Free Essay

Reactor Aerobio

In:

Submitted By imm123
Words 2348
Pages 10
Práctica VIII:
Evaluación del Desempeño de un Reactor Aerobio
Reporte

Realizada: 21 de Marzo de 2012 Equipo 1 Grupo-Grupo A1 Entregada: 11 de Abril de 2012

I.Carta de Presentación México, D.F. a 7 de Marzo de 2012
Ing. Flavio Crescencio

Estimado Ing. Crescencio: Por medio de la presente informo a usted que se han concluido los análisis de laboratorio requeridos por CondorChem, S.A. de C.V. sobre la muestra de agua de deshecho el día 22 de febrero de 2012. Las pruebas de caracterización se realizaron exitosamente con el objetivo de determinar la calidad, contenido y características varias de la muestra de aguas residuales, previo a su descarga a un cuerpo de agua. A partir de ello se determinó si cumple o no con la norma vigente. Se realizaron sobre la muestra 16 pruebas simultáneas e integrales para obtener una idea global de su composición, pues arrojan 22 características distintas condensadas en la tabla siguiente:

Las celdas marcadas en rojo son aquellas reguladas por la norma vigente aplicable. La norma vigente aplicable es la NOM-001-ECOL, para la cual se proporciona la siguiente tabla (consultada en la página de la SEMARNAT):

Tabla 0.1 NOM-001-ECOL

A CondorChem, S.A. de C.V. por descargar sus aguas en un río, le corresponde la zona marcada con rojo.

Haciendo una comparación entre la NOM-001-ECOL y la caracterización puede verse que: a) La muestra cumple con lo establecido para temperatura, es decir, la temperatura es menor al límite. b) La observación cualitativa de la mezcla al recibirla confirma que no contiene aceite, grasas ni materia flotante, pues ha sido tratada hasta cierto punto en el reactor tres de la planta de tratamiento. c) Los sólidos sedimentables exceden el límite más alto (2 mg/L) veinte veces. d) Los sólidos suspendidos totales exceden cualquiera de las seis clasificaciones de la tabla, siendo 60% más altos que el límite más alto (200 mg/L). e) La demanda bioquímica de oxígeno (DQO) en ambas pruebas resultó mayor a la norma, 360% para la prueba de titulación y 525% para la de espectrofotometría. f) El nitrógeno total, que es la suma del nitrógeno amoniacal y los nitratos, está dentro de la norma. g) El fósforo total (ortofosfatos) está dentro de la norma. IPI sugiere un pre-tratamiento de filtración fina y sedimentación, previo a la descarga del agua en el río, para reducir la cantidad de sólidos suspendidos y sedimentables en el agua. Anexo a esta carta está el reporte técnico con la descripción detallada de la metodología empleada, los resultados obtenidos, la interpretación de los mismos, las conclusiones y recomendaciones que IPI, S.A de C.V considera pertinentes y relevantes al caso en cuestión. Quedando a su disposición para cualquier aclaración, Saludos cordiales,

____________________ ___________________ ____________________ Inés Berdeja Suárez Paloma García de Letona Inés Otegui Asesora Verde, IPI S.A de C.V Asesora Verde, IPI S.A de C.V Asesora Verde, IPI S.A de C.V

II. Reporte Técnico

1. Hacer un diagrama de la planta de tratamiento de aguas y describir cómo opera. Señalar en que sitios se hizo el muestreo y dar una descripción y características del tanque o reactor muestreado y las condiciones de operación. Describir del muestreo y características de las muestras.

A continuación se muestra un diagrama de la planta de tratamiento de aguas de donde se obtuvieron las muestras analizadas (Planta de Tratamiento de la Universidad Iberoamericana).

