.000 25 0.002 0.05 0.000 6 0.011 0.02 0.008 0.03 0.000 2 0.000 3 0.000 05 0.014 0.000 5 0.000 6 0.000 75 0.002 0.000 75 0.5 0.000 1 0.05 0.003 0.000 1 0.000 3 0.001 5 0.04 4 0 0.01 Conductivity (� ) Material Silver Copper Gold Aluminum Tungsten Zinc Brass Nickel Iron Phosphor bronze Solder Carbon steel German silver Manganin Constantan Germanium Stainless steel , S/m 6.17 × 107 4.10 × 107 3.82 × 107 1.82 × 107 1.67 × 107 1.5 × 107 1.45 × 107 1.03...

Words: 177667 - Pages: 711

Premium Essay

Geography

...CURRICULUM OF GEOGRAPHY For 4 years BS & 2 years MS (Revised 2009) | | HIGHER EDUCATION COMMISSION ISLAMABAD CURRICULUM DIVISION, HEC Dr. Syed Sohail H. Naqvi Executive Director Prof. Dr. Altaf Ali G. Shahikh Member (Acad) Miss Ghayyur Fatima Director (Curri) Mr. M. Tahir Ali Shah Deputy Director (Curri) Mr. Shafiullah Deputy Director Composed by Mr. Zulfiqar Ali, HEC Islamabad CONTENTS 1. Introduction………………………………… 6 2. Aims and Objectives……………………… 10 3. Standardized Format for 4-years BS degree programme ………………………. 12 4. Scheme of Studies for BS …………………. 14 5. Details of Courses for BS …………………. 16 6. Elective Group Papers ……………………. 45 7. Scheme of Studies for MS Programme …. 48 8. Details of Courses for MS …………………. 50 9. Optional Courses Model……………………. 56 10. Recommendations …………………………. 61 11. Annexures A,B,C,D & E …………………… 63 PREFACE Curriculum of a subject is said to be the throbbing pulse of a nation. By looking at the curriculum one can judge the state of intellectual development and the state of progress of the nation. The world has turned into a global village; new ideas and information are pouring in like a stream. It is, therefore, imperative to update our curricula regularly by introducing the recent developments in the relevant fields of knowledge. In exercise...

Words: 17448 - Pages: 70

Premium Essay

Electrical Electronics

...UNIVERSITY OF KERALA B. TECH DEGREE COURSE 2008 SCHEME ELECTRICAL AND ELECTRONICS ENGINEERING I to VIII SEMESTER SCHEME AND SYLLABUS BOARD OF STUDIES IN ENGINEERING AND FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF KERALA B.Tech Degree Course – 2008 Scheme REGULATIONS 1. Conditions for Admission Candidates for admission to the B.Tech degree course shall be required to have passed the Higher Secondary Examination, Kerala or 12th Standard V.H.S.E., C.B.S.E., I.S.C. or any examination accepted by the university as equivalent thereto obtaining not less than 50% in Mathematics and 50% in Mathematics, Physics and Chemistry/ Bio- technology/ Computer Science/ Biology put together, or a diploma in Engineering awarded by the Board of Technical Education, Kerala or an examination recognized as equivalent thereto after undergoing an institutional course of at least three years securing a minimum of 50 % marks in the final diploma examination subject to the usual concessions allowed for backward classes and other communities as specified from time to time. 2. Duration of the course i) The course for the B.Tech Degree shall extend over a period of four academic years comprising of eight semesters. The first and second semester shall be combined and each semester from third semester onwards shall cover the groups of subjects as given in the curriculum and scheme of examination ii) Each semester shall ordinarily comprise of not less than 400 working periods each of 60 minutes...

Words: 36386 - Pages: 146

Premium Essay

Hai, How Are U

...UNIVERSITY OF KERALA B. TECH. DEGREE COURSE 2008 ADMISSION REGULATIONS and I  VIII SEMESTERS SCHEME AND SYLLABUS of COMPUTER SCIENCE AND ENGINEERING B.Tech Comp. Sc. & Engg., University of Kerala 2 UNIVERSITY OF KERALA B.Tech Degree Course – 2008 Scheme REGULATIONS 1. Conditions for Admission Candidates for admission to the B.Tech degree course shall be required to have passed the Higher Secondary Examination, Kerala or 12th Standard V.H.S.E., C.B.S.E., I.S.C. or any examination accepted by the university as equivalent thereto obtaining not less than 50% in Mathematics and 50% in Mathematics, Physics and Chemistry/ Bio- technology/ Computer Science/ Biology put together, or a diploma in Engineering awarded by the Board of Technical Education, Kerala or an examination recognized as equivalent thereto after undergoing an institutional course of at least three years securing a minimum of 50 % marks in the final diploma examination subject to the usual concessions allowed for backward classes and other communities as specified from time to time. 2. Duration of the course i) The course for the B.Tech Degree shall extend over a period of four academic years comprising of eight semesters. The first and second semester shall be combined and each semester from third semester onwards shall cover the groups of subjects as given in the curriculum and scheme of examination ii) Each semester shall ordinarily comprise of not less than 400 working periods each of 60 minutes duration...

