...Concrete + Fly ash Properties of the material Shapes Fly ash consists mainly of hollow spherical shapes which creates a ball bearing effect in the mix, improving workability without increasing water requirements. Fly ash also improves the pump-ability of concrete by making it more cohesive and less prone to segregation. The spherical shape improves the pump-ability by decreasing the friction between the concrete and the pump line. In addition, some fly ashes have been shown to significantly decrease heat generation as the concrete hardens and strengthens. Fly ash, as do all pozzolanic materials, generally provide increased concrete strength gain for much longer periods than mixes with Portland cement only. Durability The biggest reason to use...
Words: 1105 - Pages: 5
...3. Materials This section will describe the materials that were used in the laboratory experiments that will be presented in this thesis. 3.1 Portland CEMENT Portland cement is composed of a combination of limestone and either shale, clay, sand, or iron. These materials are ground and blended together and heated in a kiln from 2600o F to3000o F. This causes the materials to fuse together to create clinker. Cooled clinker is then ground with gypsum (CaSO4*2H20). The addition of gypsum controls the aluminate chemistry and the setting time of cement concrete. Portland cement reacts with water to form a paste that binds the aggregate particles together to form concrete. Ordinary Portland Cement (OPC) of grade 53 is used in the project. The cement...
Words: 1043 - Pages: 5
...Abstract The aim of the Project is to find out the geo-engineering properties of fly ash, which can act as a stabilizer to many soils in geo-engineering field. The project describes the use of local fly ash in construction industry in a way to minimize the industrial waste. Their been serious shortage of natural material, which are used in Highway or Earth dam construction. Due to soil excavation, deforestation occurs which affects the bio-diversity. Industrial waste such as fly-ash, slag etc can be effectively used in soil stabilization. Several geo engineering Labrotory experiments were performed on fly ash to determine its properties, which may be used in road construction, earth dam construction, soil stabilization etc. If these materials can be used in highway or dam construction, it will be a great effort in minimizing the industrial pollution. Fly ash was collected from captive power plant from the dump pad of Rourkela steel plant. These are stored in air tight container after being oven-dried. Experiments such as determination of compaction properties, CBR analysis, Un-confined compressive strength test, permeability etc are done in order to determine the geo-engineering properties of fly ash, which can taken account in the construction field. A brief comparison is made between fly ash and other soil properties which are used as sub-grade, base in Highway construction. Introduction Electricity is the key for development of any country. Coal is a major source of...
Words: 11302 - Pages: 46
...attempts to increase the utilization of fly ash to partially replace the use of Portland cement in concrete are gathering momentum. Most of this by-product material is currently dumped in landfills, creating a threat to the environment. Instead, the source of materials such as fly ash, that are rich in Silicon (Si) and Aluminium (Al), are activated by alkaline liquids to produce the binder. Keywords: geopolymer; fly-ash, rice-husk ash Introduction: Geopolymer is used as the binder, instead of cement paste, to produce concrete. The geopolymer paste binds the loose coarse aggregates, fine aggregates and other unreacted materials together to form the geopolymer concrete. The manufacture of geopolymer concrete is carried out using...
Words: 1258 - Pages: 6
...CONCRETE ADMIXTURES F a a o D E O g n ee in .c rs m o Paper Presented By MAHENDERAN (Final B.Tech civil) Mahi_andaman@yahoo.com L.SIREESHA (Final B.Tech civil) sirichandan@yahoo.com ABSTRACT: Admixtures are ingredients other than water, aggregates, hydraulic cement, and fibers that are added to the concrete batch immediately before or during mixing, in nominal quantities. A proper use of admixtures offers certain beneficial effects to concrete, including improved quality, acceleration or retardation of setting time, enhanced frost and sulphate resistance, control of strength development, improved workability, and enhanced finishability. Admixtures vary widely in chemical composition, and many perform more than one function. Two basic types of admixtures are available: chemical and mineral. All admixtures to be used in concrete construction should meet specifications; tests should be made to evaluate how the admixture will affect the properties of the concrete to be made with the specified job materials, under the anticipated ambient conditions, and by the anticipated construction procedures. Materials used as admixtures included milk and lard by the Romans; eggs during the middle ages in Europe; polished glutinous rice paste, lacquer, tung oil, blackstrap F a a molasses, and extracts from elm soaked in water and boiled bananas by the Chinese; and in Mesoamerica and Peru, cactus juice and latex from rubber plants. The Mayans...
