...A collision occurs when two objects collide together creating an external force that is either zero or smaller. The goals of this lab were to find out what happens to the linear momentum and kinetic energy of different objects when they collide. Also, what happens to the momentum and kinetic energy in a completely inelastic collision and perfectly elastic collision? For completely inelastic collision the linear momentum should be conserved, but the kinetic energy should not be conserved. On the other hand, the linear momentum and the kinetic energy should both be conserved during perfectly elastic collision. Kf / Ko should equal one for perfectly elastic collision and, it should equal the mass of 1 divided by the sum of the mass 1 and 2 for...
Words: 769 - Pages: 4
...------------------------------------------------- Experiment 9 – Conservation of Linear Momnetum [Document subtitle] March 29, 2016 Engineering Physics 150 March 29, 2016 Engineering Physics 150 Objectives: The objectives of this laboratory experiment is to investigate the velocities and momentm of two carts before and after various types of collisions. Theory: * When objects collide and assuming there are no external forces are acting on the colliding objects, the principle of the conservation of momentum always holds. * For a two-object collision, momentum conservation is stated mathematically by the equation: * PTotali =PTotalf * m1v1i+m2v2i=m1v1f+m2v2f * When working with a complete inelastic collision, the two objects stick together after the collision, and the momentum conservation equation becomes: * PTotali =PTotalf * m1v1i+m2v2i=(m1+m2)vf * During this experiment, photogates will measure the motion of two carts before and after elastic collision. The cart masses can be measured by using a simple mass scale. * Then, total momentum of the two carts before collision will be compared to the total momentum of the two carts after collision. Equipment: 850 Universal | Dynamic Track | Two dynamic carts | Two picket fences | Mounting brackets | Mass Balance | Mass Bar | Two Photogates | Data: Part A – Elastic Collision with approx. equal masses: Trial | V1 i (m/s) | V2 i (m/s) | V1 f (m/s) | V2 f (m/s)...
Words: 1438 - Pages: 6
...No. Information on Every Subject 1. Unit Name: Physics I 2. Code: FHSP1014 3. Classification: Major 4. Credit Value: 4 5. Trimester/Year Offered: 1/1 6. Pre-requisite (if any): No 7. Mode of Delivery: Lecture, Tutorial, Practical 8. Assessment System and Breakdown of Marks: Continuous assessment: 50% - Theoretical Assessment (Tests/Quizzes/Case Studies) (30%) - Practical Assessment (Lab reports/Lab tests) (20%) Final Examination 9. 10. 50% Academic Staff Teaching Unit: Objective of Unit: The aims of this course are to enable students to: • appreciate the important role of physics in biology. • elucidate the basic principles in introductory physics enveloping mechanics, motion, properties of matter and heat. • resolve and interpret quantitative and qualitative problems in an analytical manner. • acquire an overall perspective of the inter-relationship between the various topics covered and their applications to the real world. • acquire laboratory skills including the proper handling and use of laboratory apparatus and materials. 11. Learning Outcome of Unit: At the end of the course, students will be able to: 1. Identify and practice the use of units and dimensional analysis, uncertainty significant figures and vectors analysis. 2. Apply and solve problems related to translational and rotational kinematics and dynamics in one and two dimensions. 3. Apply and solve problems related to the...
Words: 765 - Pages: 4
...No. Information on Every Subject 1. Unit Name: Physics I 2. Code: FHSP1014 3. Classification: Major 4. Credit Value: 4 5. Trimester/Year Offered: 1/1 6. Pre-requisite (if any): No 7. Mode of Delivery: Lecture, Tutorial, Practical 8. Assessment System and Breakdown of Marks: Continuous assessment: 50% - Theoretical Assessment (Tests/Quizzes/Case Studies) (30%) - Practical Assessment (Lab reports/Lab tests) (20%) Final Examination 9. 10. 50% Academic Staff Teaching Unit: Objective of Unit: The aims of this course are to enable students to: • appreciate the important role of physics in biology. • elucidate the basic principles in introductory physics enveloping mechanics, motion, properties of matter and heat. • resolve and interpret quantitative and qualitative problems in an analytical manner. • acquire an overall perspective of the inter-relationship between the various topics covered and their applications to the real world. • acquire laboratory skills including the proper handling and use of laboratory apparatus and materials. 11. Learning Outcome of Unit: At the end of the course, students will be able to: 1. Identify and practice the use of units and dimensional analysis, uncertainty significant figures and vectors analysis. 2. Apply and solve problems related to translational and rotational kinematics and dynamics in one and two dimensions. 3. Apply and solve problems related to the...