Figura 1. Esquema de la Planta de tratamiento de Aguas de la UIA

1. Las aguas residuales entran a la planta y antes de ser mandadas a los reactores aerobios, pasan por un filtro para remover los sólidos gruesos contenidos en el flujo. 2. El flujo entra al primer reactor aerobio el cual contiene empaques con microorganismos encargados de degradar la materia orgánica. 3. El agua residual pasa a un segundo reactor aerobio que carece de empaques cuya función es terminar la degradación de la materia orgánica utilizando los microorganismos provenientes del primer reactor que permanecen dentro del líquido.
Ambos reactores aerobios tiene presentan una constante agitación para facilitar la disposición de oxígeno. 4. Al finalizar la degradación de la materia orgánica el agua residual se deposita en un sedimentador que permite la separación, por medio de la gravedad, de los lodos y la fase líquida. 5. El agua clarificada atraviesa un filtro para evitar el paso de lodos al clorador. 6. El agua es desinfectada utilizando una solución de cloro. Al final del clorador el agua se encuentra en condiciones para ser utilizada en riego.

El muestreo se llevó a cabo en las siguientes ubicaciones de la planta de tratamiento: 1. E = A la entrada de la planta de tratamiento antes del filtro. 2. R1 = Dentro del reactor aerobio con empaques. 3. R2 = Dentro del reactor aerobio sin empaques. 4. S = En el sedimentador.

Las características de las muestras están en la sección siguiente, según la estructura requerida para el reporte.

2. Para el caso de las mediciones describir brevemente con sus palabras cómo se hicieron, incluir los valores experimentales obtenidos y los valores de los parámetros ya calculados como son pH, NTU, ST, SD, SS, N-NH3, N-NO3., sólidos sedimentables, e Índice volumétrico de Lodos, etc. Incluir el ejemplo de cálculo en cada caso e incluir los siguientes cálculos e interpretaciones específicas.

Descripción de la Experimentación y Resultados Experimentales

a) Temperatura y pH:
Asdffg

Muestra | pH | Temperatura(°C) | E | 8.86 | 21.1 | R1 | 8.41 | 20.9 | R2 | 8.18 | 20.6 | S | 8.3 | 20.8 |
Tabla 0.1 Temperatura y pH

b) Sólidos Totales, Sólidos Disueltos y Sólidos Suspendidos:
Askdjf

c) Turbidez:
Se tomó una muestra del agua tomada en cada uno de los puntos de muestreo, suficiente para llenar la celda del turbidímetro, que automáticamente reporta el valor de turbidez en NTU. La única muestra que presentó problemas fue la del R2, que tuvo que diluirse a un cuarto en volumen. Los resultados fueron los siguientes:

Muestra | Turbidez(NTU) | E | 617 | R1 | 813 | R2 | 796 | S | 21.5 |
Tabla 0.3 Turbidez

Ejemplo de Cálculo

Solamente se requirió para conocer el valor real de turbidez en el R2:

Treal=Tdilución*VdiluciónVreal

Treal=199 NTU*50 mL12.5 mL

Treal=796 NTU

d) DQO:
Askdjf

e) DBO7
En primer lugar se preparó el agua de dilución, que requería estar saturadas con aire. Se colocaron 3 L de agua destilada en un matraz con una manguera conectada a una bomba, que burbujeó aire durante aproximadamente media hora. A continuación se le agregaron 3 mL de las soluciones listadas: * Solución amortiguadora de fosfatos. * Solución de sulfato de magnesio. * Solución de cloruro de calcio. * Solución de cloruro férrico.

Se midió y ajustó el pH de la solución a 7 y se llenaron al tope las botellas preparadas, dos para cada muestra, con el volumen de muestra especificado en la tabla 0.5, cuidando que no hubiera burbujas. A la primera botella de cada muestra se le midió el oxígeno disuelto, y todas las botellas se colocaron en la incubadora a 21-23°C durante una semana. Después de este tiempo, se volvió a medirles el oxígeno disuelto.

