Free Essay

Unit Vectors

In:

Submitted By rockersdash
Words 1128
Pages 5
Calculus and Vectors – How to get an A+

7.4 Dot Product of Algebraic Vectors A Dot Product for Standard Unit Vectors The dot product of the standard unit vectors is given by: r r r r r r i ⋅ i =1 j ⋅ j =1 k ⋅ k =1 r r r r r r i ⋅ j =0 j ⋅k =0 k ⋅i = 0 B Dot Product for two Algebraic Vectors The dot product of two algebraic vectors r r r r a = (a x , a y , a z ) = a x i + a y j + a z k and r r r r b = (b x , b y , b z ) = b x i + b y j + b z k is given by: r r a ⋅ b = a x bx + a y b y + a z bz Proof: r r r r r r r r a ⋅ b = (a x i + a y j + a z k ) ⋅ (bx i + b y j + bz k ) r r r r r r = (a x bx )(i ⋅ i ) + (a x b y (i ⋅ j ) + (a x bz )(i ⋅ k ) + r r r r r r + (a y bx )( j ⋅ i ) + (a y b y ( j ⋅ j ) + (a y bz )( j ⋅ k ) + r r r r r r + (a z bx )(k ⋅ i ) + (a z b y (k ⋅ j ) + (a z bz )(k ⋅ k )
= a x bx + a y b y + a z bz

Proof: r r r r i ⋅ i =|| i || || i || cos 0° = (1)(1)(1) = 1 r r r r i ⋅ j =|| i || || j || cos 90° = (1)(1)(0) = 0

r Ex 1. For each case, find the dot product of the vectors a r and b . r r a) a = (1,−2,0) , b = (0,−1,2) r r a ⋅ b = (1)(0) + (−2)(−1) + (0)(2) = 2 r r r r r r r b) a = −i + 2 j , b = i − 2 j − k r r a ⋅ b = (−1)(1) + (2)(−2) + (0)(−1) = −1 − 4 = −5 r r r r r c) a = (−1,1,−1) , b = −i + 2 j − 2k r r a ⋅ b = (−1)(−1) + (1)(2) + (−1)(−2) = 1 + 2 + 2 = 5

C Angle between two Vectors r r r The angle θ = ∠(a , b ) between two vectors a and r b (when positioned tail to tail) is given by: r r a x bx + a y b y + a z bz a ⋅b cosθ = r r = | a || b | a x 2 + a y 2 + a z 2 bx 2 + b y 2 + bz 2 Notes: r r 1. If cosθ = 1 then a ↑↑ b (vectors are parallel and have same direction). r r 2. If cosθ = −1 then a ↑↓ b (vectors are parallel but have opposite direction). r r 3. If cosθ = 0 then a ⊥ b (vectors are perpendicular to each other or orthogonal).

r Ex 2. For each case, find the angle between the vectors a r and b . r r a) a = (1,−2,−1) , b = (0,−1,2) r r a ⋅b (1)(0) + (−2)(−1) + (−1)(2) cosθ = r r = =0 2 | a || b | 1 + (−2) 2 + (−1) 2 0 2 + (−1) 2 + 2 2 r r ∴θ = cos −1 0 = 90° (a ⊥ b )

r r r r r r b) a = −i − 2k , b = −2 j + k r r a ⋅b (−1)(0) + (0)(−2) + (−2)(1) −2 = cosθ = r r = 5 | a || b | (−1) 2 + 0 2 + (−2) 2 0 2 + (−2) 2 + 12
∴θ = cos −1 (−2 / 5) = 113.58°

4. If cosθ > 0 then 0° < θ < 90° ( θ is an acute angle).

Ex 3. Find a non zero vector perpendicular to each of the r r vectors a = (1,5,−1) and b = (−3,1,2) . r r r Let v = ( x, y, z ) be a vector perpendicular to both a and b . So: r r a ⋅ v = 0 ⇒ x + 5 y − z = 0 (1) r r b ⋅ v = 0 ⇒ −3x + y + 2 z = 0 (2) (1) ⇒ z = x + 5 y (3) (2) ⇒ −3 x + y + 2( x + 5 y ) = 0 ⇒ 11 y = x (3) ⇒ z = 11y + 5 y = 16 y r v = ( x, y, z ) = (11y, y,16 y ) = y (11,1,16) r ∴ v = y (11,1,16), y ∈ R \ {0}

