...1. Metabolism 2. Thermodynamics 3. Endergonic 4. Exergonic 5. Aerobic respiration 6. Substrate level phosphorylation 7. Glycolysis 8. Krebs cycle 9. Electron transport 10. Glycolysis 11. Pyruvate 12. Oxidative phosphorylation 13. Proteins and fate 14. Glucose 15. Hexose bisphosphate 16. 2 triose phosphate 17. 2 pyruvate molecules 18. Oxaloacetate 19. Decarbonisation 20. Decarboxylation 21. Aerobic 22. Anaerobic WHEEL OF BIO 1. Metabolism: what is metabolism? What is the step by step sequence called? the sum of all chemical reactions that occur in the cell. Metabolic pathway. 2. Thermodynamics: what is thermodynamics? Explain both laws in a few sentences. The science that studies the transfer and transformation of thermal energy....
Words: 649 - Pages: 3
...Cellular respiration is the set of the metabolic reactions and processes that take place in the cells of organisms to convert biochemical energy from nutrients intoadenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions that involve the redox reaction (oxidation of one molecule and the reduction of another). Respiration is one of the key ways a cell gains useful energy to fuel cellular changes. Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and a common oxidizing agent (electron acceptor) is molecular oxygen (O2). Bacteria and archaea can also be lithotrophsand these organisms may respire using a broad range of inorganic molecules as electron donors and acceptors, such as sulfur, metal ions, methane or hydrogen. Organisms that use oxygen as a final electron acceptor in respiration are described as aerobic, while those that do not are referred to as anaerobic.[1] ------------------------------------------------- Aerobic respiration Aerobic respiration (red arrows) is the main means by which both plants and animals utilize energy in the form of organic compounds that were previously created through photosynthesis (green arrow). Aerobic respiration requires oxygen in order to generate energy (ATP). Although carbohydrates,fats, and proteins can all be processed and consumed as reactant, it is the preferred method ofpyruvate breakdown...
Words: 1124 - Pages: 5
...provides significant insight into understanding cellular respiration. This life-sustaining process is important in the restoration of human energy in the body and the balance of chemical when nutrients and energy are extracted from the food eaten. This following is an explanation of some of the fundamental steps of cellular respiration. At the initial stage of cellular respiration is glycolysis (Daempfle, 2016). A pear has protein and vitamins but a high percentage of sugars. At this stage, the glucose in the sugars in the pea is broken down. This process takes place in the cytoplasm of the cell. The glucose molecule of the pear is broken down gradually into two molecules of the pyruvate....
Words: 380 - Pages: 2
...Chapter 9 Cellular Respiration — Objectives — Equation for Cellular Respiration — Electron Carriers and Redox Reactions — Process of Cell Respiration — Glycolysis — Prep Reaction — Krebs Cycle (Citric Acid Cycle) — Electron Transport Chain — Fermentation — The Ingredients — You already know what is needed for Cellular Respiration Food + Oxygen Carbon Dioxide+ Water +ENERGY! C6H12O6 + O2 CO2 +H2O + ATP — Redox Reactions (the shuffling of electrons) • Most of the reactions involved in the process are possible because of the redox reaction of NAD, an electron carrier • Oxidation – a reaction in which a substance loses electrons C6H1206 CO2 • Reduction – a reaction in which a substance gains electrons O2 H2O • Oxidation always occurs with reduction = Redox Reaction — NAD: An Electron Carrier — NAD+ gains an electron to become NAD — NAD gains a hydrogen to become NADH — This can also occur with the electron carrier FAD — Cellular Respiration — The means in which the cell produces energy — Often consists of 4 Steps: — Glycolysis — Prep Reaction — Krebs Cycle (Citric Acid Cycle) — Electron Transport Chain — Glycolysis • Occurs in the cytosol • Begins with a molecule of glucose (a 6 carbon sugar) • Uses the energy of 2 ATP to split the stable glucose into 2 unstable molecules each containing 3 carbons • Now all processes...