Words: 765 - Pages: 4
...system is a constant. The Big Bang Theory violates this law by stating that all matter and energy was created in an explosion. From Elementary to College students are taught that laws of physics cannot be violated, but are taught a theory that clearly violates one of them. The Plasma Theory on the other hand does not have a explanation as to how the Universe started leaving room for future discoveries to fill in the blank. The law of conservation of linear momentum states that the total momentum of a closed system of objects is constant. One of the consequences of this is that the center of mass of any system of objects will always continue with the same velocity unless acted on by a force from Cannon 2 outside the system. Galaxies are found at varying distances, moving in different directions at different velocities and almost always in clusters containing millions of Galaxies. This is not possible if everything is expanding from a central point because it would violate the law of conservation of linear momentum. This law can be represented by dropping a pebble in a still pool of water, each ripple would be a true circle and expand outward at an equal rate. No ripple would run into another or suddenly change course. But in the case of Galaxies they are not at equal distances moving...
Words: 792 - Pages: 4
...Cover page: Unit 2 Lab 2.1.1 States of Matter . Survey of the Sciences Week 2 Assignment 2 – Lab 2.1.1 – States of Matter Date of assignment: 12/18/2013 Date turned in: 01/15/2014 Liquid at over 650K | Liquid under 650K | The molecules appear to be faster and more spread apart | Molecules are even faster, mostly touching and mostly compact | Gas at over 1540K | Gas at under 300K | Faster and mostly apart and randomly touching | Slower, more clustered and in ring shapes and mostly touching with less space apart | Solid at 350 – 360K and over 600K | Solid at under 10K | Moving from one position to another at accelerated pace but mostly touching at an even faster rate and mostly spread apart | Less movement, but still clustered and connected in ring forms | Solid is at 157K and appears to be moving slower and less close but compact in rings. Liquid is at 328K and appears to be closely bonded but moving around much faster. Gas is at 809K and appears to be moving much faster and occupying more space than solid and liquid. But when the temperature is reduced to about 97K the rate of movement decreases and the molecules get more clustered and compact, the reaction in liquid is almost the same as gas when the temperature is reduced to the same 97K. The reaction in solid liquid and gas stages of water are almost constant at a reduced temperature of 97K. Only the solid state resembles itself in heated and cooled stages. The others have different resemblance. In...
Words: 1675 - Pages: 7
...two methods: 1) employing uniform linear motion relations, the kinematic equations; 2) using the principles of conservation of energy and momentum. In this paper, we aim to validate the law of conservation of momentum. We do so by comparing results from two experiments conducted with a single ballistic launcher/pendulum apparatus. Hypothesis: The initial velocity of a ballistic pendulum can be determined using the law of conservation of momentum. Momentum should be conserved, based on the law of conservation of energy. If momentum is conserved, the velocity found using the law of conservation of momentum equation should equal the velocity found using projectile motion. Due to the law of conservation of momentum, the total momentum before the pendulum is swung equals the net momentum after the pendulum is swung. Introduction/Purpose The ballistic pendulum is a device where a ball is shot into and captured by a pendulum. The pendulum is initially at rest but acquires energy from the collision with the ball. Using conservation of energy it is possible to find the initial velocity of the ball. In this ball-pendulum system we cannot use the conservation of mechanical energy to relate the quantities because energy is transferred from mechanical to nonconservative forces. In the absence of external forces, the momentum of the system does not change no matter how complicated the collision. The initial momentum is always equal to the final momentum. Figure 1: Experimental Setup...
Words: 1816 - Pages: 8
...Optical Pumping Lab Report [Basic Principle] Before discussing the optical pumping, we have to mention the energy levels of the atom and their splitting due to the interaction between the spin of electron, orbital angular momentum of electron and spin of nuclei. We denote them with S, L, and I respectively. And the total angular momentum of electron is denoted by J, (Grand) total angular momentum is denoted by F. Therefore we will have to deal with the LS interaction, IJ interaction and later the interaction between the Grand total angular momentum and external magnetic field. A very schematic picture of the energy levels of 87Rb under a weak external field is shown in Fig. 1. After applying an weak external magnetic field on the atom, the formally degenerated energy level with same F will further split into 2F+1 sublevels, denoted by mF which is the projection of Grand total angular momentum to the direction of external field B0. Fig. 1 Until now we haven't mention any thing about the optical pumping. Now we have the atom well prepared, the only thing we have to do is to illuminate the vapor of Rubidium with some well tuned highly polarized light. Well tuned means the spectrum of the incident light is better to be narrow, this can be achieved by using a interference filter to screen out the unwanted light and let only the D1 line pass, namely when this light illuminated on the Rb vapor, only transitions between sublevels originated from 5S1/2 and sublevels originated...