Muestra | Vol. de muestra(mL) | Vol. de reacción(mL) | O.D. Inicial(mg/L) _0 | O.D. Final (mg/L) | DBO7 (mg/L) | | | | | _0 | _f | _0 | _f | E | 2 | 300 | 6.62 | 0.95 | 0.57 | 850.5 | 907.5 | R1 | 3 | 300 | 6.54 | 2.67 | 2.81 | 387.0 | 373.0 | R2 | 6 | 300 | 6.35 | 0 | 0 | 317.5 | 317.5 | S | 15 | 300 | 6.44 | 0 | 0 | 128.8 | 128.8 | Condiciones | Temperatura (°C) | 23.5 | 21.3 | | | Solublidad (mg/L) | 6.55 | 6.69 | |
Tabla 0.5 Oxígeno Disuelto

Ejemplo de Cálculo

Tomando como ejemplo la muestra E, la botella E0:

f) Características de las Muestras
Estas características fueron observadas cualitativamente:

Muestra | Características: | E | Sobrenadante turbio, olor extremadamente penetrante, color beige turbio | R1 | Solido sedimentado, color café, olor fétido, poco sobrenadante | R2 | Color café obscuro, solido sedimentables, sobrenadante | S | Color amarillo pálido, no existen sólidos ni sobrenadantes ni sedimentados, olor ligeramente fétido |
Tabla 0.6 Características de las Muestras

g) Sólidos Sedimentables e Índice Volumétrico de Lodos (IVL)
Se colocaron 50mL de cada muestra de agua residual previamente agitada en una probeta. Durante 60 min de sedimentación, los matraces se estuvieron ladeando constantemente provocando que los sólidos que se encontraban pegados en la pared se despegaran y comenzaran a sedimentar. En los primeros 30 min se midió el volumen de sólidos sedimentados, y al finalizar los 60 min se volvió a medir el volumen sedimentado.

Muestra | E | R1 | R2 | S | A los 30 min (mL) | 1 | 4 | 7 | 0 | A los 60 min (mL) | 1 | 8 | 7 | 0 | Volumen Total (mL) | 50 | 50 | 50 | 50 | Sólidos sedimentables a los 30 min (mL/L) | 20 | 80 | 140 | 0 | Sólidos sedimentables a los 60 min (mL/L) | 20 | 160 | 140 | 0 |
Tabla 0.7 Sólidos Sedimentables

Ejemplo de Cálculo

Donde: SólidoSed= sólido sedimentables (mL/L) SólidoSed@30min=Vol. de sólidos sedimentados a 30ºC
VolT =Vol. total e la muestra

Para la muestra de la entrada (E):

h) Velocidad de Consumo de Oxígeno
Se siguió el mismo procedimiento para cada una de las cuatro muestras: se aireó durante quince minutos con la bomba mencionada en el inciso e), se llenó una botella de DBO de 60 mL al ras y sin burbujas, se introdujo el medidor del de oxígeno disuelto y se iniciaron la agitación y el cronómetro. Se tomaron lecturas de oxígeno disuelto cada dos minutos desde los 0 minutos hasta los 15 minutos de agitación.

Muestra | E | R1 | R2 | S | Tiempo(min) | O.D. (mg/L) | 0 | 5.94 | 3.23 | 7.23 | 6.79 | 2 | 4.48 | 0.84 | 4.72 | 6.72 | 4 | 3.69 | 0.11 | 3.83 | 6.67 | 6 | 3.17 | 0 | 2.96 | 6.62 | 8 | 2.55 | 0 | 2.1 | 6.57 | 10 | 1.77 | 0 | 1.27 | 6.52 | 12 | 1.27 | 0 | 0.5 | 6.48 | 14 | 0.68 | 0 | 0 | 6.42 | 15 | 0.35 | 0 | 0 | 6.4 |
Tabla 0.8 Velocidad de Consumo de Oxígeno

i) Nitrógeno Amoniacal y N-Nitratos

N-Nitratos
Se tomaron cuatro viales con ácido sulfúrico concentrado previamente preparados y se añadieron 1 ml de cada muestra distinta. Se mezclaron y utilizando cada muestra recién mezclada y fría se calibró el espectrofotómetro a 100% de Transmitancia a 410 nm.
A cada vial por separado se le agrego un sobre de ácido cromotrópico, bisulfito y urea, mezclándolos y dejándolos reaccionar por 5 minutos. Midiendo después el %T de cada muestra.
La curva de calibración para esta técnica estaba dada en el Manual de Laboratorio de Ingeniería Ambiental