Words: 3562 - Pages: 15
...A Project report on “HIGH PERFORMANCE CONCRETE” BY ABHISHEK AGARWAL -10/ICE/005 ABHISHEK VISHWAKARMA -10/ICE/009 SACHIN TIWARI -10/ICE/042 VAIBHAV KUMAR -10/ICE/055 VISHWAS MISHRA -10/ICE/064 UTKARSH YADAV -10/ICE/065 VIKASH VASHISHTH -10/ICE/067 Under the Guidance of- Dr. SHILPA PAL Gautam Buddha University SCHOOL OF ENGINEERING GAUTAM BUDDHA UNIVERSITY ACKNOWLEDGEMENT We take immense pleasure in thanking Dr. Shilpa Pal for having permitted us to carry out this project work. We wish to express our deep sense of gratitude to Er. Lallan Sharma (Quality Control Engineer) in SIMPLEX INFRASTRUCTRE Pvt. Ltd. and Mr. Avnish Nagar (Quality control Manager) in J.P SPORTS CITY School of Engineering, Gautam Buddha University for his able guidance and useful suggestions, which helped me in completing the project work, in time. Finally, yet importantly, we would like to express my heartfelt thanks to our beloved parents for their blessings, friends/classmates for their help and wishes for the successful completion of this project. INDEX TOPIC ...
Words: 4531 - Pages: 19
...half-cell potential of reinforced concrete exposed to carbon dioxide and chloride environment Kitipoom Chansuriyasak 1, Chalermchai Wanichlamlart 2, Pakawat Sancharoen2, Waree Kongprawechnon3 and Somnuk Tangtermsirikul1,2 1 School of Civil Engineering and Technology, 2 Construction and Maintenance Technology Research Center (CONTEC), 3 School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120 Thailand. Received 25 December 2009; Accepted 3 August 2010 Abstract The objective of this study is to investigate the effect of concrete mix proportion and fly ash on half-cell potential (HCP) and corrosion current density (icorr) of steel in concrete exposed to different environments. Reinforced concrete specimens with different fly ash replacement percentages and water to binder ratios (w/b) were studied in this paper. The specimens were subjected to two highly corrosive environments which are chloride and carbon dioxide. HCP and icorr were used to monitor the corrosion process. Results of this study demonstrate that both HCP and icorr indicated the same tendency, especially for corroded specimens after being exposed to chloride. This means that HCP can be used to inspect corrosion of steel due to chloride. In case of carbonation, concrete specimens with fly ash showed more negative potential values than concrete without fly ash. However, chloride exposure test...
Words: 1271 - Pages: 6
...SYNOPSIS ON DEVELOPMENT AND PERFORMACE OF CONCRETE USING SUPPLEMENTARY MATERIALS SUBMITTED BY: RAGHAV M Tech (STRUCTURAL ENGINEERING) DEVELOPMENT AND PERFORMACE OF CONCRETE USING SUPPLEMENTARY MATERIALS OBJECTIVE: 1.The main objective of this study is to investigate the use of various supplementary materials for preparing concrete. 2.To compare...
