...Blow Up a Balloon with Cellular Respiration Introduction: Yeasts are unicellular microorganisms of the fungi kingdom. They are facultative anaerobe, which means that they can respire or ferment depending upon environmental conditions. In the presence of oxygen, respiration takes place (aerobic respiration). Without oxygen present, fermentation occurs (anaerobic respiration). Both processes require sugar to produce cellular energy. Here is the chemical reaction of fermentation, which produces ethanol and carbon dioxide as metabolic waste products. Objective: In this lab, students will use the respiration powers of yeast to blow balloons. This activity will reinforce the basic principles of respiration as a fundamental metabolic process for living organisms using yeast as a model. It will also explore how humans use this biological knowledge in everyday life. Material: balloons narrow funnel 1 tablespoon (15mL) active dry yeast 1 teaspoon (5 mL) sugar measuring spoons measuring cup warm water ruler Safety: Remind students there is NO eating or drinking in the lab. Students must not attempt to inflate the balloons with their mouths, especially after it is filled with the reacting agents. Procedure: 1. Place the bottom of a funnel into the opening of the balloon. You may need to stretch the opening of the balloon a little bit so that it fits. 2. Have a carefully supervised student pour the yeast and the sugar...
Words: 494 - Pages: 2
...Cellular Respiration What is Cellular Respiration? Is the process of taking Oxygen and glucose and turning them into ATP, is energy to the body. The glucose is obtained from the food and food is breaking down to glucose to make ATP. Cellular respiration is 40% to efficient with 60% of the energy going to heat. This process happen in three stages the first one is Glycolysis, than Krebs cycle or Citric Acid cycle and the third one is Electron Transport Chain (ETC) Glycolysis is a series of chemical reactions in the cytoplasm of cells that breakdown glucose into two or more molecules of Pyruvic acid 4ATP molecules are proceed 2ATP molecules are used in the process, the net gain is 2ATP molecules,2NADH molecules are proceed. After Glycolysis there is an intermediate stage Pyruvic acid moves into mitochondria where it undergoes a series of chemical reactions that causes it to lose one CO2 molecule. This product combines with coenzymes A to form acetyl-CoA than is ready for the next step Krebs cycle. Krebs cycle is a series of reactions that breaks down Acetyl-CoA to form ATP, NADH and FADH2. One molecule of ATP is proceed, 3 molecules of NADH are proceed,1FADH2 molecules is proceed and the CO2 is by-product of the Krebs Cycle. The final stage is Electron Transport chain (ETC) is a series of proteins embedded in the mitochondria membrane. FADH2 and NADH carry electrons to the electron chain those electrons move down the chain and goes down to the final electron...
Words: 300 - Pages: 2
...CELLULAR RESPIRATION • or energy metabolism refers to the chemical breakdown of nutrients by the cell to produce energy needed by the body • the energy released from the breakdown of nutrients is not directly used by the body but used to synthesize ATP • an opposite process of photosynthesis • breaking down of carbohydrates in order to produce ATP molecules, represented as: C6H12O6 + 6O2 6CO2 + 6H2O + ATP • divided into four individual sub-pathways: - anaerobic stage, Glycolysis - a transition reaction connecting glycolysis with the krebs cycle - an electron transport chain Structure of Mithochondrion • double membranes organelle found in almost all living cells • the inner membrane is folded to form little shelves called cristae • the inner space filled with gel-like fluid is called the matrix, containing numerous enzymes • the transition reaction and the krebs cycle occur in the matrix while electron transport chain occurs in the cristae Glycolysis • takes place in the cytoplasm of every living cells • anaerobic stage of cellular respiration • breakdown of glucose to two molecules of 3-carbon compound, pyruvic acid with net gain of ATP molecules and 2 NADH • begins with energy investment step that requires two separate reactions and uses two ATP resulting to two C3 molecules • ends in energy harvesting steps wherein oxidation occurs by the removal of electrons which are accepted by NAD, and the generation of four ATP by substrate-level phosphorylation ...
