...The use of Composite Materials in Aerospace, Wind Power and Automotive Technologies Introduction A composite is a multiphase heterogeneous material comprising of fibres that are embedded in a matrix [1], [2]. A composite is unlike an alloy because in an alloy, the other components have been produced by naturally occurring changes. There is a diversity of types of composites currently available, since “it is possible to design materials with property combinations that are better than those found in the metal alloys, ceramics and polymeric materials” [3]. The main ones focused on in this essay are polymeric matrices, metal matrix composites and ceramic composites, and their applications in the aerospace, automotive and wind industries. (1) Brief Fundamentals of Composites 1.1 Concise History [4] The search for alternative materials arose from growing technological and environmental demands for more efficient and sustainable components for industrial purposes. It was in the 1940s when the military first placed a priority on finding more high-strength and lightweight materials for their vehicles. The main materials used at that time were metallic, and while they were functional, they were often prohibitively heavy, so that the engines could not carry as much as cargo as they preferred, whereas the composite materials were much less heavy, as shown in Table 1, and when compared to non-composites, even steel, carbon based composites have a higher tensile strength. At the bottom...
Words: 2011 - Pages: 9
...(AO) close to US$ 1 Million in expenditure and if the aircraft is assumed to be of high composite ratio, the cost of each incident increase by 50% to US$ 1.5 Million. Do note that this cost does not include damage to the facilities, equipment, or vehicles. Which mean the overall cost could be higher than the estimate. If damage were assumed in all ground operation incident report, the estimated cost would increase 3.5 times. And with high composite ratio aircraft becoming the norm, the cost could spiral upward in excess of more than 5 times. Thus, it is important these ground operation incidents are reduced. Ground operation incident, occurs primarily due to human errors. Possible common reasons include insufficient training, complacency and environmental factors. There are also no detailed legislations in place to regulate the industry, unlike Maintenance Repair Overhaul (MRO) organisations, which is governed by the Civil Aviation Authority (CAA) of UK. Since human errors aren’t a new problem, many researches have been conducted in the past. There are systems developed to address the issue of human error. However, these systems, namely Safety Management System (SMS) and Fatigue Risk Management System (FRMS) are not mandatory in ground operation. In the era of electronics and computing, the industry should harness it capabilities to form a safety net. Thus, in this report, 2 main recommendations are given...
Words: 9341 - Pages: 38
...Fibres for Reinforcement in Composite Materials | | Topics Covered | Fibre TypesGlassE-Glass Fibre TypesGlass Fibre DesignationAramidCarbonFibre Type ComparisonOther FibresPolyesterPolyethyleneQuartzBoronCeramicsNatural | Fibre Types | Glass | By blending quarry products (sand, kaolin, limestone, colemanite) at 1600°C, liquid glass is formed. The liquid is passed through micro-fine bushings and simultaneously cooled to produce glass fibre filaments from 5-24μm in diameter. The filaments are drawn together into a strand (closely associated) or roving (loosely associated), and coated with a “size” to provide filament cohesion and protect the glass from abrasion.By variation of the “recipe”, different types of glass can be produced. The types used for structural reinforcements are as follows:a. E-glass (electrical) - lower alkali content and stronger than A-glass (alkali). Good tensile and compressive strength and stiffness, good electrical properties and relatively low cost, but impact resistance relatively poor. Depending on the type of E-glass the price ranges from about £1-2/kg. E-glass is the most common form of reinforcing fibre used in polymer matrix composites.b. C-glass (chemical) - best resistance to chemical attack. Mainly used in the form of surface tissue in the outer layer of laminates used in chemical and water pipes and tanks.c. R, S or T-glass – manufacturers trade names for equivalent fibres having higher tensile strength and modulus than...
Words: 1906 - Pages: 8
...be as follows: Brief explanation of composite materials [2 marks] Your own research into: Current structural applications of composite materials in vehicle body design. Main manufacturing techniques used for composite structural components. Please refer to example(s) of cars where composite materials have been used as structural components. [8 marks] Discussion of the potential advantages and limitations in the use of composite materials in volume production cars. [4 marks] The assignment will be marked out of 20 with the marks indicated above and the remaining marks allocated as follows: Structure. [1 mark] Appropriate use of reliable references and standard referencing system. [3 marks] Appropriate / good use of labelled and referenced figures. [2 marks] The total word count for the assignment should be 1500 words. Applications http://www.pes-performance.com/news/case-studies_temp/potential-use-of-biocomposite-materials-for-the-production-of-future-niche-vehicle-bodywork-panels/ http://mech.utah.edu/composites_cars/ -crashworthiness -racing cars Techniques http://www.thinkengineering.net/104/composite-materials-in-automotive-engineering/automotive-engineering/ http://www.mscsoftware.com/training_videos/patran/Reverb_help/index.html#page/Laminate%20Modeler/lam_tutorial.3.03.html Advantages http://mech.utah.edu/composites_cars/ The biggest advantage of modern composite materials is that they are light as well as...