Muestra | E | R1 | R2 | S | Volumen (mL) | 1 | 1 | 1 | 1 | Absorbancia | 0.263 | 0.17 | 0.206 | 0.13 | ppm N-NO3- | 0.8220 | 0.5313 | 0.6439 | 0.4063 |
Tabla 0.9 N-Nitratos
Ejemplo de Cálculo

Donde para el caso de E:

Nitrógeno Amoniacal asdf Requerimientos Específicos

A. Velocidad de Consumo de Oxígeno

Los resultados para VCO fueron:

Muestra | VCO (mg/L min) | E | 0.3177 | R1 | 0.0646 | R2 | 0.3631 | S | 0.0246 |
Tabla 1. Velocidad de Consumo de Oxígeno
Ejemplo de Cálculo

VCO=OD2-OD15t
Donde
OD2: Oxígeno disuelto al minuto 2.
OD15: Oxígeno disuelto al miuto 15 t: Tiempo transcurrido (13 minutos)

Para la muestra E (usando datos dela Tabla 0.8):

VCO=4.48mg/L-0.35mg/L13min

VCO=0.3177 mgL min

Gráfica 1. Velocidad de Consumo de Oxígeno

Los resultados para VCOi fueron:

E | R1 | R2 | S | VCOi | 1 | 1 | 1 | 1 | 0.75420875 | 0.26006192 | 0.65283541 | 0.98969072 | 0.62121212 | 0.03405573 | 0.52973721 | 0.98232695 | 0.53367003 | 0 | 0.40940526 | 0.97496318 | 0.42929293 | 0 | 0.29045643 | 0.96759941 | 0.2979798 | 0 | 0.17565698 | 0.96023564 | 0.21380471 | 0 | 0.06915629 | 0.95434462 | 0.11447811 | 0 | 0 | 0.9455081 | 0.05892256 | 0 | 0 | 0.94256259 |

B. Demanda Química de Oxígeno C. Demanda Biológica de Oxígeno 7 D. Parámetros de Sólidos E. Parámetros Medidos (restantes) F. Eficiencia de Remoción en Etapas G. Comparación con la NOM-001, NOM-002 y NOM-003.

III. Referencias

* Rump ,H.H. & Krist H., (1988) Laboratory Manual for the Examination of Water, Waste Water and Soil, VCH * Sawyer, McCarty & Parkin, (1994) Chemistry for Environmental Engineering, McGraw Hill Book Co. * Clesceri, L.S., Greenberg, A.E. Trussel, R.R. (Eds.), Standard Methods for Water and Wastewater Analysis. APHA-AWWA * Jackson, B., (1993) Applied Water and Spentwater Chemistry: Laboratory Manual, Van Nostrand Reinhold, N.Y. * Peavy, Rowe, Tchobanoglous, (1985) Environmental Engineering, McGraw Hill Book Co * Peavy, Howard S. Environmental Engineering, International Edition, McGraw-Hill. Singapore, 1985 * http://www.ecologiaverde.com/eutrofizacion/ * http://www.epa.gov/safewater/consumer/2ndstandards.html * http://www.esr.pdx.edu/pub/biology/limnology/limn-11.htm * http://waterontheweb.org/under/waterquality/oxygen.html * http://members.tripod.com/Arturobola/turbi.htm * http://www.semarnat.gob.mx/servicios/anteriores/otroleyes/normas/Pages/normasoficialesmexicanasvigentes.aspx * http://www.semarnat.gob.mx/servicios/anteriores/otroleyes/normas/Normas%20Oficiales%20Mexicanas%20vigentes/NOM-001-ECOL.pdf

Plis cada una haga la descripción de su experimento en la parte de Descripción y resultados Experimentales. está justo después del diagrama y ya están los incisos puestos. También, ahí mismo, pegar las tablas de resultados experimentales desde la hoja de cálculo tal cual. Nech, lo que me mandaste en Word ya lo pegué, Pal lo tuyo no porque la verdad en Exell no me iba aponer a averiguar :D . Chequen bien en la hoja del reporte plis porque hay varios cálculos que no te pide en los incisos siguientes y tienen que ponerse aquí. Tipo, yo tuve que calcular el DBO a partir de datos experimentales. También hay que poner IVL, todos los sólidos, DQo, etc, en el reporte, en el número 2 dice. Luego, ya hice los incisos A y C, y Pal el B. El D le toca a la de sólidos, el E a TODAS Y el F no se jaja

