Free Essay

Fscdddddd

In:

Submitted By sanakamran93
Words 1776
Pages 8
Exercise 2.3 (Solutions)

MathCity.org

Calculus and Analytic Geometry, MATHEMATICS 12

Merging man and maths

Available online @ http://www.MathCity.org, Version: 1.1.0

Question # 1
Let y = x 4 + 2 x3 + x2
Differentiating w.r.t. x dy d 4
=
x + 2 x3 + x 2 dx dx d 4 d d
=
x + 2 x3 + x 2 dx dx dx 3
2
= 4x + 6x + 2 x

(

)

(

)

= 4 x 4−1 + 2 3 x3−1 + 2 x 2 −1

Question # 2


−3

3
2

Let y = x + 2 x + 3
Diff. w.r.t x
−3
dy d  −3
=  x + 2x 2 + 3 

dx dx 

d −3 d −3 d
=
x + 2 x 2 + ( 3) dx dx dx 5

− dy ⇒
= −3 x − 4 − 3 x 2 or dx  3 − 3 −1 
= −3 x −3−1 + 2  − x 2  + 0
 2

1  dy  1
= −3  4 + 5 2  dx x 
x

Question # 3 a+x Let y = a−x Now

dy d  a + x 
= 

dx dx  a − x 

=

d dx d dx (a − x ) ( a + x) − (a + x) (a − x )

(a − x)
( a − x )( 0 + 1) − ( a + x )( 0 − 1) = ( a − x )(1) − ( a + x )( − 1)
=
2
2
(a − x)
( a − x)
=

a−x+a+x

(a − x)

2

2

=

2a

(a − x)

2

Answer

Question # 4
2x − 3
Let
y=
2x + 1 dy d  2 x − 3 
Now
= 

dx dx  2 x + 1  d d
( 2 x + 1) ( 2 x − 3) − ( 2 x − 3) ( 2 x + 1) dx dx
=
2
( 2 x + 1)

( 2 x + 1)( 2 − 0 ) − ( 2 x − 3)( 2 + 0 )
2
( 2 x + 1)
2 ( 2 x + 1 − 2 x + 3)
2 ( 4)
=
=
2
2
( 2 x + 1)
( 2 x + 1)
=

=
=

( 2 x + 1)( 2 ) − ( 2 x − 3)( 2 )
2
( 2 x + 1)
8

( 2 x + 1)

2

Answer

FSc-II / Ex- 2.3 - 2

Question # 5
Let y = ( x − 5)( 3 − x )
= 3 x − x 2 − 15 + 5 x

= − x 2 + 8 x − 15

Now

(

)

dy dy
=
− x 2 + 8 x − 15 dx dx dy d d =
− x 2 + 8 ( x) − (15 ) = −2 x 2−1 + 8 (1) − 0 = −2 x + 8 Answer dx dx dx (

)

Question # 6
1 

Let y =  x −

x


( )

2

2

( )

1
 1 
 1 
−1
= x +
 −2 x 
 = x+ x −2 = x+ x −2
 x
 x
Now diff. w.r.t x dy d d d d = x + x −1 − 2 = ( x ) + ( x −1 ) − (2) dx dx dx dx dx = 1 + (−1 ⋅ x −1−1 ) − 0 = 1 − x −2
1
x2 − 1
= 1− 2 =
Answer
x x2 2

(

Question # 7

)

(1 + x ) ( x − x )
3/ 2

Consider

y =

=

=

x

(1 + x )
( ) x 2

x 1− x 2 


3
1+ 1

 = x 1 + x 1− x
Since x 2 = x 2 x x
2
1 − x 
1
1
3



 = x (1 − x ) = x 2 (1 − x ) = x 2 − x 2 x (

1

)(

)

( )

Now
1
3

dy d  2
=
 x − x2  dx dx 

1
3
1
1
1 2 −1 3 2 −1
1 −2 3 2
= x − x
= x − x
2
2
2
2

=

1 1

−3 x

2 x


Question # 8
Let

y =

(x

2

)

+1

2

x2 − 1
Differentiating w.r.t. x
2
 2

dy d  x +1 
=
dx dx  x 2 − 1 


2
2 d d 2 x2 − 1 x + 1 − x2 + 1 x2 − 1 dx dx
=
2
2
x −1

(

(

)

) (

) (

(

)

)

(

)

Answer

FSc-II / Ex- 2.3 - 3



dy
=
dx
=

(

) (

)

x2 − 1 2 x2 + 1

(x

2

) (

2 −1

(

)

(

) (

(

)