Words: 1666 - Pages: 7
...Resnick, and J. Walker. Fundamentals of Physics, 6th edition. Wiley, 2003. INTRODUCTION This experiment is an introduction to some basic concepts of rotational dynamics. A fairly realistic analysis of the motion of a flywheel can be made, assuming only that the net frictional torque on a rotating flywheel is constant. In performing this experiment, you will develop understanding of: ! rotational dynamics; ! evaluation of errors in measurements that may be difficult to obtain; ! estimation of a geometrically calculated quantity using simplified models. THEORY The basic equations for angular motion can often be obtained simply from those for linear motion by making the following substitutions: Linear variables Force, F Mass, m Velocity, v Momentum, p Acceleration, a Angular variables Torque, Moment of Inertia, I Angular velocity, Angular Momentum, L Angular acceleration, N.B. The analogy needs to be treated with caution. I is not a constant property of the body, as is mass, since its value depends on the axis around which it is measured. Thus Newton=s Law, F = d p d (m v ) = = m a , becomes: dt dt = dL d (I ) = =I dt dt . In words, the angular acceleration of a body is directly proportional to the torque applied to it and inversely proportional to the moment of inertia of the body about the relevant axis. THE FLYWHEEL -18The moment of inertia, I, is determined by imagining that the body is divided into a number of infinitesimal elements of mass mi each at a distance ri from...
Words: 1532 - Pages: 7
...Engineering Geology CE 205 Civil Engineering Materials CE 207 Surveying CE 231 Civil Engineering Materials Lab CE 235 Surveying Laboratory CE 233 Building Drawing and CAD lab. SA 201 NCC/NSS/NSO I Total Credits 4th Semester Course No. MA 2xx CE 202 CE 204 CE 206 CE 208 CE 232 CE 234 SA 202 5th Semester Course No. CE 301 CE 303 CE 305 CE 307 CE 309 CE 331 CE 333 L-T-P-C 3-0-0-6 3-1-0-8 3-0-0-6 3-0-0-6 3-0-0-6 0-0-3-3 0-0-3-3 1-0-2-4 0-0-2-0 16-1-8-42 Course Name Numerical Methods Structural Analysis I Environmental Engineering I Geotechnical Engineering I Hydrology and Water Resources Engineering Environmental Engineering Lab Geotechnical Engineering I Laboratory NCC/NSS/NSO II Total Credits L-T-P-C 3-0-0-6 3-1-0-8 3-0-0-6 3-0-0-6 3-0-0-6 0-0-3-3 0-0-3-3 0-0-2-0 15-1-6-38 Course Name Structural Analysis II Environmental Engineering II Geotechnical Engineering II Fluid Mechanics Reinforced Concrete Design Geotechnical Engineering II Laboratory Fluid Mechanics Laboratory Total Credits L-T-P-C 3-1-0-8 3-0-0-6 3-0-0-6 3-0-0-6 3-0-0-6 0-0-3-3 0-0-3-3 15-1-6-38 Course Name HSS II Transportation Engineering I Construction Technology and Management Design of Steel Structures Hydraulics and Hydraulic Structures Transportation Engineering I Laboratory Hydraulics and Hydraulic Structures Lab Total Credits L-T-P-C 2-0-0-4 3-0-0-6 3-0-0-6 3-1-0-8 3-0-0-6 0-0-3-3 0-0-3-3 15-1-6-36 6th...
Words: 4974 - Pages: 20
...CONTENTS 1 2 3 4 5 6 Abbreviations/Definitions Code of Conduct and Ethics for Students Important Academic Rules Scheme of Studies Important Notes Detailed Syllabus 1 2 3 17 19 20 Lingaya’s University, Faridabad ABBREVIATIONS/DEFINITIONS "AC" means, Academic Council of the University. "BOM" means, the Board of Management of the University. "BOS" means, the Board of Studies of the Department. “CAU/AUC-option” CAU/AUC means change from Credit to Audit option / change from Audit to Credit option "Class/Course Committee" means, the Class/Course Committee of a class/course. "Course" means, a specific subject usually identified by its course-number and course-title, with a specified syllabus / course-description, a set of references, taught by some teacher(s) / course- instructor(s) to a specific class (group of students) during a specific academic-semester / semester. “Course Instructor" means, the teacher or the Course Instructor of a Course. "Curriculum" means the set of Course-Structure and Course-Contents. "DAA" means, the Dean of Academic Affairs. “DAAB” means Departmental Academic Appeals Board. “DEC/PEC” means Dissertation Evaluation Committee / Project Evaluation committee. “Department” means a group in the University devoted to a specific discipline also called a School. Department and School are used interchangeably. "DSA" means, Dean Student Affairs. “ESE” means End-Semester Examination “EYE” means End-Year Examination. "Faculty Advisor/Class Counsellor”...