Similar Documents

Free Essay

China

...Containment   Pear-shaped Dry-Well en.wikipedia.org/wiki/Browns_Ferry_Nuclear_Power_Plant   Torus-shaped Wet-Well nucleartourist.com The Fukushima Daiichi Incident – March 21, 2011 The Fukushima Daiichi Incident 1. Plant Design "   Service Floor The Fukushima Daiichi Incident – March 21, 2011 The Fukushima Daiichi Incident 1. Plant Design "   Lifting the Containment closure head The Fukushima Daiichi Incident – March 21, 2011 The Fukushima Daiichi Incident 1. Plant Design "   Reactor Service Floor (Steel Construction) "   Concrete Reactor Building (secondary Containment) Spend Fuel Pool Fresh Steam line Main Feedwater "   Reactor Core "   Reactor Pressure Vessel "   Containment (Dry well) "   Containment (Wet Well) / Condensation Chamber The Fukushima Daiichi Incident – March 21, 2011 The Fukushima Daiichi Incident 2. Accident progression "   11.3.2011 14:46 - Earthquake   Magnitude 9   Power grid in northern Japan fails   Reactors itself are mainly undamaged "   SCRAM   Power generation due to Fission of Uranium stops   Heat generation due to radioactive Decay of Fission Products •  After Scram •  After 1 Day •  After 5 Days ~6% ~1% ~0.5% The...

Words: 1994 - Pages: 8

Free Essay

Nuclear Reactor Power Plant Control Systems

...Nuclear Reactor Power Plant Control Systems Mechatronics Professor 13 October 2013 Table of Contents Heading Page # Introduction History Safety Control Systems Coolants Pressurizer Moderator Control Rods Regulations Disposal Conclusion Works Cited Introduction Control systems are an integral part of the nuclear reactor and without the implementation of an effective control system along with constant monitoring and maintenance catastrophic accidents will occur. This report will introduce the important control systems found in many of the most common nuclear reactors along with an explanation on how they work and how they're implemented. First we must go back into the histories to gain a better understanding of why these control systems are so important and consequences that resulted when control systems are not implements or not used properly. History To know the history of nuclear power plants, one must first understand what a nuclear power plant is. A nuclear power plant is very similar to that of any other steam-electric power plant, in that water is heated and the steam from the water turns turbines, thus creating electricity. The major difference is how the power plant generates heat. The source of the heat from nuclear power plants comes from nuclear fission, rather than from coal, oil or gas. In 1934, a physicist by the name of Enrico Fermi conducted the first experiments that resulted...

Words: 3732 - Pages: 15

Premium Essay

Pumping Iron

...Pumping Iron at Cliffs & Associates The Circored Iron Ore Reduction Plant in Trinidad 09/2004-5041 This case was written by Christoph H. Loch, Professor of Technology Management at INSEAD, and Christian Terwiesch, Associate Professor of Operations Management at the Wharton School, as a basis for class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Copyright © 2002 INSEAD-Wharton, France/USA. Revised Version, copyright © 2004 INSEAD-Wharton, France/USA. N.B. PLEASE PERMISSION. NOTE THAT DETAILS OF ORDERING INSEAD CASES ARE FOUND ON THE BACK COVER. COPIES MAY NOT BE MADE WITHOUT 1 5041 “There are worse places in the world to be in December than Trinidad,” thought Ed Dowling, as he spotted the first white beaches from his seat on the Miami-Trinidad flight. “Look, Steve, we are flying close by our plant,” he said to Steve Elmquist, pointing at a significant landmark on the coastline below them (see Exhibit 1). Dowling was executive vice-president for operations at Cleveland Cliffs Inc., and Elmquist was the general manager of Cliffs and Associates Ltd. (CAL), which was co-owned by Cleveland Cliffs and Lurgi Metallurgie GmbH, the German process technology company, following a recent joint venture. Neither had said much since starting their journey some eight hours before in Cleveland, Ohio, where they had reported to the board members of Cleveland Cliffs on the status of...