5. If cosθ < 0 then 90° < θ < 180° ( θ is an obtuse angle).

7.4 The Dot Product of Algebraic Vectors ©2010 Iulia & Teodoru Gugoiu - Page 1 of 2

Calculus and Vectors – How to get an A+

Ex 4. A triangle is defined by three points A(0,1,2) , B(1,0,2) , and C (−1,2,0) . Find the angles ∠A of this triangle.

Ex 5. Find the angles between the vector r r r r a = −2i + j + 3k and the coordinate axes. r r r r r a a ⋅i ∠(a , x − axis ) = ∠(a , i ) = cos −1 r r = cos −1 rx || a || || a || || i || r −2 ∴ ∠(a , x − axis ) = cos −1 ≅ 122.31° 14 r r ay r r r a⋅ j ∠(a , y − axis ) = ∠(a , j ) = cos −1 r r = cos −1 r || a || || a || || j || r 1 ∴ ∠(a , y − axis ) = cos −1 ≅ 74.5° 14 r r r r r a⋅k −1 −1 a z ∠(a , z − axis ) = ∠(a , k ) = cos r r r = cos || a || || a || || k || r 3 ∴ ∠(a , z − axis ) = cos −1 ≅ 36.7° 14

AB = (1,0,2) − (0,1,2) = (1,−1,0) AC = (−1,2,0) − (0,1,2) = (−1,1,−2) AB ⋅ AC −1 −1+ 0 −2 −1

cos A =

|| AB || || AC ||
−1

=

2 6

=

12

=

3

∴ ∠A = cos (−1 / 3 ) ≅ 125.26°

Ex 6. For what values of k are the vectors r r a = (k ,−2,3) and b = (2,2k − 6,6) a) perpendicular (orthogonal)? r r a ⋅ b = 0 ⇒ 2k − 2(2k − 6) + 18 = 0 ⇒ 2k − 4k + 12 + 18 = 0 ⇒ 30 = 2k ⇒∴ k = 15 b) parallel (collinear)? r r a = λb ⇒ (k ,−2,3) = λ (2,2k − 6,6) ⇒
⎧k = 2λ ⎪ ⎨− 2 = λ ( 2 k − 6) ⎪3 = 6λ ⇒ λ = 0.5 ⎩ k = 2(0.5) = 1 − 2 = 0.5(2 × 1 − 6) ⇒ −2 = −2 (true) ∴k = 1

c) in opposite direction? r r The vectors a and b are in opposite direction if r r there exists λ < 0 such that a = λb . But, according r r to part b) if a = λb then λ = 0.5 > 0 . r r Therefore the vectors a and b cannot be in opposite direction for any real value of the parameter k . Reading: Nelson Textbook, Pages 379-385 Homework: Nelson Textbook: Page #2c, 6d, 7a, 10, 13, 14, 18, 19

7.4 The Dot Product of Algebraic Vectors ©2010 Iulia & Teodoru Gugoiu - Page 2 of 2

Similar Documents

Free Essay

Maths

...Given any two points in space, how would you find the vector from one point to another point? b) What is the relationship of this vector with the straight line that passes through the two points? 3. What do you understand by the term “normal vector to a flat plane”? What is/are the angle/angle(s) between the normal vector and the flat plane? Describe the relationship between any line on a plane with respect to the normal vector of the flat plane. Exploring and Understanding 4. Figure 1 Figure 1 above shows three points (i.e. A, B and C) lying on the same plane. a) From the information given, find vectors , and . = (0 3 -5) = ( b) From what you have discussed in Q2 and Q3, what is the relationship between the normal vector to the flat plane and the three vectors , and ? The normal vector is always perpendicular to the flat plane. c) What can you conclude about any vectors that lie on the plane with the normal vector to the plane? All perpendicular to the plane. Dot Product 5. Similar to multiplication of two scalar quantities, we can also multiply two vectors. One of the ways to multiply two vectors is by taking the dot product of these two vectors as shown below: If and , then a. * Find the dot product between vectorand . -30 b. Given that vector e is zero vector, i.e., find the dot product of vector c and e, and vector d and e. What conclusion can you draw from here? All...