Words: 787 - Pages: 4
...The term "prepreg" is actually an abbreviation for the phrase pre-impregnated. A prepreg is a fiber reinforced and pre-impregnated with a resin, most commonly consists of a fabric (Carbon, Kevlar, Glass, etc.) impregnated with a resin maintained in a pre-gelled condition. The primary resin matrix used is epoxy. However, other thermoset resins are made into prepregs including BMI and phenolic resins. Carbon fiber is first developed in 1958 in Cleveland, OH, by heating rayon strands which was of relatively poor quality and strength. Then, a few years later, the Japanese developed a chemical process for manufacturing the carbon fibers which is still in use today. In 1963, at Rolls Royce in England, industrial scale production and high quality...
Words: 763 - Pages: 4
...applications such as gas turbines- why? If designing a jet engine, what other materials selection criteria might be important? Q2. What would happen to the microstructure and properties of a typical Al-Cu alloy, as used for precipitation hardening, when it is slowly cooled from its solution temperature? Q3. Explain what you understand by the term “oxygen concentration cell” and give some examples of where such cells might exist in an engineering context. In steel suggest how can such a cell give rise to “crevice corrosion” and give reasons why such a corrosion mechanism can be very problematic. How can such cells be avoided in practice? Q4. Briefly explain why stainless steel usually exhibits a far better corrosion resistance than conventional low carbon steels. What is the accepted minimum content of chromium to ensure corrosion resistance? What must be present in the environment in order to ensure corrosion resistance? Does stainless steel ever corrode? Q5. Explain what the benefits are of superalloy single crystal turbine blades in terms of reducing creep defomation. How are they made? List some of the other methods used by engineers and metallurgists to tackle creep in these components. Q6. Show how TTT diagrams can be created from a set of S curves obtained by monitoring a transformation. Are TTT diagrams limited to steels? Q7. Aluminium alloys do not exhibit a fatigue limit. Explain what this is and how, if engineering components are made out of steel, designs could enjoy a much longer...
Words: 1611 - Pages: 7
...(Tarle, 435). A polymer is made up of many elements. One can consider a polymer as a thread with every link of this string forming a fundamental unit which is in turn made of hydrogen, carbon, silicon and oxygen(Tarle, 435). They are mostly made up of hydrocarbons though other elements such as Sulphur, nitrogen and chlorine may also be found(Carraher & Charles, 2). The molecules are held together by covalent bonds that are branched, linear, or networked to form the polymeric material (Carraher & Charles, 2). While most polymers have carbon as their backbone, others have silicon as the main element holding the polymer (Carraher & Charles, 2). . The history of polymerization The science of polymerisation began way back in the 19th century where alumina-silica glass and phosphoric acid was widely applied to fill dentures (Carraher & Charles, 2). . However, the compounds had very poor mechanical properties and high solubility. This meant that they were not particularly suited in sensitive applications such as dentistry. Later in the mid 20th century, acrylic resins replaced the silica compounds as the only synthetic material (Carraher & Charles, 2). These comprised of polymethylmethacrylate compounds that had higher polymerization shrinkage than the former (Carraher & Charles, 2). Despite their superiority, bonding was...
Words: 1800 - Pages: 8
...AISI 4130 is a low alloy steel which contains molybdenum and chromium which are used as strengthening agents improving the materials properties. This material has a low carbon content of 0.30% which means that the material is excellent for welding. AISI 4130 can be hardened by heat treatment. AISI 4130 has a density of 7.85 g/cm3 and a melting point of 1432 degrees Celsius. These properties mean that the steel can be used for components which may be subdued to high temperatures. Even with this high melting point AISI 4130 can be welded using all the standard welding methods. AISI 4130 can be heat treated by being heated up to 871 degrees Celsius and then soaked in oil. This will then alter the internal structure...