Words: 2533 - Pages: 11
...Introduction. a. Background Information. Cellular respiration is the oxidation of organic compounds through cellular metabolism to release energy in a form that is usable by a cell. There are two basic types of cellular respiration aerobic cellular respiration and anaerobic cellular respiration. Aerobic respiration requires the use of oxygen and anaerobic respiration which does not use oxygen. There are several types of anaerobic respiration, most familiar is a process called fermentation. Aerobic respiration is the process by which ATP is produced by cells by the complete oxidation of organic compounds using oxygen . In aerobic respiration oxygen serves as the final electron acceptor, accepting electrons that ultimately come from the energy rich organic compounds we consume. Aerobic Respiration takes place in three stages. Glycolysis, Kreb's Cycle and electron transport chain. Glycolysis is the first step in cellular respiration and all cells regardless of the type of cellular respiration they do are able to carry out glycolysis. Because of this we believe that glycolysis probably arose very early in the evolution of life on the planet. In glycolysis glucose is partially oxidized and broken down into two 3 carbon molecules called pyruvic acid. In the process, glycolysis produced 4 ATP for a net gain of two ATP and two molecules of NADH. Each NADH is carrying two energy rich electrons away from the glucose and these electrons can be used by the cell to do work. After glycolysis...
Words: 809 - Pages: 4
...N C E Review in Advance first posted online on May 11, 2012. (Changes may still occur before final publication online and in print.) S I N Driving the Cell Cycle Through Metabolism Ling Cai and Benjamin P. Tu Annu. Rev. Cell Dev. Biol. 2012.28. Downloaded from www.annualreviews.org by Ecole Polytechnique Federal Lausanne on 06/20/12. For personal use only. Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038; email: benjamin.tu@utsouthwestern.edu Annu. Rev. Cell Dev. Biol. 2012. 28:3.1–3.29 The Annual Review of Cell and Developmental Biology is online at cellbio.annualreviews.org This article’s doi: 10.1146/annurev-cellbio-092910-154010 Copyright c 2012 by Annual Reviews. All rights reserved 1081-0706/12/1110-0001$20.00 Keywords cell growth, cell proliferation, metabolic cycle, growth control, nutrients, yeast Abstract For unicellular organisms, the decision to enter the cell cycle can be viewed most fundamentally as a metabolic problem. A cell must assess its nutritional and metabolic status to ensure it can synthesize sufficient biomass to produce a new daughter cell. The cell must then direct the appropriate metabolic outputs to ensure completion of the division process. Herein, we discuss the changes in metabolism that accompany entry to, and exit from, the cell cycle for the unicellular eukaryote Saccharomyces cerevisiae. Studies of budding yeast under continuous, slow-growth conditions have provided...
Words: 7212 - Pages: 29
...UNIVERSITI TUNKU ABDUL RAHMAN CENTRE FOR FOUNDATION STUDIES FOUNDATION IN SCIENCE MAY 2013 FHSB 1214 BIOLOGY I TUTORIAL 7 CELLULAR RESPIRATION Student’s Guide: At university level, the tutor facilitates student learning without spoon-feeding. Therefore, you are expected to: • Read your textbook, attempt the questions before the tutorial • You may enter the class and sign your attendance after showing your tutor that all tutorial questions have been completed; even if you don’t know how to do, write something - you’re not advised to leave answers blank in the finals. • Write answers on board if you wish to receive tutor feedback (no answer, no feedback) • Be independent: consult textbooks or dictionaries on your own first before asking the tutor • All questions are compulsory. 1 mark may reflect 1 answer point. (No half mark is awarded in the finals marks) Q1. (a) A chemical present in the body which serves as energy source is shown in Figure 3.1. | | | [pic] Figure 3.1 (i) Name the chemical molecule. (1 mark) (ii) Describe how energy is released from this chemical molecule. (1 mark) (b) A process during cellular respiration, in which pyruvate is oxidized into carbon dioxide is shown in Figure 3.2. [pic] Figure 3.2 (i) Name the process described...