Words: 5457 - Pages: 22

Free Essay

Legal Analysis of Light Water Reactors

....Legal Analysis When considering the engineering of a molten salt reactor (MSR), which is a class of nuclear fission reactors in which the primary coolant, or even the fuel itself, is a molten salt mixture. No Liquid Fluoride Thorium Reactors (LFTR) have been built to date, a revolutionary liquid reactor that runs not on uranium, but thorium. Although LFTR power plants have not yet been built, one can look at the issues that have arisen out of the manufacture and application of alternative nuclear reactors in the past, and the courts’ rulings on those issues, to determine what hazards exist. Obviously, in the case of an LFTR power plant, the most important issue to consider is what kind of hazards exist, and what kind of liability is ascribed, in the event of a failure of the LFTR power plant. When considering the legality of engineering and constructing an energy-producing reactor, there are a variety of applicable fields of law that can be utilized to analyze the potential issues that arise from the construction of a liquid fluoride thorium reactor power plant. However, the most prevalent applicable law would be tort law and the application of strict liability to the engineering and utilization of such a power plant. Strict liability, generally, speaking imposes negligence upon an individual, regardless of fault, when that individual engages in an abnormally dangerous activity. See Rosenblatt v. Exxon Co., 335 Md. 58, 69-70 (1994). When engaging in abnormally dangerous...

Words: 1484 - Pages: 6

Free Essay

Hai12323456789

...SODIUM-COOLED FAST REACTORS THE ASTRID TECHNOLOGICAL DEMONSTRATOR th DECEMBER 2012 SUSTAINABLE RADIOACTIVE WASTE MANAGEMENT ACT OF JUNE 28, 2006: RESULTS OF RESEARCH CARRIED OUT ON THE SEPARATION AND TRANSMUTATION OF LONG-LIVED RADIOACTIVE ELEMENTS, AND ON THE DEVELOPMENT OF A NEW GENERATION OF NUCLEAR REACTORS 1 4th GENERATION SODIUM-COOLED FAST REACTORS THE ASTRID TECHNOLOGICAL DEMONSTRATOR 1 2 FOREWORD The objective of the Generation IV International Forum (GIF), in which France is actively involved, is to prepare the future nuclear sector in an international framework by jointly developing the R&D of 4th generation reactors, based on clearly identified objectives: achieve sustainable development of nuclear energy by optimising the use of natural uranium resources and by reaching the highest levels of nuclear safety; minimise the production of the most radioactive waste, in particular long-lived waste; ensure high resistance to nuclear proliferation; develop applications of nuclear energy for other uses than production of electricity. After an analysis phase carried out jointly by the founding partners, the GIF selected six concepts of nuclear reactors and their cycles4 which exhibited the most promising potentials to achieve the abovementioned objectives: SFR: Sodium-cooled Fast Reactor; GFR: Gas-cooled Fast Reactor; LFR: Lead-cooled Fast Reactor; SCWR: Supercritical Water-cooled Reactor; VHTR: Very High Temperature Reactor; MSR: Molten Salt Reactor. Except...

Words: 43804 - Pages: 176

Premium Essay

Impact of Nuclear Power Plant in Kudankulam

...   Many military and some civilian (such as some icebreaker) ships use nuclear marine propulsion, a form of nuclear propulsion. 3.   A few space vehicles have been launched using full-fledged nuclear reactors: the Soviet RORSAT series and the American SNAP -10 A. 4.   Both Fission and fusion appear promising for space propulsion applications, generating higher mission velocities with less reaction mass. (Due to the much higher energy density of nuclear reactions: some 7 orders of magnitude (10,000,000 times) more energetic than the chemical reactions which power the current generation of rockets). 5.   International research is continuing into the use of nuclear fusion, and additional uses of process heat such as hydrogen production (in support of a hydrogen economy), desalinizing sea water, and for use in district heating systems. What is Nuclear Reactor? A nuclear reactor is a device to initiate and control a sustained nuclear chain reaction. Nuclear reactors are used at nuclear power plants for generating electricity and in propulsion of ships. Heat from nuclear fission is passed to a working fluid (water or gas), which runs through turbines Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are...