Words: 984 - Pages: 4

Free Essay

Vector

...VECTOR FUNCTIONS VECTOR FUNCTIONS Motion in Space: Velocity and Acceleration In this section, we will learn about: The motion of an object using tangent and normal vectors. MOTION IN SPACE: VELOCITY AND ACCELERATION Here, we show how the ideas of tangent and normal vectors and curvature can be used in physics to study:  The motion of an object, including its velocity and acceleration, along a space curve. VELOCITY AND ACCELERATION In particular, we follow in the footsteps of Newton by using these methods to derive Kepler’s First Law of planetary motion. VELOCITY Suppose a particle moves through space so that its position vector at time t is r(t). VELOCITY Vector 1 Notice from the figure that, for small values of h, the vector r(t h) r(t ) h approximates the direction of the particle moving along the curve r(t). VELOCITY Its magnitude measures the size of the displacement vector per unit time. VELOCITY The vector 1 gives the average velocity over a time interval of length h. VELOCITY VECTOR Equation 2 Its limit is the velocity vector v(t) at time t : r(t h) r(t ) v(t ) lim h 0 h r '(t ) VELOCITY VECTOR Thus, the velocity vector is also the tangent vector and points in the direction of the tangent line. SPEED The speed of the particle at time t is the magnitude of the velocity vector, that is, |v(t)|. SPEED This is appropriate because, from Equation 2 ...

Words: 3233 - Pages: 13

Free Essay

Array List

...by beginners, just starting to code using Java. The Array and ArrayList are both used to store elements, which can be a primitive or an object in the case of ArrayList in Java. A main difference between the ArrayList and an Array in Java would be the static nature of the Array, but the ArrayList has a dynamic nature. Once an Array is created, programmers cannot change the size of it, but an ArrayList will be able to re-size itself at any time. There is one more notable difference between ArrayList and an Array (Paul, 2012). The Array is a core part of Java programming that has a special syntax and a semantics support within Java. An ArrayList is a part of the collection framework of popular classes, such as HashMap, Hashtable, and Vector. There are six more differences between Array and ArrayList which will be listed in numeral order: 1. First and Major difference between Array and ArrayList in Java would be that Array is a fixed length data structure, while ArrayList is a variable length collection class. 2. Another difference is that an Array cannot use Generics, due to it cannot store files, unlike the ArrayList that allows users to use Generics to ensure storage. 3. Programmers can compare the Array vs. ArrayList on how to calculate length of Array or size of an ArrayList. 4. One more major difference within an ArrayList and Array is that programmers cannot store primitives in Arraylist, which can only store objects. Array can contain both an object...

Words: 395 - Pages: 2

Free Essay

Safmkmsfk

...[pic] (____)2. El valor de la pendiente de la recta tangente a la curva [pic] ; [pic] , en [pic] es 75. (____) 3. La integral que representa la longitud de arco de la curva [pic] ; [pic] , en el intervalo [pic] es [pic] (____) 4. La representación polar de la ecuación [pic] es [pic] (____) 5. El producto vectorial de dos vectores u [pic] v = 0 , si y solo si u y v son múltiplos escalares uno del otro. (____) 6. El dominio de la función [pic] es [pic] (____) 7. Considera la función [pic], el resultado de [pic] es[pic]. (____) 8. [pic] (____) 9. Si [pic], entonces [pic] (____) 10. La derivada direccional de la función [pic], en el punto P(1,[pic] y en dirección del vector v = -i es [pic] (____) 11. Multiplicación de Números Complejos: ( 2 + 3i)(4 - 5i) = 23 + 2i (____) 12. El módulo [pic] y el argumento [pic]del número z = -4+i son: [pic] , [pic] Instrucciones. En esta sección del examen se te pide que incluyas todos los procedimientos que realizas para llegar a la solución de los ejercicios, deben estar escritos en forma limpia, clara y ordenada. En caso de que los procedimientos no avalen tu...