Words: 1309 - Pages: 6
...2007 Vol.2 No. 6 Utility bonanza from dust F ly ash is one of the numerous substances that cause air, water and soil pollution, disrupt ecological cycles and set off environmental hazards. environmental dangers. Both in disposal, as well as in utilization, utmost care has to be taken, to safeguard the interest of human life, wild life, and environment. FLY ASH FLY The combustion of powdered coal in thermal power plants produces fly ash. The high temperature of burning coal turns the clay minerals present in the coal powder into fused fine particles mainly comprising aluminium silicate. Fly ash produced thus possesses both ceramic and pozzolanic properties. When pulverised coal is burnt to generate heat, the residue contains 80 per cent fly ash and 20 per cent bottom ash. The ash is carried away by flue gas collected at economiser, air pre-heater and ESP hoppers. Clinker type ash collected in the water-impounded hopper below the boilers is called bottom ash. The World Bank has cautioned India that by 2015, disposal of coal ash would require 1000 square kilometres or one square metre of land per person. Since coal currently accounts for 70 per cent of power production in the country, the Bank has highlighted the need for new and innovative methods for reducing impacts on the environment. The process of coal combustion results in fly ash. The problem with fly ash lies in the fact that not only does its disposal require large...
Words: 4413 - Pages: 18
...PROGRAM 1. Materials 43 grade OPC cement having specific gravity of 3.15% was used for cement concrete. For geopolymer concrete siliceous pulverized fly ash obtained from Hi-Tech private limited, Tuiticorin, India, having a specific gravity of 2.2 and low calcium, ground granulated blast furnace slag of specific gravity 2.9 obtained from the, JSW Steel Limited, Salem. India, were used as the source material.Table 1 gives the oxide composition. 97% purity sodium hydroxide (NaOH) pellets and sodium silicate (Na2SiO3) with 28.13% Na2O, 28.13% SiO2, and 40.74% H2O were used. For the NaOH solution, NaOH pellets were mixed with distilled water and stirred until all the pellets were completely dissolved. The solution was then left for...
Words: 732 - Pages: 3
...Private power plants Ash utilization MoEF Notification (3rd Nov 2009) on Fly Ash Utilisation has instructed Operating Coal/Lignite based Power Plants to Achieve the Target for 100% Coal Ash Utilisation S. No. Percentage Utilisation of Coal Ash Generation Target Date from the Date of issue of this Notification 1. At least 50% One Year 2. At least 60% Two Years 3. At least 75% Three Years 4. At least 90% Four Years 5. 100% Five Years A. TATA POWER Trombay, Jojobera and Maithon thermal power plants achieved 100% fly ash utilization whereas CGPL achieved 25% in its first year of full operation, which is in line with regulatory requirements. Innovations 1. Ultra-Thin White Topping technology: CTTL, a wholly owned subsidiary of Tata Power, in association with BASF, has developed a concrete mix which can help replacing 40% of cement with Fly Ash. The polyheed admixture developed for Trombay Thermal Station Fly Ash has been used in a demonstration project. A demonstration road stretch of 3.5 m x 100 m has been laid. This road has lower absorption of solar energy (higher reflectivity) and is expected to have a longer service life. 2. Bottom ash based brick making: Bottom ash based bricks were manufactured successfully. A patent on the same has been filed. Technologies Being Reviewed / Adopted Fly ash based plaster sand: Additives are added into fly ash and mixture is processed to manufacture ceramic sand through an already patented process. This sand is well...
Words: 1615 - Pages: 7
...Concrete is the most widely used material in the world. It accounts for roughly 70% of all construction materials globally. Each year about “7 cubic kilometers of concrete are made” (The Civil Engineer). It is a $35 billion industry with more than two million workers in the United States alone (The Civil Engineer). Concrete is made up of cement, water, and chemical admixtures. Portland cement is the most common cement used in concrete. Fly ash, slag cement, sand, or gravel limestone may also be used to create concrete. Due to hydration, the concrete solidifies and hardens after mixing with the water. Concrete is used to make parking structures, roads, foundations, walls, and many other structures (Encyclopedia Britannica Online Academic Edition). Even though concrete is already such a highly used material, there is still room for improvements. Traditional concrete can have many problems including failure under heavy loads, lack of durability, and the cost of repair resulting from failure. Concrete can also be very heavy at times. For example, when designing a bridge the large weight of the asphalt must be accounted for in order to design the supports. In the 1990’s, a group of researchers from the University of Michigan discovered a new form of concrete called bendable concrete. This new mixture is also referred to as Engineered Cementous Composite (ECC). This was achieved by adding stretchable fibers that are embedded in the concrete. Dr. Victor Li was the...