Words: 636 - Pages: 3
...Cellular Respiration Lab Report Purpose The purpose of this lab was to find out which substance, molasses, sucrose, or the items of choice. This experiment was done to help the students understand which substance the yeast could perform cellular respiration in and why it could depending on it’s structure and bonds. From this experiment students should be able to better understand cellular respiration and why it occurs, like how it happens and how the organism benefits from cellular respiration. Also it should be understood what substances cellular respiration occurs on more easily and which substances take longer, and why that is because of what they are composed of. Hypotheses For this experiment there were two substances to be brought in and experimented with, substances that were tried were pure honey and water. 1). 50 ml of pure honey will produce 10 cm of carbon dioxide. 2). 25 ml of pure honey diluted with 25 ml of water will produce 7 cm of carbon dioxide. Introduction There are two processes to remove energy, that is aerobic and anaerobic. Anaerobic is the process of fermentation and requires no oxygen. Aerobic is cellular respiration and requires oxygen. Going further into aerobic is the process of cellular respiration is the process which energy is removed in the form of ATP, this process requires oxygen and a food source. All Oxygen using organisms perform cellular respiration. There are 3 major steps to cellular respiration: 1). Glycolysis- It...
Words: 611 - Pages: 3
...Cellular Respiration Cellular respiration is the primary way that chemical energy is taken from food and turned into adenosine triphosphate, or ATP energy. ATP is the energy used to guide cells. Cellular respiration is a process that happens in a cell constantly. Without ATP energy, cells would not be able to function. The human race as well as plants and animals would die without this energy. In the process of cellular respiration, oxygen is required. A cell has to exchange two gases with its surroundings. The cell takes in oxygen in the form of the gas O2 and in turn, gets rid of waste in the form of the gas carbon dioxide, or CO2. This is similar to the process that the human body goes through. O2 is inhaled. O2 is carried to cells where it is used in cellular respiration. Carbon dioxide, which is a waste product of cellular respiration, is diffused from the cells and delivered to the blood and goes to the lungs where it is exhaled (Campbell). Cellular respiration is considered a very important process in cells. It protects the cell from harmful increases in temperature as well as provides the cell with a pathway of transferring energy in a controlled environment. The goal of cellular respiration is to break down carbohydrates into glucose, and use the glucose to produce ATP energy. Cellular respiration is made up of one glucose molecule which is added to six oxygen molecules. This equates to six carbon dioxide molecules, six water molecules, and 36-38 molecules...
Words: 334 - Pages: 2
...The purpose of this experiment was to gain a better understanding of cellular respiration and its products. This goal was met through experimentation with yeast fermentation and its gas production when exposed to different carbohydrates, such as sucralose, sucrose, starch, fructose, and glucose. The main hypothesis, which was the simpler the carbohydrate the yeast was exposed to, the faster the rate of fermentation, was supported. The liquids containing simpler carbohydrates produced a larger amount of carbon dioxide gas, which allowed a bigger change in the height of the gas bubble. This suggests that there was a high rate of fermentation for simpler carbohydrates. Each liquid containing complex carbohydrates produced a smaller change in the gas bubble height as a result of low carbon dioxide gas production. This suggested that there was a slower rate of fermentation for complex carbohydrates. Further experimentation could be done by replicating the experiment including different juices and carbohydrate complexities to provide support for this hypothesis. The hypothesis for the respirometer...
Words: 1092 - Pages: 5
...CELLULAR RESPIRATION • or energy metabolism refers to the chemical breakdown of nutrients by the cell to produce energy needed by the body • the energy released from the breakdown of nutrients is not directly used by the body but used to synthesize ATP • an opposite process of photosynthesis • breaking down of carbohydrates in order to produce ATP molecules, represented as: C6H12O6 + 6O2 6CO2 + 6H2O + ATP • divided into four individual sub-pathways: - anaerobic stage, Glycolysis - a transition reaction connecting glycolysis with the krebs cycle - an electron transport chain Structure of Mithochondrion • double membranes organelle found in almost all living cells • the inner membrane is folded to form little shelves called cristae • the inner space filled with gel-like fluid is called the matrix, containing numerous enzymes • the transition reaction and the krebs cycle occur in the matrix while electron transport chain occurs in the cristae Glycolysis • takes place in the cytoplasm of every living cells • anaerobic stage of cellular respiration • breakdown of glucose to two molecules of 3-carbon compound, pyruvic acid with net gain of ATP molecules and 2 NADH • begins with energy investment step that requires two separate reactions and uses two ATP resulting to two C3 molecules • ends in energy harvesting steps wherein oxidation occurs by the removal of electrons which are accepted by NAD, and the generation of four ATP by substrate-level phosphorylation ...