Words: 692 - Pages: 3

Free Essay

Masa de Los Planetas Y Las Leyes de Kepler

...Gravedad (m/s) | Mercurio | 3.3x10 23| 4870| 3.72 | Venus | 4.87x1024 | 12100 | 8.82 | Tierra | 5.98x1024 | 12756 | 9.8 | Marte | 6.4x1023 | 6670 | 3.72 | Júpiter | 1.9x1027 | 143760| 23.13 | Saturno | 5.68x1026 | 120420| 9.01 | Urano | 8.7x1025 | 51300 | 8.72 | Neptuno| 1x1022 | 40500 | 10.97 | LAS LEYES DE KEPLER Las leyes de Kepler fueron enunciadas por Johannes Kepler para describir matemáticamente el movimiento de los planetas en sus órbitas alrededor del Sol. Aunque él no las describió así, en la actualidad se enuncian como sigue: Primera ley (1609): Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas. El Sol se encuentra en uno de los focos de la elipse. Segunda ley (1609): el radio vector que une un planeta y el Sol barre áreas iguales en tiempos iguales. La ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio). En el afelio y en el perihelio, el momento angular  es el producto de la masa del planeta, su velocidad y su distancia al centro del Sol. Tercera ley (1618): para cualquier planeta, el cuadrado de su período orbital es directamente proporcional al cubo de la longitud del semieje de su órbita elíptica. Donde, T  es el periodo orbital (tiempo que tarda en dar una vuelta alrededor del Sol), R  la distancia media del planeta con el Sol y C  la constante de proporcionalidad...

Words: 311 - Pages: 2

Free Essay

Maths

...VECTORS (I) Introduction Quantities with magnitude but without direction are called scalars. Examples: distance, speed, and mass. Quantities with both magnitude and direction are called vectors. Examples: displacement, velocity, and weight. Geometrical Representation of Vectors A vector can be represented with a line segment with an arrowhead indicating its specific → direction. Thus the displacement from the point A to the point B is the vector AB , represented by the straight line AB in the direction from A to B. B A Magnitude of a vector The magnitude of the vector AB , denoted by AB , is the length (or distance) AB. Negative Vectors The negative vector – a has the same magnitude as a but is in opposite direction of a . Thus → → → → – BA = AB . Zero Vectors A zero vector is any vector of zero magnitude, denoted by 0 . [Note: 0 ≠ 0] Unit Vector ˆ A unit vector is a vector with magnitude 1. A unit vector in the direction of a is denoted by a ˆ where a = a . a Page 1 Position Vector Position vectors give the location of points with respect to a fixed point of reference (commonly known called the origin). Usually it is equivalent to the coordinates of a point. Equal Vectors → → Two vectors are equal if they have the same magnitude and direction. Thus if AB = PQ , then  AB  =  PQ  and AB // PQ . → → → → Example: The position vectors of A, B and C are a = 2i + 3j – 4k, b = 5i – j + 2k and c = 11i + j + 14k. Find the position...