) ( 2x )

− 1 2 x2 + 1 ( 2x ) − x2 + 1

(x

(

)

−1

2

)

2 d 2 x + 1 − x 2 + 1 ( 2x ) dx 2 x2 − 1
2

2

) ( ) ( )
( )
2 x ( x + 1)( x − 3)
Answer
( x − 1)

(

)
(

2
2
2
2 x x2 + 1 2 x2 − 1 − x 2 + 1 



 = 2 x x + 1  2 x − 2 − x − 1
=
2
2
2
2
x −1 x −1
2

=

)

2

2

2

Question # 9 x2 + 1
Let y = 2 x −3
Differentiating w.r.t. x dy d  x +1 
=

 = dx dx  x 2 − 3 
2

=
=

(x

2

−3

(x

) (2x) − ( x
( x − 3)

(x

2

−3

)

=

2

2

−3

d
) dx ( x

)

+ 1 ( 2x )

2

2

2 x ( − 4)

2

(x

− 8x
2

−3

)

2

2

=

) (

d
) dx ( x

+ 1 − x2 + 1

(x

2

−3

(

)

2

2

)

2 x x2 − 3 − x2 − 1

(x

2

−3

)

2

Answer

Question # 10
12

Let y =

1+ x
1+ x 
= 

1− x
1− x 
12

dy d 1+ x 
Now
=

 dx dx  1 − x 

1 −1

1  1 + x  2 d  1+ x 
= 



2  1 − x  dx  1 − x  d d


−1
1 − x ) (1 + x ) − ( 1+ x ) ( 1− x ) 
1  1+ x  2  ( dx dx
= 

 
2
2 1− x  
(1 − x )



1
1  1 − x  2  (1 − x )(1) − ( 1+ x )( − 1) 
= 

 
2

2 1+ x  
(1 − x )


1
1
1 (1 − x ) 2  1 − x + 1+ x 
(1 − x ) 2  2 
=

 =
1 
2 
2 (1 + x ) 1  (1 − x )2 
2
2 (1 + x ) 2  (1 − x ) 




1
1
=
=
Answer
1
1
3
2−
2 1− x
2
2
1 + x (1 − x )
(1 + x ) ( )

−3

)

FSc-II / Ex- 2.3 - 4

Question # 11
2x −1
Let y = x2 + 1
Differentiating w.r.t. x

(x



dy d  2x − 1 
=
= dx dx  x 2 + 1 1/2 



(

=

(x

)

(

)

2 x2 + 1

1/2

(
− ( 2 x − 1)

(x
(

2

(

(( x + 1) )

(
)

1

)

2

1/ 2

(

1/ 2 2

)

(2 x )
=

+1



1  2 x2 + 2 − 2 x2 + x 
=
1/ 2
2
 x2 + 1  x +1



)

)

−1/2 d
1 2 x +1
( x 2 + 1) dx 2
2
x +1

2 x +1

)

(

1/2 d d
( 2 x − 1) − ( 2 x − 1) x 2 + 1 dx dx

1/2

2

( 2) − ( 2 x − 1)

1/2

=

=

)

+1

)

+1

2

2

)

(x

(



1/2
1 
2x2 − x 
2
2 x +1 −
1/ 2 x2 + 1  x2 + 1 



x+2
2

)

+1

(

)

x +1
2

)

or

(x

(

x+2
2

)

+1

3/2

)

Answer

Question # 12
Do yourself as Question # 10
Question # 13
1

 x2 + 1  2
=  2

x2 − 1
 x −1 
Now do yourself as Question # 11

x2 + 1

Let y =

Question # 14
1+ x −
1+ x +
1+ x −
1+ x +

Assume y =
=
=

=

(

(

1− x
1− x
1 − x 1+ x − 1− x

1 − x 1+ x − 1− x

1 + x − 1− x
1+ x

) −(
2

)

2

1− x

)

2

=

(

1+ x

1 + x + 1 − x − 2 (1 + x )( 1− x )


2 1 − 1 −
= 
2x
Now differentiation w.r.t x
1

2 2 dy d  1 − 1− x
=
dx dx  x 


(

(

)

2x

2

 = 1− 1− x x 1 x2 2

)

(







Rationalizing

) (
2

+

1− x

)

2

)

(

1 + x − 1+ x

2 − 2 1 − x2
=
2x
1
2

−2

1+ x

)(

1− x

)