Words: 636 - Pages: 3
...Chapter 9 Cellular Respiration — Objectives — Equation for Cellular Respiration — Electron Carriers and Redox Reactions — Process of Cell Respiration — Glycolysis — Prep Reaction — Krebs Cycle (Citric Acid Cycle) — Electron Transport Chain — Fermentation — The Ingredients — You already know what is needed for Cellular Respiration Food + Oxygen Carbon Dioxide+ Water +ENERGY! C6H12O6 + O2 CO2 +H2O + ATP — Redox Reactions (the shuffling of electrons) • Most of the reactions involved in the process are possible because of the redox reaction of NAD, an electron carrier • Oxidation – a reaction in which a substance loses electrons C6H1206 CO2 • Reduction – a reaction in which a substance gains electrons O2 H2O • Oxidation always occurs with reduction = Redox Reaction — NAD: An Electron Carrier — NAD+ gains an electron to become NAD — NAD gains a hydrogen to become NADH — This can also occur with the electron carrier FAD — Cellular Respiration — The means in which the cell produces energy — Often consists of 4 Steps: — Glycolysis — Prep Reaction — Krebs Cycle (Citric Acid Cycle) — Electron Transport Chain — Glycolysis • Occurs in the cytosol • Begins with a molecule of glucose (a 6 carbon sugar) • Uses the energy of 2 ATP to split the stable glucose into 2 unstable molecules each containing 3 carbons • Now all processes...
Words: 2533 - Pages: 11
...CELLULAR RESPIRATION • or energy metabolism refers to the chemical breakdown of nutrients by the cell to produce energy needed by the body • the energy released from the breakdown of nutrients is not directly used by the body but used to synthesize ATP • an opposite process of photosynthesis • breaking down of carbohydrates in order to produce ATP molecules, represented as: C6H12O6 + 6O2 6CO2 + 6H2O + ATP • divided into four individual sub-pathways: - anaerobic stage, Glycolysis - a transition reaction connecting glycolysis with the krebs cycle - an electron transport chain Structure of Mithochondrion • double membranes organelle found in almost all living cells • the inner membrane is folded to form little shelves called cristae • the inner space filled with gel-like fluid is called the matrix, containing numerous enzymes • the transition reaction and the krebs cycle occur in the matrix while electron transport chain occurs in the cristae Glycolysis • takes place in the cytoplasm of every living cells • anaerobic stage of cellular respiration • breakdown of glucose to two molecules of 3-carbon compound, pyruvic acid with net gain of ATP molecules and 2 NADH • begins with energy investment step that requires two separate reactions and uses two ATP resulting to two C3 molecules • ends in energy harvesting steps wherein oxidation occurs by the removal of electrons which are accepted by NAD, and the generation of four ATP by substrate-level phosphorylation ...
Words: 636 - Pages: 3
...Linkage between Photosynthesis and Cellular Respiration The link between photosynthesis and cellular respiration is an inverse relationship. Each cycle depends on one another in order for the "entire cycle" to take place. The completed cycle make certain that life continues to exist on the planet. Both are necessary for living organisms. Photosynthesis is the process by which carbon dioxide is converted into organic compounds from sunlight. Photosynthesis occurs in plants, algae, and some bacteria. The process of photosynthesis is also the source of carbon in organic compounds in human bodies, as well as animals. Photosynthesis provides the oxygen for life and for the process of cellular respiration. The simplest way to explain photosynthesis is (Carbon dioxide + light energy → carbohydrates (sugar) + oxygen). Without photosynthesis, humans would cease to exist. Cellular respiration, in contrast, takes glucose (sugar) and other organic compounds oxidizing them to create carbon dioxide. Cellular respiration can be defined as metabolic reactions in organic cells which converts biochemical energy into adenosine triphosphate, better known as ATP. Cellular respiration also releases carbon dioxide into the atmosphere allowing plants, algae, and bacteria to process the carbon dioxide back into oxygen. The simplest way to explain Cellular Respiration is (Glucose + 6Oxygen --> 6Carbon Dioxide + 6Water). Photosynthesis and cellular respiration is a life cycle that keeps the natural...
Words: 284 - Pages: 2
...between photosynthesis and cellular respiration. o Write the general formula for photosynthesis. o Write the general formula for cellular respiration. o Explain the relationship between the two that should be obvious from the formulas. Examine the relationship between photosynthesis and cellular respiration. o Write the general formula for photosynthesis. o Write the general formula for cellular respiration. o Explain the relationship between the two that should be obvious from the formulas. Photosynthesis and cellular respiration are neccesary for all thing living. Photoautotrphs (organisms) need energy to survive. Some of these organisms are capable of absorbing energy from sunlight and using it to produce energy for all living things. This ia a continuos cycle. Photosynthesis captures energy for life on Earth. It is the process used by plants in which energy from sunlight is used to convert carbon dioxide and water into molecules for growth. In this process Light energy is used to convert Carbon dioxide and water into sugar and oxygen. Thus, solar energy is converted into chemical energy. This reaction is summarized as follows: Carbon dioxide + water ------------> glucose + oxygen Sunlight Energy Photosynthesis can also be represented using the chemical equation: 6CO2 + 6H2O -------------> C6H12O6 + 6O2 Sunlight Energy Cellular Respiration is the process by which...