Words: 1324 - Pages: 6
...Lightweight Geopolymer Concrete with EPS Beads Introduction This research paper is mainly concerned with the production of lightweight geopolymer concrete using expanded poelystyrene (EPS) beads as part replacement of the normal aggregates for precast building components as well as in sandwich construction, the information on properties of lightweight geopolymer concrete with different percentage of EPS bead aggregate is given and it is also compared with the with the existing guidelines (ASTM C 90). Furthermore, performance of EPS/geopolymer concretes is discussed in relation to their flammability and insulation characteristics (Techniques used; DSC (Differential scanning calorimetry, based on heat difference), TG/DTA (Differential thermal analysis, based on temperature difference) and FTIR (Fourier transform infrared spectroscopy) under quasi-isothermal mode). Geopolymers as an alternative to ordinary Portland cement for concrete is used because it has high early compressive strength, low drying shrinkage, good fire resistance and superior durability in aggressive environment compared to Portland cement concrete. Geopolymers are produced through reactions between the alumino-silicate reactive materials (metakaoline, slag, fly ash etc) and their strength and microstructural properties are studied under fresh and hardened states. The selection of EPS bead aggregate was made mainly due to its low density, closed cellular structure, hydrophobic and energy absorbing characteristics...
Words: 945 - Pages: 4
...mixing fresh concrete. With an understanding of concrete properties and the means of which to calculate these properties the students can demonstrate their knowledge in a laboratory environment. The students are expected to achieve this task by designing and mixing a batch of concrete based on specific requirements provided in the ASTM C231. The procedure requirements include strength, slump, air entrainment, volume, aggregate type and size. Students are split into groups and each group is assigned specific parameters to base their designs on. These designs and parameters are used to complete the concrete mixing procedures. The specific parameters for Thursdays Lab Group # 1 were a compressive strength of 8000 psi (55 MPA), limestone aggregate with a maximum size of ¾”. The mixture required moderate air entraining, a supplementary cementitious material called fly ash, and a target slump of 3”- 4”. This design should produce a mixture that is relatively high in strength, durability and workability. The assumption was made that the aggregate properties calculated we accurately described. A sample of this mixture design was created in the lab using the equipment provided. The mixture was then subjected to testing using the slump cone test. The ASTM C231 requires the sample to be tested using an air pot to determine the air content. However, the air pot failed to preform and we were provided with the air content value to aid in continued calculations. The concrete was then placed...
Words: 1435 - Pages: 6
...Market Landscape and Policy Analysis Fly Ash U)liza)on in China October 2010 1. China fly ash utilization overview 2. Drivers of fly ash utilization and relevant policy development trends 3. Big 5 independent power producers China fly ash u5liza5on overview: a long history of fly ash u5liza5on 1950s China begins u5lizing fly ash, mainly in the construc5on sector as concrete admixture, and par5cularly in the construc5on of hydropower sta5ons China begins u5lizing fly ash as walling material, including blocks, wallboard, baked bricks, and ceramsite The government starts rolling out a series of incen5ve policies for fly ash u5liza5on in various sectors such as building materials, construc5on, backfill, agriculture, etc. The State Development and Planning Commission1 releases the “China Fly Ash U5liza5on Technology Policy and Implementa5on Roadmap” “Administra5ve Measures of Fly Ash U5liza5on” is released by State Economic and Trade Commission2, Ministry of Electric Power Industry3...
Words: 3192 - Pages: 13