Words: 1015 - Pages: 5

Free Essay

Nanotubos de Carbon

...Los Nanotubos de Carbono Galo Fabara Alex Ronquillo Jon Yugcha galoartur_123@hotmail.com alexhino.sonic@hotmail.com jonyugcha@hotmail.com Universidad de las Fuerzas Armadas ESPE Carrera de Ingeniería Electromecánica Latacunga - Ecuador Resumen Un nanotubo de carbono es una muy pequeña configuración de átomos de este elemento en forma cilíndrica. En este documento se hace una revisión de la estructura y principales características de estos elementos, así como de su descubrimiento y las distintas aplicaciones, actuales y futuras, en las que pueden ser utilizados, además se hace mención de los distintos inconvenientes actuales y de cómo el avance de esta tecnología podría cambiar drásticamente el futuro. __ Palabras Clave -- Configuración, Nanotubos, Características, Aplicaciones, Futuro. __ Abstract -- A carbon nanotube is a very small set of atoms of this element in a cylindrical shape. In this paper we review the structure and main characteristics of these elements, their discovery and the current and future applications of this elements, also makes mention of the various current problems and how this technology will be able to change drastically the future. . Keywords -- Configuration, Nanotubes, Features, Applications, Future. 1. Introducción La nanotecnología promete ser la revolución tecnológica de los años venideros por ello es de vital importancia el notar como se han mejorado las distintas características de los materiales con el uso de la...

Words: 3248 - Pages: 13

Premium Essay

Ssss

...Chapter I Background of the Study Introduction Cases of Dengue caused by insects especially mosquitoes are increasing year by year. Dengue is a disease caused by any 1 of 4 related dengue viruses. The viruses are transmitted to humans by the bite of an infected mosquito. There are 2 types of dengue, with dengue hemorrhagic fever being the more severe, and sometimes fatal, though much less common form of the infection. Dengue is endemic in at least 100 countries such as Asia, the Pacific. Dengue cannot be spread directly from person to person, so you can’t catch it from shaking hands, a sneeze, a doorknob or a toilet seat. Dengue is spread from person to person by the bite of an infected mosquito. The mosquito becomes infected with dengue virus when it bites a person who already has the dengue virus in their blood, typically in the time frame just before the infected person starts to have symptoms of the disease. About one week after biting an infected person, the mosquito can transmit the virus while biting a healthy person. A single infected mosquito can infect multiple people, who in turn can infect multiple mosquitoes — and the cycle continues. A bite from a female carrier mosquito can cause you fever, often as high as 104 - 105 degrees Fahrenheit, fatigue, headache, and swollen nymph nodes and might lead to death if it was not treated immediately. A total of 54,659 dengue cases were reported nationwide from January 1 to August 14, 2010, much higher than the recorded...

Words: 815 - Pages: 4

Free Essay

Optimization Algorithms

...Universidad de Puerto Rico en Bayamón Departamento de Español Complejidad, Rendimiento y Utilización Algorítmica Artículo escrito por: Hector E. Maisonet Guzmán – 841-10-3930 Curso ESCO 4005 Sección LJ1 PhD. José A. Rodríguez Valentín 21 de mayo de 2014 COMPLEJIDAD, RENDIMIENTO Y UTILIZACIÓN ALGORÍTMICA Donald Knuth indicó: “Un algoritmo debe ser visto para ser creído”. Por lo tanto se define un algoritmo como un conjunto prescrito de instrucciones o reglas bien definidas, ordenadas y finitas, las cuales permiten realizar una actividad mediante una serie de pasos sucesivos que no generen dudas a quien deba realizar dicha actividad. Estas actividades tienen como estado; uno inicial y uno de entrada, siguiendo una serie de pasos para llegar a su estado final y obtener una solución. Los algoritmos son independientes de los lenguajes de programación. En cada problema el algoritmo puede escribirse y luego ejecutarse en un lenguaje de programación diferente. El algoritmo es la infraestructura de cualquier solución, escrita luego en cualquier lenguaje de programación. Muchos autores han señalado a estos conjuntos de instrucciones como soluciones a problemas abstractos o soluciones a problemas de cálculo. Los algoritmos pueden ser expresados de diferentes maneras, como por ejemplo: lenguaje natural, seudocódigo, flujogramas, lenguaje de programación, entre otros. Cabe destacar que la expresión de un algoritmo mediante el uso del lenguaje natural puede contener...