Words: 840 - Pages: 4
...University London Faculty of Engineering Bachelor of Science (Hons) in Aircraft Engineering Composite Aircraft Module no: AE3110 Module Title: Aerospace Technology Submitted by: Muhammad Ariffin Bin Omar (K1068479) Abstract This report will contain the study of composite materials, why it is attractive for applications in the aerospace industry, factors limiting its use, as well as a brief review of the composite materials in commercial aircraft over the past 20 years. Contents Abstract 2 Introduction 4 Composite 5 Advantages of Composites in Aerospace Application 6 Factors limiting use of Composites 8 Applications of Composites in the last 20 years 10 Potential Challenges 12 Conclusion 13 References 14 Introduction During the early years of aviation, aircrafts were constructed by using wood and cloth. Later on in the 1930’s it began to transit into the use of aluminum, steel and titanium as the main building materials for constructing aircrafts. Only in the 1950’s was composite material being introduced to construct aircrafts when it was used on the Boeing 707 commercial aircraft. Even so, its application in the aerospace industry was still very little. Only recently has composite material been more widely used for aerospace applications. The Airbus A380 uses composites in the construction of its wings, and the Boeing 787 has a structure that is 50 percent made of composites. This evolution in material used driven by economics, logistics and the expectations of society...
Words: 1865 - Pages: 8
...EUPHORBIA FIBER REINFORCED CONCRETE Murimi, S.M. ABSTRACT This paper presents an experimental investigation on Euphorbia fibres as concrete reinforcement. The possibility of improving the mechanical characteristics of concrete through the use of reinforcement plant fibres has provoked in recent years a special interest for this new construction material, especially in those areas where plant fibres can easily be found and consequently have a low price like Kenya. In this study, the influences of addition of euphorbia fibres on properties of fresh and hardened concrete were carefully investigated. It was found out addition of these fibres in concrete significantly improved the tensile strength and the flexural strength of the composite. The test results also revealed that the compressive strength of the concrete was slightly improved. It was illustrated that plain concrete possesses a very low tensile strength, limited ductility and little resistance to cracking. Conversely, the concrete with short randomly spread euphorbia fibres in it was found to have relatively high tensile strength, high ductility and more resistant to cracking. Finally, the results presented suggest that Euphorbia fibres can be used in concrete reinforcement Keyword: Euphorbia fibres, reinforcements, concrete, cracking, compressive strength, tensile strength 1.0 INTRODUCTION Concrete has been proved to be an important construction material for more than a century all over the world. However,...
Words: 3378 - Pages: 14
...possible motive power from the available energy. The second development is heavily dependent on the properties of engineering materials. In aircraft and aerospace industries, a union of opposites i.e., lightweight in combination with high stiffness is demanded. In pressure vessels technology, high strength and corrosion resistance are both prerequisites for efficient operation. Whenever a designer faces such situations composite materials provide an efficient solution to such problems. The flexibility that can be achieved with composite materials is immense. Merely by changing...
Words: 1529 - Pages: 7
...Spray Up Process for the Manufacture of an Acrylic Bathtub Method Used: Vacuum Forming and Spray Up Presented By: LAURA URENA 1 Bathtub Manufacturing Using Spray up Technique 2 Table of Contents I. II. Open Mold: Spray Up. Major advantages………………………….4 Sheet metal forming for mold……………………………………….….5 III. IV. V. VI. VII. VIII. IX. Mold Release……………………………………………………………………..6 Vacuum forming molding..………………………………………………..7 Spray up process description……………………………………………10 Materials and equipment used………………………………….…….13 Technical drawings ………………………………………………………...17 Cost analysis…………………………………………………………………….19 Video………………………………………………………………………………..20 X. References……………………………………………………………….…….21 3 Open Mold: Spray Up Fibre is chopped in a hand-held gun and fed into a spray of catalyzed resin directed at the mould. With open molding, the gel coat and laminate are exposed to the atmosphere during the fabrication process. The selection of this technique for the manufacture of the bathtub was because the feasibility that open mold methods allows such as: Most appropriate technique based on the costs of tooling due to the single cavity mold of fiberglass used for the size of the part 30x35x18 in. Portable equipment permits on-site fabrication. This technique enable the manufacturing of hot bathtubs that requires different types of reinforcement able to tolerate heat and load. 4 Sheet Metal for Bathtub Mold Injection mold is a technique used for the manufacture of bathtubs. For...