Words: 566 - Pages: 3
...catalyst, chemical reactions would still take place, but at a slower rate and the body wouldn’t benefit. All enzymes possess two essential properties. First, enzymes accelerate the rate of chemical reactions without being consumed and/or changed by the reaction. Second, enzymes accelerate reaction rates without changing the chemical equilibrium among reactants and products. Each enzyme has a receptor site, and they are very specific to which molecule (substrate) it will interact with. When a substrate is captured, it will either be combined to create a product or it will be broke down. Fructose is primarily metabolized in the liver. Fructose alone cannot be used as energy. It has to be broke down for use. Enzymes in the liver aid fructose metabolism. Fructose binds to the receptor site on the enzyme fructokinase. This enzyme uses ATP and ADP cycle (energy) to speed up the chemical reaction to convert fructose into Fru-1-p. Next, Fru-1-p will undergo the next reaction and will produce either DHAP or glyceraldehyde by way of the enzyme Aldolase B. (Wikipedia, 2015) As stated above, Aldolase B is active specific to the substrate Fructose-1-Phosphate. Fructose-1-phos is derived from fructose. It’s produced by fructokinase which is available in the liver. It’s converted by aldolase B into dihydroxyacetone phosphate and glyceraldehyde. A deficiency in this enzyme (Aldolase B) caused a disorder called Hereditary Fructose Intolerance. This is a genetic mutation of chromosome 9 which...
Words: 1179 - Pages: 5
...Enzymes are proteins produced by a living organism, and act as efficient catalysts for specific chemical reactions. They are able to convert a specific set of reactants, known as substrates, into a specific set of products. Even at low temperatures, enzymes continue to allow a reaction to occur by lowering the activation energy of the given reaction. Reactions continue to occur even in the absence of enzymes, however due to the slow reaction rates without enzymes, sometimes the effects of the reaction would be considered insignificant. Enzymes are present in all aspects of plant metabolism, with their most important role in being the reduction of oxidative stress caused by photosynthesis and cellular respiration. These processes produce superoxide radicals, such as the anion O2-, which is a highly toxic by-product of metabolism within plant chloroplasts. The anion becomes no longer toxic with the use of the enzyme superoxide dismutase, which...
Words: 436 - Pages: 2
...The Effects of Calorie Restriction on Aging by Jessica Swantek Introduction For ages, humans have been searching for ways to counteract the aging process. The legendary fountain of youth generated much attention in the past, and more recently, thousands of dollars have been spent each year on creams, pills, plastic surgery, and various forms of therapy designed to make one look and feel younger. So far nothing has been proven to reverse or even retard human aging, but scientists are finally catching a glimpse as to a dietary manipulation technique that might work. Preliminary Experimentation In the 1930s, Clive McCay, a scientist at the laboratories at Cornell University, experimented on his rats by feeding them less than they would ordinarily take for themselves, but without depriving them of nutrition to the point of starvation. He found that the food-deprived rats lived considerably longer than expected for a standard rat's life span, and about 33 percent longer than his control group of rats, which were fed as much as they wanted to eat (Weindruch 46). McCay didn't fully understand his results, and although published, they were generally disregarded by the science world (Man Immortal). Years later, Roy Walford, a nutritionist working at the University of California at Los Angeles Medical Center, came across the documentation of McCay's experiments, and, using modern technology and mice instead of rats, picked up where McCay had left off (Man Immortal). Walford found...
Words: 1877 - Pages: 8
...The Effects of Calorie Restriction on Aging by christiano Introduction For ages, humans have been searching for ways to counteract the aging process. The legendary fountain of youth generated much attention in the past, and more recently, thousands of dollars have been spent each year on creams, pills, plastic surgery, and various forms of therapy designed to make one look and feel younger. So far nothing has been proven to reverse or even retard human aging, but scientists are finally catching a glimpse as to a dietary manipulation technique that might work. Preliminary Experimentation In the 1930s, Clive McCay, a scientist at the laboratories at Cornell University, experimented on his rats by feeding them less than they would ordinarily take for themselves, but without depriving them of nutrition to the point of starvation. He found that the food-deprived rats lived considerably longer than expected for a standard rat's life span, and about 33 percent longer than his control group of rats, which were fed as much as they wanted to eat (Weindruch 46). McCay didn't fully understand his results, and although published, they were generally disregarded by the science world (Man Immortal). Years later, Roy Walford, a nutritionist working at the University of California at Los Angeles Medical Center, came across the documentation of McCay's experiments, and, using modern technology and mice instead of rats, picked up where McCay had left off (Man Immortal). Walford found that...