Words: 34195 - Pages: 137

Free Essay

Nit-Silchar B.Tech Syllabus

...NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR Bachelor of Technology Programmes amï´>r¶ JH$s g§ñWmZ, m¡Úmo{ à VO o pñ Vw dZ m dY r V ‘ ñ Syllabi and Regulations for Undergraduate PROGRAMME OF STUDY (wef 2012 entry batch) Ma {gb Course Structure for B.Tech (4years, 8 Semester Course) Civil Engineering ( to be applicable from 2012 entry batch onwards) Course No CH-1101 /PH-1101 EE-1101 MA-1101 CE-1101 HS-1101 CH-1111 /PH-1111 ME-1111 Course Name Semester-1 Chemistry/Physics Basic Electrical Engineering Mathematics-I Engineering Graphics Communication Skills Chemistry/Physics Laboratory Workshop Physical Training-I NCC/NSO/NSS L 3 3 3 1 3 0 0 0 0 13 T 1 0 1 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 4 1 1 0 0 0 0 0 0 2 0 0 0 0 P 0 0 0 3 0 2 3 2 2 8 0 0 0 0 0 2 2 2 2 0 0 0 0 0 2 2 2 6 0 0 8 2 C 8 6 8 5 6 2 3 0 0 38 8 8 8 8 6 2 0 0 40 8 8 6 6 6 2 2 2 40 6 6 8 2 Course No EC-1101 CS-1101 MA-1102 ME-1101 PH-1101/ CH-1101 CS-1111 EE-1111 PH-1111/ CH-1111 Course Name Semester-2 Basic Electronics Introduction to Computing Mathematics-II Engineering Mechanics Physics/Chemistry Computing Laboratory Electrical Science Laboratory Physics/Chemistry Laboratory Physical Training –II NCC/NSO/NSS Semester-4 Structural Analysis-I Hydraulics Environmental Engg-I Structural Design-I Managerial Economics Engg. Geology Laboratory Hydraulics Laboratory Physical Training-IV NCC/NSO/NSS Semester-6 Structural Design-II Structural Analysis-III Foundation Engineering Transportation Engineering-II Hydrology &Flood...

Words: 126345 - Pages: 506

Free Essay

Test2

...62118 0/nm 1/n1 2/nm 3/nm 4/nm 5/nm 6/nm 7/nm 8/nm 9/nm 1990s 0th/pt 1st/p 1th/tc 2nd/p 2th/tc 3rd/p 3th/tc 4th/pt 5th/pt 6th/pt 7th/pt 8th/pt 9th/pt 0s/pt a A AA AAA Aachen/M aardvark/SM Aaren/M Aarhus/M Aarika/M Aaron/M AB aback abacus/SM abaft Abagael/M Abagail/M abalone/SM abandoner/M abandon/LGDRS abandonment/SM abase/LGDSR abasement/S abaser/M abashed/UY abashment/MS abash/SDLG abate/DSRLG abated/U abatement/MS abater/M abattoir/SM Abba/M Abbe/M abbé/S abbess/SM Abbey/M abbey/MS Abbie/M Abbi/M Abbot/M abbot/MS Abbott/M abbr abbrev abbreviated/UA abbreviates/A abbreviate/XDSNG abbreviating/A abbreviation/M Abbye/M Abby/M ABC/M Abdel/M abdicate/NGDSX abdication/M abdomen/SM abdominal/YS abduct/DGS abduction/SM abductor/SM Abdul/M ab/DY abeam Abelard/M Abel/M Abelson/M Abe/M Aberdeen/M Abernathy/M aberrant/YS aberrational aberration/SM abet/S abetted abetting abettor/SM Abeu/M abeyance/MS abeyant Abey/M abhorred abhorrence/MS abhorrent/Y abhorrer/M abhorring abhor/S abidance/MS abide/JGSR abider/M abiding/Y Abidjan/M Abie/M Abigael/M Abigail/M Abigale/M Abilene/M ability/IMES abjection/MS abjectness/SM abject/SGPDY abjuration/SM abjuratory abjurer/M abjure/ZGSRD ablate/VGNSDX ablation/M ablative/SY ablaze abler/E ables/E ablest able/U abloom ablution/MS Ab/M ABM/S abnegate/NGSDX abnegation/M Abner/M abnormality/SM abnormal/SY aboard ...

Words: 113589 - Pages: 455