Words: 582 - Pages: 3
...Cellular Respiration My hypothesis for the germinated pea experiment was that the level of aerobic respiration would increase as the temperature would increase. I also predicted that there would be an upper temperature limit. The experiment proved part of my hypothesis correct and part of it incorrect. I was correct in predicting that the rate would increase as the temperature increase, but I was incorrect in hypothesizing that there would be an upper limit. My hypothesis for the larvae experiment was that the level of aerobic respiration would increase as the temperature increased and there would be an upper temperature limit. My hypothesis was proved to be correct, for the rate of respiration continued to increase until the upper limit was hit and the rate started to decline. There were no unexpected results from our group, but I noticed that group six had some unexpected data in the class larvae table. The only explanation I can make out of it is that the group made a math error. I do not have any suggestions to make this experiment better. Other factors that can affect the rate of cellular respiration are amount of available nutrients, because this allows more energy to be produced from the cell with an increase in amount of nutrients. Another factor is the state of the cell, such as the difference between working and dormant cells or the difference between plant and animal cells. From our data, we noticed that the temperature had an effect...
Words: 1061 - Pages: 5
...The electron transport chain is found in both mechanisms of cellular respiration and photosynthesis. Cellular respiration uses a series of redox reactions to transfer electrons and protons across a membrane to form an electrochemical gradient whereas photosynthesis harvests the light as its energy source to form its electrochemical gradient. This proton electrochemical gradient is used to power ATP synthesis via ATP synthase. The simplified overall reactions of photosynthesis and cellular respiration exhibit reciprocity to each other in that the starting material of cellular respiration begins with H¬2O and the breakdown of glucose and ends with CO¬¬2 and H2O to create ATP. Photosynthesis initially utilizes energy from light combined with inorganic...
Words: 650 - Pages: 3
...Photosynthesis and aerobic cellular respiration Aerobic cellular respiration is the process of creating energy in the form of ATP. Aerobic cellular respiration happens in eukaryotic organisms (plants, animal). It occurs in the mitochondria. There are three stages glycolysis, Krebs cycle, and electron transport chain (ETC). There are two equations of aerobic cellular respiration. The first one is glucose (C6 H12 O6) plus oxygen (O2) produce carbon dioxide(CO2) and water (H2O). The second one is adenosine diphosphate (ADP) plus phosphate (Pi) produce adenosine triphosphate (ATP). Glycolysis is the first stage of aerobic cellular respiration. Glycolysis occurs in the cytoplasm of the cell. Glycolysis purpose is to break down glucose. The reactants...
Words: 520 - Pages: 3
...Metabolism III: Oxidative Cellular Respiration Introduction Oxidative cellular respiration is composed of series metabolic processes that convert broken down food molecules into usable energy in the form of adenosine tri-phosphate (ATP). The process follows oxidation (catabolic) and reduction (anabolic) pathways. Processes involved are glycolysis, Krebs or tricarboxylic acid (TCA) cycle, and the electron transport chain. One step in the TCA cycle is the enzyme-catalyzed conversion of succinate to fumarate in a redox reaction. In intact cells succinate loses hydrogen ions and electrons to FAD to form fumarate. This step in the TCA cycle will be used to study the rate of cellular respiration under different conditions. (Patriquin, M. Rand, T. 2012). Since DPIP is a reducing dye it will absorb the hydrogen ions and electrons from the redox reaction of the TCA cycle between succinate and fumarate producing a discoloration of the dye. The discoloration is measured in percent transmittance of light over 30minutes at 5 minute intervals. The change in dye color is the associated with cellular respiration activity, and will be used to record the cellular respiration rate in mitochondria isolated from pulverized lima beans (Phaseolus lunatus) and subsequent effects of different substrate concentration, pH, and metabolic inhibitors . If the difference of light percent transmission produced by (DPIP) can be recorded over time associated with the cellular respiration rate then the rate...
Words: 1801 - Pages: 8