...wherein the procedure has been widely assessed for mediastintis post heart surgery (Sjögren J. Vacuum, 2005). The experiences of patients of treatment with TNP for mediastintis has been elucidated in one Swedish doctoral thesis (Swenne C.L., 2006). Plurality of research rest upon the V.A.C. therapy, that was brought forth in the American market in the year 1995 and in Europe in the year 1997(Argenta L.C, Morykwas M.J. Vacuum, 1997). The objective of this research was to assess if the negative pressure would be a clinically feasible alternative for the management of wound in primary care, when taking into consideration the time for the healing of ulcer (gauged in weeks), change in the size of the ulcer (measured in cm² using a digital planimeter) and formulation of the granulation tissue (examined by visual observation). Albeit the calculation costs was not the chief objective, it was thought that it was imperative to report the costs for employing TNP in primary care. Materials and Methods: The cases in this research were being treated at Blekinge Wound Healing Center during the years of 2006 to 2008, which stands to be a leg ulcer center for the patients who are diagnosed with ulcers that are hard to heal. The center holds an...
Words: 957 - Pages: 4
...Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. List of Laboratories available with area of each lab and major equipments S. No Name of the Course Name of the laboratory/workshop Total Area of lab/ workshop sq.m Major equipment Cost in Lacs i) Applied Mechanic ii) Environment Lab. iii) Survey Lab. 1 Civil Engineering iv) Hydraulic or Fluid Mechanics Lab v) Material Testing Lab. 140.00 90.00 75.00 120.00 120.00 1) Compression Testing Machine 2) Tri axial Shear Test Apparatus 3) Direct Shear Test Apparatus 4) Electronic distance meter N1- 450 5) One second theodolite 6) Digital Planimeter 7) Auto level 8) PH Meter 8) Vicat Apparatus. 10) Le-Chatelier Apparatus. 11) Aggregate Impact Testing Machine. 12) Compaction Factor Apparatus. 13) Universal Testing Machine (100T) 14) Universal Testing Machine (20T) 15) Compression Testing Machine (200T) 16) Torsion Testing Machine 17) Hardness Testing Machine 18) Impact Testing Machine 19) Fatigue Testing Machine 20) Timber Testing Machine 21) Concrete Mixer 22) Tile Flexure Testing Machine Distillation Column, Surface Evaporation Equipment, Extraction Equipment Ball Mill, Pulveriser, Sieve Analyser, Plate and Frame Filter, PH Meter 0.59 0.24 1.23 3.95 8.78 2 Chemical Engineering i) Chemistry Lab ii) Mass & Transfer Lab iii) Process Control Lab. iv) Mechanical Operations Lab. 100.00 120.00 90.00 120.00 0.36 1.26 2.80 1.01 Please purchase PDFcamp Printer on http://www.verypdf...
Words: 952 - Pages: 4
..."Computer technology" and "Computer system" redirect here. For the company, see Computer Technology Limited. For other uses, see Computer (disambiguation) and Computer system (disambiguation). Computer | | A computer is a general-purpose device that can be programmed to carry out a set of arithmetic or logical operations automatically. Since a sequence of operations can be readily changed, the computer can solve more than one kind of problem. Conventionally, a computer consists of at least one processing element, typically a central processing unit (CPU), and some form of memory. The processing element carries out arithmetic and logic operations, and a sequencing and control unit can change the order of operations in response to stored information. Peripheral devices allow information to be retrieved from an external source, and the result of operations saved and retrieved. Mechanical analog computers started appearing in the first century and were later used in the medieval era for astronomical calculations. In World War II, mechanical analog computers were used for specialized military applications such as calculating torpedo aiming. During this time the first electronic digital computers were developed. Originally they were the size of a large room, consuming as much power as several hundred modern personal computers (PCs).[1] Modern computers based on integrated circuits are millions to billions of times more capable than the early machines, and occupy a fraction...