Words: 4208 - Pages: 17

Free Essay

EvolucióN Del Foda

...EVOLUCIONES DINÁMICAS EN EL DIAGRAMA FODA Otero, Dino; Gache Fernando Luis República Argentina e-mail: gachef@frba.utn.edu.ar RESUMEN La factibilidad comercial de la mayoría de los proyectos de negocios es altamente dependiente del factor confianza, el que puede ser analizado como la combinación de dos condiciones casi fundamentales para su concreción. Estas son las del entorno en que va a desarrollar sus actividades, entendiendo por tal, la industria y el segmento industrial correspondiente a la actividad a realizar y las propias de la empresa, grupo o institución que va a llevarlas a cabo. Por esta razón cuando se quiere realizar un proyecto de negocios con una probabilidad importante de éxito, es vital iniciarlo conociendo tanto la industria en que va a estar inmersa, como las fortalezas y debilidades de la empresa, (institución o grupo) que lo va a hacer efectivo. En un trabajo anterior (Otero Gache,2005), se han analizado dichas variables estableciendo un modelo práctico y a la vez sencillo de escenarios, que puesto a disposición de los empresarios PyMEs, intenta hacer un poco más sencillo el aventurarse en el fascinante mundo de los negocios. Ahora, profundizando el análisis realizado en dicho trabajo, vamos a hacer un exhaustivo análisis de la “empresa” y de su “entorno”, a efectos de poder determinar cómo evolucionan las variables con más probabilidades de hacer que dicho proyecto sufra variaciones groseras, y por tanto difíciles de controlar. PALABRAS CLAVES: PyME...

Words: 4373 - Pages: 18

Premium Essay

Disease

...Disorders and Diseases Affecting the Lymphatic System Brittany Drake ITT Technical Institute Disorders and Diseases Affecting the Lymphatic System Filarises is a parasitic disease that is caused by a worm so tiny it can only be viewed by a microscope. The body’s lymph system is responsible for maintaining the body’s balance of fluid as well as fight infections. Filarises is spread from person to person via mosquito bites. When an infected person with filarises is bitten by a mosquito the circulating worms from inside the infected persons blood enters the mosquito and carried to another person that is bit by the same mosquito. Once the person is bitten by the mosquito the worms travel to the lymph vessels. Once the worms reach the lymph vessels they mature into adults and live for five to seven years. Repeat mosquito bites over several months are needed to get filariases. This diseases is most common in tropical or subtropical areas. This infection will show up on a blood test as most that suffer from this disease are asymptomatic. Some people may develop lymphedema. Fluid collection and swelling is a result of the improper functioning of the lymph system. Usually this takes place in the legs however the genitalia, arms and breasts can be affected as well. People affected with this disease will have more bacterial infections in the skin as well as the lymph system. Hardening and thickening of the skin develops. This is known as elephantiasis. Men can develop hydrocele...

Words: 1241 - Pages: 5

Free Essay

Student

...An Introduction to R Notes on R: A Programming Environment for Data Analysis and Graphics Version 3.2.0 (2015-04-16) W. N. Venables, D. M. Smith and the R Core Team This manual Copyright c Copyright c Copyright c Copyright c Copyright c is for R, version 3.2.0 (2015-04-16). 1990 W. N. Venables 1992 W. N. Venables & D. M. Smith 1997 R. Gentleman & R. Ihaka 1997, 1998 M. Maechler 1999–2015 R Core Team Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team. i Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Introduction and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 2 Intrinsic attributes: mode and length . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