Words: 4508 - Pages: 19

Premium Essay

Pumping Iron

...Pumping Iron at Cliffs & Associates The Circored Iron Ore Reduction Plant in Trinidad 09/2004-5041 This case was written by Christoph H. Loch, Professor of Technology Management at INSEAD, and Christian Terwiesch, Associate Professor of Operations Management at the Wharton School, as a basis for class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Copyright © 2002 INSEAD-Wharton, France/USA. Revised Version, copyright © 2004 INSEAD-Wharton, France/USA. N.B. PLEASE PERMISSION. NOTE THAT DETAILS OF ORDERING INSEAD CASES ARE FOUND ON THE BACK COVER. COPIES MAY NOT BE MADE WITHOUT 1 5041 “There are worse places in the world to be in December than Trinidad,” thought Ed Dowling, as he spotted the first white beaches from his seat on the Miami-Trinidad flight. “Look, Steve, we are flying close by our plant,” he said to Steve Elmquist, pointing at a significant landmark on the coastline below them (see Exhibit 1). Dowling was executive vice-president for operations at Cleveland Cliffs Inc., and Elmquist was the general manager of Cliffs and Associates Ltd. (CAL), which was co-owned by Cleveland Cliffs and Lurgi Metallurgie GmbH, the German process technology company, following a recent joint venture. Neither had said much since starting their journey some eight hours before in Cleveland, Ohio, where they had reported to the board members of Cleveland Cliffs on the status of...

Words: 5457 - Pages: 22

Premium Essay

We Recommend to the Board That It Move Forward with the $2m Investment in Our Trinidad Hbi Plant.

...Pumping Iron at Cliffs & Associates The Circored Iron Ore Reduction Plant in Trinidad 09/2004-5041 This case was written by Christoph H. Loch, Professor of Technology Management at INSEAD, and Christian Terwiesch, Associate Professor of Operations Management at the Wharton School, as a basis for class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Copyright © 2002 INSEAD-Wharton, France/USA. Revised Version, copyright © 2004 INSEAD-Wharton, France/USA. N.B. PLEASE PERMISSION. NOTE THAT DETAILS OF ORDERING INSEAD CASES ARE FOUND ON THE BACK COVER. COPIES MAY NOT BE MADE WITHOUT 1 5041 “There are worse places in the world to be in December than Trinidad,” thought Ed Dowling, as he spotted the first white beaches from his seat on the Miami-Trinidad flight. “Look, Steve, we are flying close by our plant,” he said to Steve Elmquist, pointing at a significant landmark on the coastline below them (see Exhibit 1). Dowling was executive vice-president for operations at Cleveland Cliffs Inc., and Elmquist was the general manager of Cliffs and Associates Ltd. (CAL), which was co-owned by Cleveland Cliffs and Lurgi Metallurgie GmbH, the German process technology company, following a recent joint venture. Neither had said much since starting their journey some eight hours before in Cleveland, Ohio, where they had reported to the board members of Cleveland Cliffs on the status of...

Words: 5457 - Pages: 22

Premium Essay

Cpe6001.Part1.Assignment.Nov11

...acceptability criteria in developing and developed countries. (30 marks) 2. Figure 1 shows a schematic layout of the safety cooling system for the AP1000 pressurised water nuclear reactor. Figure 1. The reactor system is contained within a 'passive cooling' containment vessel (Figure 2) which is intended to provide natural and permanent cooling in the event of a loss of cooling event in the reactor loop. Figure 2 Containment vessel for AP1000 cooling A comprehensive description of the overall system is provided by Schulz (1) and is available on the University Mole system for CPE6001. A brief description of the safety cooling system would comprise the following : The safety system incorporates four sources of passive water management following a loss of coolant accident : - two accumulator vessels (ACC) provide high flow for several minutes - two core make-up tanks (CMT)provide moderately high flow for a longer period - an in-containment refuelling water storage tank (IRWST) provides lower flow for a much longer time - large scale recirculation containment for decay heat removal The ACC and CMT responses are activated by a significant drop in system pressure - activation devices are not dependant on AC power supplies, but on springs, stored pressure and batteries. Failure of heat removal from the reactor via the steam...