Words: 2079 - Pages: 9
...Background of the study The computer as we know it today had its beginning with a 19th century English mathematics professor name Charles Babbage. He designed the Analytical Engine and it was this design that the basic framework of the computers of today are based on. Generally speaking, computers can be classified into three generations. Each generation lasted for a certain period of time,and each gave us either a new and improved computer or an improvement to the existing computer. First generation: 1937 – 1946 - In 1937 the first electronic digital computer was built by Dr. John V. Atanasoff and Clifford Berry. It was called the Atanasoff-Berry Computer (ABC). In 1943 an electronic computer name the Colossus was built for the military. Other developments continued until in 1946 the first general– purpose digital computer, the Electronic Numerical Integrator and Computer (ENIAC) was built. It is said that this computer weighed 30 tons, and had 18,000 vacuum tubes which was used for processing. When this computer was turned on for the first time lights dim in sections of Philadelphia. Computers of this generation could only perform single task, and they had no operating system. Second generation: 1947 – 1962 - This generation of computers used transistors instead of vacuum tubes which were more reliable. In 1951 the first computer for commercial use was introduced to the public; the Universal Automatic Computer (UNIVAC 1). In 1953 the International Business Machine (IBM)...
Words: 3742 - Pages: 15
...Research Article A GIS‐based reconstruction of Little Ice Age glacier maximum extensions for South Tyrol, Italy 5 Christoph Knoll Department of Geography University of Innsbruck Hanns Kerschner Department of Geography University of Innsbruck Armin Heller 10 Philipp Rastner 15 20 25 30 35 40 Department of Geography Institute for Applied Remote Sensing University of Innsbruck EURAC Bolzano Keywords: Little Ice Age, glacier reconstruction, glacier development, GIS Abstract A reconstruction method of historical glacier topographies and a possibility of the usage of these results are demonstrated in this paper. This reconstruction was accomplished for 310 Alpine glaciers in South Tyrol, Italy. These glaciers are featured with a wealth of different historical (e.g. paintings, photographs and historical maps) and recent data sources (airborne laser scan based digital terrain model and digital orthophotos) that allow the reconstruction of the Little Ice Age maximum extension. These sources are among the best historical and recent documents of glaciers for the mid 19th century. The results of this reconstruction visualize the ongoing climate change in a comprehensive way. The area changes between the time of the Little Ice Age maximum extent (around the year 1850) and the recent glaciation in 2006 amounts in a ...
Words: 4089 - Pages: 17
...Calculus From Wikipedia, the free encyclopedia This article is about the branch of mathematics. For other uses, see Calculus (disambiguation). Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem [show]Differential calculus [show]Integral calculus [show]Vector calculus [show]Multivariable calculus Calculus (Latin, calculus, a small stone used for counting) is a branch of mathematics focused on limits,functions, derivatives, integrals, and infinite series. This subject constitutes a major part of modernmathematics education. It has two major branches,differential calculus and integral calculus, which are related by the fundamental theorem of calculus. Calculus is the study of change,[1] in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations. A course in calculus is a gateway to other, more advanced courses in mathematics devoted to the study of functions and limits, broadly called mathematical analysis. Calculus has widespread applications in science,economics, and engineering and can solve many problems for which algebra alone is insufficient. Historically, calculus was called "the calculus of infinitesimals", or "infinitesimal calculus". More generally, calculus (plural calculi) refers to any method or system of calculation guided by the symbolic manipulation of expressions. Some examples of other well-known calculi are propositional calculus...
Words: 5650 - Pages: 23
...How satisfied are you with Wikipedia? Your feedback is important to us! As a token of appreciation for your support you get a chance of winning a Wikipedia T-shirt. Click here to learn more! Calculus From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the branch of mathematics. For other uses, see Calculus (disambiguation). | It has been suggested that Infinitesimal calculus be merged into this article or section. (Discuss) Proposed since May 2011. | Topics in Calculus | Fundamental theorem Limits of functions Continuity Mean value theorem [show]Differential calculus | Derivative Change of variables Implicit differentiation Taylor's theorem Related rates Rules and identities:Power rule, Product rule, Quotient rule, Chain rule | [show]Integral calculus | IntegralLists of integrals Improper integrals Integration by: parts, disks, cylindrical shells, substitution, trigonometric substitution, partial fractions, changing order | [show]Vector calculus | Gradient Divergence Curl Laplacian Gradient theorem Green's theorem Stokes' theorem Divergence theorem | [show]Multivariable calculus | Matrix calculus Partial derivative Multiple integral Line integral Surface integral Volume integral Jacobian | | Calculus (Latin, calculus, a small stone used for counting) is a branch of mathematics focused on limits, functions, derivatives, integrals, and infinite series. This subject constitutes...