Words: 14653 - Pages: 59
...3M1: Rethinking Innovation Background Large (70K employees, $15bn sales), global operations (200 countries), multi-product (50K range), multi-market business. Innovation ‘Claim to Fame’ This company has been around for just over 100 years and during that period has established a clear reputation as a major innovator. Their technical competence has been built up by a long-term commitment to R&D on which they currently spend around $1bn p.a.; this has yielded them a regular position in the top 10 in US patents granted. They have launched a number of breakthrough products which have established completely new markets and they have set themselves a consistent stretch target of getting 30% of sales turnover from products launched during the past four years. How Do They Manage Innovation? The company presents a consistent picture in interviews and in publications – innovation success is a consequence of creating the culture in which it can take place – it becomes ‘the way we do things around here’ in a very real sense. This philosophy is borne out in many anecdotes and case histories – the key to their success has been to create the conditions in which innovation can arise from any one of a number of directions, including lucky accidents, and there is a deliberate attempt to avoid putting too much structure in place since this would constrain innovation. Innovation Strategy and Leadership The company has always valued innovation and this has been a consistent and key theme...
Words: 1296 - Pages: 6
...or nearly stationary object. [1] Flybrids (a variation of regular electromechanical hybrids) use a flywheel instead of a battery to store regenerative braking energy. This stored energy is used to initially propel (or assist the vehicle’s internal combustion engine) for powering and maintaining motion of the vehicle.[1] Application of a flywheel Flywheels can be used to store energy and used to produce very high electric power pulses for experiments, where drawing the power from the public electric network would produce unacceptable spikes. A small motor can accelerate the flywheel between the pulses [2].The phenomenon of precession has to be considered when using flywheels in moving vehicles. However in one modern application, a momentum wheel is a type of flywheel useful in satellite pointing operations, in which the flywheels are used to point the satellite's instruments in the correct directions...
Words: 1798 - Pages: 8
...UNIVERSITY OF AUCKLAND DEPARTMENT OF ENGINEERING ENCI790 RESEARCH PROPOSAL: “An evaluation and survey of methods available for converting biomass into fuels” Candidate: Surya Sappa Supervisors: Professor John Chen Doctor Robert Kirkpatrick ABSTRACT Biofuel technologies have become more and more prominent in addressing the need for a continuous supply of fuels. Biofuels are fuels that are produced through the biological process of converting biomass/biowaste into a fuel source to reduce the negative impacts faced by fossil fuels combustion (reduction in greenhouse gasses) and availability of supply. Biofuels can be derived from a wide variety of biomass, and are categorised into four generations: First generation biofuels are made from sugars, starches, oil, and animal fats that are converted into fuel using already-known processes or technologies. These fuels include biodiesel, bioalcohols, ethanol, and biogases, like methane captured from landfill decomposition. Second generation biofuels are made from non-food crops or agricultural waste, especially ligno-cellulosic biomass like switch-grass, willow, or wood chips. Third generation biofuels are made from algae or other quickly growing biomass sources. Fourth generation biofuels are made from specially engineered plants or biomass that may have higher energy yields or lower barriers to cellulosic breakdown or are able to be grown on non-agricultural land or bodies of water...
Words: 4026 - Pages: 17
...Steering Behaviors For Autonomous Characters Craig W. Reynolds Sony Computer Entertainment America 919 East Hillsdale Boulevard Foster City, California 94404 craig_reynolds@playstation.sony.com http://www.red.com/cwr/ cwr@red.com Keywords: Animation Techniques, Virtual/Interactive Environments, Games, Simulation, behavioral animation, autonomous agent, situated, embodied, reactive, vehicle, steering, path planning, path following, pursuit, evasion, obstacle avoidance, collision avoidance, flocking, group behavior, navigation, artificial life, improvisation. Abstract This paper presents solutions for one requirement of autonomous characters in animation and games: the ability to navigate around their world in a life-like and improvisational manner. These “steering behaviors” are largely independent of the particulars of the character’s means of locomotion. Combinations of steering behaviors can be used to achieve higher level goals This paper divides motion behavior into three levels. It will focus on the (For example: get from here to there while avoiding obstacles, follow this corridor, join that group of characters...) middle level of steering behaviors, briefly describe the lower level of locomotion, and touch lightly on the higher level of goal setting and strategy. Introduction Autonomous characters are a type of autonomous agent intended for use in computer animation and interactive media such as games and virtual reality. These agents represent a This stands...
Words: 10766 - Pages: 44