Words: 1876 - Pages: 8
...BIO TEST 2 STUDY GUIDE CHAP. 5 BIOLUMINESCENCE - Light produced from chemical reactions that change chemical energy to light energy, used by invertebrates and fishes to protect themselves from predators. MEMBRANES – phospholipid bilayer, contains embedded and attached proteins, a fluid mosaic model (phospholipids are in constant lateral motion, but rarely flip to the other side of the layer) PHOSPHOLIPIDS – many made from unsaturated fatty acids with kinks in the tail (kinks prevent liquid from packing tightly, keeps them in liquid form) No unsaturated fatty acids = lower permeability i.e. safflower oil With unsaturated fatty acids = higher permeability i.e. butter CHOLESTEROL – found in animal cell membranes, stabilizes membranes at warm temps and keeps membranes fluid at lower temp MEMBRANE PROTEINS – function 1) help maintain cell shape and coordinate changes inside and outside cell via attachments to cytoskeleton and extracellular matrix 2) receptors for chemical messengers from other cells 3) function as enzymes 4) Glycoproteins involved in cell-to-cell recognition 5) may participate in intercellular junctions that attach adjacent cells to each other SELECTIVE PERMEABILITY – small nonpolar molecules move across quickly while charged or polar molecules cross slowly or not at all DIFFUSION – tendency of particles to spread out evenly in a space, particles move from an area high particle concentration to low particle concentration (diffusing down...
Words: 2290 - Pages: 10
...Bio 156 – Midterm Study Guide Lesson One I. Characteristics of Life • List four main characteristics of all living things II. Diversity and Organizing Life • Describe three ways of classifying, or ordering, life on earth. • Given a random ordering of the levels of organization of life, rearrange them into the proper sequence. • Describe the concept "an organism is more than the sum of its parts." • List the six kingdoms of life. • By definition, distinguish between a population, a community, and an ecosystem. • Distinguish between a producer, a consumer and a decomposer. III. Origins of Diversity- Evolution of Life • Define the term "biodiversity. • Define the term "evolution." • Describe how diversity of life can arise by the operation of natural selection. IV. The Nature of Biological Inquiry – Scientific Method • Distinguish between a hypothesis and a prediction • Distinguish between inductive and deductive logic • What is meant by the phrase "potentially falsifiable hypothesis"? • Define the term "control group" and tell the value of a control group in an experiment • Define the term "theory" and tell at what point in a study a hypothesis becomes a theory • Design an experiment to test a given hypothesis, using the procedure and terminology of the scientific method. Try the problem:...
Words: 3446 - Pages: 14
...Abhishek Makhija (ID: 29740568) Word Count: 1650 (for essay only) Metabolism is understood as a sum of biochemical processes that occur in the body in order to sustain life. An important part of metabolism is a process known as cellular respiration, an enzyme catalysed catabolic process that harvests the energy from food and stored reserves. In the body, this energy is stored as chemical energy in ATP (Adenosine Triphosphate) molecules. Hydrolysis of ATP to its more stable products, ADP and Pi, releases this chemical energy (equivalent to 30.5kJ/mol) which can be used for cellular processes. While a number of macromolecules can produce energy in the form of ATP, the body utilises carbohydrates and lipids (stored as triglycerides) its main...
Words: 1660 - Pages: 7
...the process, the enzyme is unchanged and ready to bind to the next substrate. An enzyme acts as a catalyst, something that lowers the energy required to complete a chemical reaction (activation energy) without itself being changed. (Hudon-Miller, 2012) In the case of fructose breakdown, an enzyme called fructokinase is responsible for splitting fructose into fructose 1-phosphate, a six-carbon fructose. Another enzyme called aldolase B splits fructose 1-phosphate into two three-carbon molecules, dihydroxyacetone phosphate (DHAP) and glyceraldehyde. These products are then able to enter the glycolysis pathway to be converted to pyruvate, which is essential for the citric acid cycle and the production of adenosine triphosphate (ATP) for cellular energy. A2. Deficiency in Aldolase B A hereditary deficiency in aldolase B could be caused by mutations in the ALDOB gene. An aldolase B deficiency will prevent the breakdown of fructose past the point of the fructose 1-phosphate stage. This causes fructose-1-phosphate to build up in the liver, and the depletion of phosphates that are needed for ATP production. Therefore, the synthesis of glucose (gluconeogenesis) cannot happen. Furthermore, glycogenolysis (the breakdown of glycogen into glucose) is prevented. If a...
Words: 1388 - Pages: 6