Words: 678 - Pages: 3

Premium Essay

Pressurized Water Reactor Steam Generator Material Problems Solutions to Prevent Capacity Loss and Extend Lifetime

...Excelsior College Pressurized Water Reactor Steam Generator Material Problems Solutions to Prevent Capacity Loss and Extend Lifetime Matthew T. Spire NUC320 Materials Professor James Mathus January 01, 2012 Abstract Steam generators are a necessary component in PWR. Material issues that affect steam generators reduce the capacity of a nuclear power plant to generate electricity and minimize the lifetime of the steam generator, with both consequences resulting in a loss of profit to the operating utility. Specific problems associated with steam generator materials that are discussed include denting, stress corrosion cracking (SCC), phosphate thinning, as well as vibration and mechanical problems. A connection is established between material issues that affect steam generators and capacity losses as well as decreased lifetime. Finally, solutions are discussed to prevent decreases in capacity and diminished lifetime. Introduction Steam generators are a critical component of PWR. The function of a steam generator in a PWR is to serve as a heat exchanger between the primary and secondary. The heat exchange that occurs between the primary and secondary creates steam, the steam turns a turbine, the process of which generates electricity. The generation of electricity for profit is the purpose of nuclear power plants, therefore...

Words: 1771 - Pages: 8

Free Essay

A Paper on Zircaloy

...Introduction Zirconium metallurgy has been developed essentially due to the nuclear industry. They are used as a structural material in nuclear industry mainly because of good corrosion resistance in water at high temperatures, resistance to radiation damage, optimum mechanical properties and low cross-sectional absorption of thermal neutrons. Four elements satisfy the last two conditions but Zirconium is the only sufficient choice for core components of nuclear reactors. The other elements such as Beryllium (Brittle and chemically toxic), Magnesium (chemically reactive and cannot be used in water cooled reactors), Aluminum (low melting temperature hence only used in research reactors) are not chosen. Important Characteristics of Zirconium-Nuclear Structural Material 1) Low thermal neutron absorption cross section (0.185 barns), 2) Allotropy, the high temperature body centered cubic (β) phase transforming into the hexagonal close packed phase (α) at 1135 K, 3) Anisotropic thermal and mechanical properties leading to unequal thermal expansions along different crystallographic directions and formation of strong crystallographic texture during mechanical working 4) Hexagonal close packed structure of the a phase with a c/a ratio of 1.593, which is less than ideal, making the prismatic slip on {I 0 1 O} planes most predominant, 5) High reactivity with oxygen, nitrogen and carbon and high solubility of these interstitial elements in the α phase, necessitating special care...

Words: 2161 - Pages: 9

Free Essay

Design a Continuous Bioreactor and the Growth Kinetic of Zymomonas Mobilis in Continuous Culture.

...Experiment 3-5 Design a continuous bioreactor and the growth kinetic of Zymomonas mobilis in continuous culture. Submitted to Dr. Tatsaporn Todhanakasem Faculty of Biotechnology Assumption University In partial fulfillment of the requirement of the course BT3014 Microbial Physiology by Syed Zia Nayeem 5045215 Date of experiment: 25 June, 2012 Introduction: Continuous cultivation of microorganism are open systems which features addition of nutrients at a constant rate and simultaneous with drawl at the same rate. This mode of cultivation is particularly useful as it results in significant improvement in productivity of fermentation. Also it is rather easy to implement process control for these systems. However some disadvantages of this cultivation e.g, development of mutants and contamination free cultivation for longer time limits its common usage. However it is a best tool to study the physiology of cultivation as there is a perfect steady state cultivation condition at a particular dilution rate (= sp. growth rate) in the bioreactor. The overall response of any continuous cultivation can be simulated by the mathematical model however it is rather interesting to see the culture behavior in transients in cultivation (Shift up / Shift down in dilution rates) It has been observed that Monod model is unable to perfectly simulate the transients in Continuous cultivations because the model assumes dependence of growth on the instantaneous value of substrate concentration...

Words: 1285 - Pages: 6