FSc-II / Ex- 2.3 - 5

x
=
=

1 x2 =

1 x2 d 
2
1 − 1 − x dx 

1 d
 

−  1− 1− x 2 2  x

 
 dx
2
x
1 −1 d
 
1
 
⋅  x  0 − 1 − x2 2
1 − x 2  −  1− 1− x 2 dx 2
 
 
1
1
  1

2 −2
2 2
⋅ x  − 1− x
( −2 x )  − 1 + 1 − x 

  2


(

)

(

1
2

(

)

(

(

(

(

(

(

)

)

)

) 2  (1)
 
1





)



1
 2

x − 1 − x2 2 + 1 − x 2 
1 
= 2⋅
1


x 
2 2
1− x







(

1
2

)

(

)

)


1  x2
2
= 2⋅
1 −1 + 1− x

x
2 2
 1− x

1

2 2 
1 1 − 1− x
 = 1−
= 2 ⋅
1  x  x2 1 − x2 2 




(

)

(

1− x2
1− x

)

)

Answer

2

Question # 15 x a+x
a+ x
Let y =
= x

a−x
a−x
Diff. w.r.t. x dy d a+x
=
x

dx dx  a − x  d = x dx d
Now
dx

1

1

2

2

2

a+x


a−x

a+x


a−x

1

1

2

a+x
+ 

a−x

1a+ x
= 

2a − x 
=

=
=
=

1 −1
2

1
2

d x ……….. (i) dx a+ x


a−x
d d 
−1
(a + x) − (a + x ) (a − x) 
2  (a − x)

1 a + x dx dx


 
2
2 a − x  
(a − x)



1
1  a − x  2  ( a − x ) (1) − ( a + x )( − 1) 


 
2

2 a + x   a − x)
(


1
 2a 
1
1
1 (a − x)2  a − x + a + x 
⋅


 =
1
2 ( a + x ) 1  ( a − x )2 
2 ( a + x ) 1 ( a − x ) − 2  ( a − x )2 
2
2



 a a
=
1
1
3
1
2−
(a + x )2 ( a − x) 2
(a + x) 2 (a − x) 2 d dx

Using in eq. (i)
1

dy a a+x 2
= x⋅
+ 
 (1)
3
1 dx 2 (a − x) 2
a−x
(a + x)
1

=
=

ax
3
2

+

(a + x) (a − x) ax + ( a + x )( a − x )
3
1
(a + x) 2 (a − x) 2
1
2

(a + x) 2
1
(a − x) 2
=

ax + a 2 − x 2 a + x (a − x)

3
2

Answer

FSc-II / Ex- 2.3 - 6

Question # 16
Since

y =

1 x x−
1
2



1
2

= x −x
Diff. w.r.t. x
−1
dy d  1
=
x2 − x 2 

 dx dx 

1 −1 1 −3
= x 2+ x 2
2
2
Multiplying by 2x
1
−1 dy 2x
= x2 +x 2 dx Adding y on both sides
1
−1 dy 2x + y = x 2 + x 2 + y dx 1
1
1
−1
−1
−1
dy
⇒ 2x + y = x 2 + x 2 + x 2 − x 2
Q y=x2 −x 2 dx 1 dy dy
⇒ 2x + y = 2x 2
⇒ 2x + y = 2 x
Proved
dx dx Question # 17
Since y = x 4 + 2 x2 + 2 dy d 4
=
x + 2x2 + 2
Now
dx dx dy

= 4 x 4−1 + 2 2 x 2−1 + 0 dx = 4 x3 + 4 x dy ⇒
= 4 x x 2 + 1 ……… (i) dx Now y = x 4 + 2 x2 + 2

(

)

(

(

)

)

⇒ y − 1 = x4 + 2 x 2 + 2 −1

( x + 1)
( x + 1) i.e. ( x + 1)

= x 4 + 2 x2 + 1 =


y −1 =

2

2

2

2

Using it in eq. (i), we have dy ⇒
= 4x y − 1 dx =

y −1

as required.
Error Analyst

Sarmad Khan - talal2006_sarmad@yahoo.com

Book:

http://www.MathCity.org
Become an Error analyst, submit errors at http://www.mathcity.org/errors
If you have any question or do you want discuss anything just go to http://forum.mathcity.org Exercise 2.3
Calculus and Analytic Geometry Mathematic 12
Punjab T extbook Board, Lahore.

Made by: Atiq ur Rehman (Atiq@MathCity.org)
Available online at http://www.MathCity.org in PDF Format (Picture format to view online).
Page Setup used Legal ( 8′′ 1 2 × 14′′ )
First Printed: August 24, 2005, Updated: February 16, 2009.

Similar Documents