Words: 8172 - Pages: 33

Free Essay

The Thing

...UNIDAD IV:ESPACIOS CON PRODUCTO INTERNO Objetivos particulares: Identificar los espacios con producto interno Comprobar la ortogonalidad entre vectores Definir bases ortonormales Verificar la ortogonalidad en una transformación lineal Contenido programático: Espacio con producto interno Producto interno. Definición y ejemplo El producto interno estándar en dimensión tres (3) Ortogonalidad Conjuntos ortonormales. Definición Bases ortonormales Proceso de ortonormalización de Gram- Schmidt Matrices ortogonales Complemento transformaciones ortogonales Producto interno Los elementos fundamentales que constituyen un espacio vectorial son: Un conjunto de vectores, y conjunto de escalares y dos operaciones: Adición y producto por un escalar. Tanto la definición de espacio vectorial como sus consecuencias inmediatas (teoremas) se refieren a propiedades que podríamos denominar algebraicas. Existen diversas formas de introducir en un espacio vectorial dichos conceptos. Uno de ellos consiste en definirlos a partir de una operación conocida como producto interno Producto interno Un producto interior dentro de un espacio vectorial V es una función que asocia a cada par ordenado de vectores u y v en V, un número real único < u,v >, llamado producto interno de u y v, y que satisface los siguientes axiomas para todos u, v y w en V y para todo escalar c : 1. 2. 3. 4. 5. < u,v > = < v,u > < u + v , w > = < u, w > + < v , w > < cu, v >...

Words: 898 - Pages: 4

Free Essay

Atomos

...Universidad del Valle de Guatemala Materiales 1 Raúl Eduardo Loarca Velásquez Sección 40 Celdas Cristalinas Andrea Elizabeth Román Lima, 14038 Bierley García Molina, 13723 Javier Estuardo Pimentel Cifuentes, 13491 Guatemala 21 de marzo de 2015 ÍNDICE Introducción……………………………………………………………………………………………………….. 3 Objetivos…………………………………………………………………………………………………………….. 4 Marco teórico de las celdas cristalinas………………………………………………………………… 10 Marco práctico de las celdas cristalinas………………………………………………………………. 11 Conclusiones………………………………………………………………………………………………………. 12 Recomendaciones………………………………………………………………………………………………. 12 Bibliografía…………………………………………………………………………………………………………. 13 Anexos……………………………………………………………………………………………………………….. 14 INTRODUCCIÓN Objetivos Generales * Conocer la forma de los distintos enlaces de las celdas cristalinas. Objetivos Específicos * Determinar las distintas características que comprenden las celdas cristalinas. * Diseñar la forma de diferentes celdas cristalinas y comprender sus propiedades. * Analizar (como la manera en la que están unidas afecta en la solidez del material). Marco teórico de las celdas cristalinas La estructura cristalina es la forma sólida de cómo se ordenan y empaquetan los átomos, moléculas, o iones. Estos son empaquetados de manera ordenada y con patrones de repetición que se extienden en las tres dimensiones del espacio. Las celdas unitarias se pueden definir de forma muy simple a partir...

Words: 743 - Pages: 3

Free Essay

Oral

...problemas. | EJE TRANSVERSAL:conceptual Procedimental o calculativa (P) Procedimientos, manipulaciones simbólicas, algoritmos,Cálculo mental. Modernización (M). La capacidad de representar un problema no matemático (la mayoría delas veces) | EJE INSTITUCIONAL | AUTOEVALUACION sobre 100% | BLOQUE N° 1TÍTULO DEL BLOQUE/MÓDULO:Inducción matemática | OBJETIVO DEL BLOQUE/MODULO: * Reconocer y utilizar métodos de demostración, en particular la inducciñon matemática. * Aplicar las propiedades para demostrar proposiciones acerca de números naturales | | ESTANDARES DE APRENDIZAJE.DOMINIO A. Maneja con criterio el conocimiento sobre funciones y progresiones para modelizar problemas.DOMINIO B: Expresa un vector como la combinación lineal de otros dos. Aplica operaciones con vectores y matrices en la solución de problemas de física y geometría. DOMINIO C: Recopila datos unidimensionales y bidimensionales, y los procesa a través de diagramas estadísticos | 2. COMPONENTE CURRICULAR DESTREZA CON CRITERIO DE DESEMPEÑO | ESTRATEGIAS METODOLOGICAS | RECURSOS | INDICADORES...

Words: 11081 - Pages: 45