Words: 1187 - Pages: 5
...bio-based polymers and natural fibres Dr. Martin Patel*), Dr. Catia Bastioli**), Dr. Luigi Marini**), Dipl.-Geoökol. Eduard Würdinger***) *) Utrecht University, Department of Science, Technology and Society (STS), Copernicus Institute, Padualaan 14, NL-3584 CH Utrecht, Netherlands; Phone: +31 30 253 7634; Fax: +31 30 253 7601; E-mail: m.patel@chem.uu.nl **) Novamont, Via Fauser 8, I-28100 Novara, Italy; Phone: +39 0321 699 611; Fax: +39 0321 699 600; E-mail: bastioli@materbi.com, marini@materbi.com ***) BIFA (Bavarian Institute of Applied Environmental Research and Technology), Am Mittleren Moos 46, D-86167 Augsburg, Germany; Phone: +49 821 7000-181; Fax: +49 821 7000-100; Email: ewuerdinger@bifa.de Table of Contents 1. INTRODUCTION 2. HISTORICAL OUTLINE 3. METHODOLOGY OF LCA 4. PRESENTATION OF COMPARATIVE DATA 4.1 STARCH POLYMERS 4.1.1 Starch polymer pellets 4.1.2 Starch polymer loose fills 4.1.3 Starch polymer films and bags 4.1.4 Starch nanoparticles as fillers in tyres 4.2 POLYHYDROXYALKANOATES (PHA) 4.3 POLYLACTIDES (PLA) 4.4 OTHER POLYMERS BASED ON RENEWABLE RESOURCES 4.5 NATURAL FIBRES 5. SUMMARISING COMPARISON 6. DISCUSSION 7. CONCLUSIONS 7.1 7.2 SUMMARY AND FURTHER ELABORATION OF FINDINGS OUTLOOK AND PERSPECTIVES 8. ACKNOWLEDGEMENTS 1 9. REFERENCES ANNEX 1: OVERVIEW OF ENVIRONMENTAL LIFE CYCLE COMPARISONS FOR BIODEGRADABLE POLYMERS INCLUDED IN THIS REVIEW ANNEX 2: CHECKLIST FOR THE PREPARATION...
Words: 22173 - Pages: 89
...Textile (disambiguation). A textile[1] or cloth[2] is a flexible material consist- A small fabric shop in canal town Al-Mukalla, Yemen Sunday textile market on the sidewalks of Karachi, Pakistan Simple textile (magnified) Late antique textile, Egyptian, now in the Dumbarton Oaks col- ing of a network of natural or artificial fibres (yarn or lection thread). Yarn is produced by spinning raw fibres of wool, flax, cotton, or other material to produce long strands.[3] used for a specific purpose (e.g., table cloth). Textiles are formed by weaving, knitting, crocheting, knotting, or felting. The words fabric and cloth are used in textile assembly trades (such as tailoring and dressmaking) as synonyms for textile. However, there are subtle differences in these terms in specialized usage. Textile refers to any material made of interlacing fibres. Fabric refers to any material made through weaving, knitting, spreading, crocheting, or bonding that may be used in production of further goods (garments, etc.). Cloth may be used synonymously with fabric but often refers to a finished piece of fabric 1 Etymology The word 'textile' is from Latin, from the adjective textilis, meaning 'woven', from textus, the past participle of the verb texere, 'to weave'.[4] The word 'fabric' also derives from Latin, most recently from the Middle French fabrique, or 'building, thing made', and earlier as the Latin fabrica 'workshop; an art, 1 2 3 USES Alpaca textile at the Otavalo...
Words: 4824 - Pages: 20
...different type of the materials which can be used to enhance the performance of the drive cone cavity and in order to do so the criteria is sub-divided into four group as shown in figure 1 Key drivers for the selection of the material Fig 1 (Ref: http://www.mtu.de/en/technologies/engineering_news/others/Smarsly_Materials_komp.pdf) Trends in aero-engine materials use As shown in Fig 2 the trends in increase of high temperature materials for gas turbine part. Although there are many monolithic ceramics materials show evidence of fundamental properties, but the main issue is relative to their application in aero engines has been their flaw sensitivity and brittle fracture modes. In addition fibre CMCs are very appealing materials due to (i) their high temperature performance as compared with other super alloys and (ii) their higher fracture toughness relate with monolithic ceramics in aero engines, in which structural reliability is most required. For that reason, CMCs are potential materials to meet these requirements in drive cone cavity. [pic] Trends in aero-engine materials use Fig 2 (http://www.azom.com) Nickel-based super alloys Most of the improvement in material for gas turbine component has been...
Words: 2704 - Pages: 11