Words: 6472 - Pages: 26
...Calculus is the mathematical study of change,[1] in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations. It has two major branches, differential calculus (concerning rates of change and slopes of curves), and integral calculus (concerning accumulation of quantities and the areas under and between curves); these two branches are related to each other by the fundamental theorem of calculus. Both branches make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit. Generally considered to have been founded in the 17th century by Isaac Newton and Gottfried Leibniz, today calculus has widespread uses in science, engineering and economics and can solve many problems that algebra alone cannot. Calculus is a part of modern mathematics education. A course in calculus is a gateway to other, more advanced courses in mathematics devoted to the study of functions and limits, broadly called mathematical analysis. Calculus has historically been called "the calculus of infinitesimals", or "infinitesimal calculus". The word "calculus" comes from Latin (calculus) and refers to a small stone used for counting. More generally, calculus (plural calculi) refers to any method or system of calculation guided by the symbolic manipulation of expressions. Some examples of other well-known calculi are propositional calculus, calculus of variations, lambda calculus, and...
Words: 8339 - Pages: 34
...CONTENTS CONTENTS CHAPTER ! Variable Load on Power Stations Introduction Introduction T he function of a power station is to deliver power to a large number of consum ers. However, the power demands of different consumers vary in accordance with their activities. The result of this variation in demand is that load on a power station is never constant, rather it varies from time to time. Most of the complexities of modern power plant operation arise from the inherent variability of the load demanded by the users. Unfortunately, electrical power cannot be stored and, therefore, the power station must produce power as and when demanded to meet the requirements of the consumers. On one hand, the power engineer would like that the alternators in the power station should run at their rated capacity for maximum efficiency and on the other hand, the demands of the consumers have wide variations. This makes the design of a power station highly complex. In this chapter, we shall focus our attention on the problems of variable load on power stations. 3.1 Structure of Electric Power System 3.2 Variable Load on Power Station 3.3 Load Curves 3.4 Important Terms and Factors 3.5 Units Generated per Annum 3.6 Load Duration Curve 3.7 Types of Loads 3.8 Typical Demand and Diversity Factors 3.9 Load Curves and Selection of Generating Units 3.10 Important Points in the Selection of Units 3.11 Base Load and Peak Load on Power Station 3.12 Method of Meeting the Load Structure 3.1 Structure...
Words: 11215 - Pages: 45
...Process Measurement Instrumentation API RECOMMENDED PRACTICE 551 FIRST EDITION, MAY 1993 American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005 Process Measurement Instrumentation Manufacturing, Distribution and Marketing Department API RECOMMENDED PRACTICE 551 FIRST EDITION, MAY 1993 American Petroleum Institute SPECIAL NOTES 1. API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED. 2. API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS. 3. INFORMATION CONCERNING SAFETY AND HEALTH RISKS AND PROPER PRECAUTIONS WITH RESPECT TO PARTICULAR MATERIALS AND CONDITIONS SHOULD BE OBTAINED FROM THE EMPLOYER, THE MANUFACTURER OR SUPPLIER OF THAT MATERIAL, OR THE MATERIAL SAFETY DATA SHEET. 4. NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANUFACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COVERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABILITY FOR INFRINGEMENT OF LETTERS PATENT. 5. GENERALLY, API STANDARDS ARE REVIEWED AND REVISED, REAFFIRMED, OR...
Words: 27566 - Pages: 111
...ANALOGY EXERCISE A Directions: In each of the following questions,there is a certain relationship between two given words on one side of : : and one word is given on another side of : :while another word is to be found from the given alternatives,having the same relation with this word as the words of the given pair bear. Choose the correct alternative. 1 . Moon : Satellite : : Earth :? (A) Sun (B) Planet (C)Solar System (D) Asteroid Ans: (B) Explanation: Moon is a satellite and Earth is a Planet . 2 . Forecast : Future : : Regret :? (A) Present (B) Atone (C)Past (D)Sins Ans: (C) Explanation: Forecast is for Future happenings and Regret is for past actions . 3. Influenza : Virus : : Typhoid : ? (A) Bacillus (B)Parasite (C)Protozoa (D) Bacteria Ans: (D) Explanation: First is the disease caused by the second . 4. Fear : Threat : : Anger : ? (A)Compulsion (B)Panic (C)Provocation (D)Force Ans: (C) Explanation: First arises from the second . 5. Melt : Liquid : : Freeze : ? (A)Ice (B)Condense (C)Solid (D)Crystal Ans: (C) Explanation: First is the process of formation of the second . 6. Clock : Time : : Thermometer : ? (A)Heat (B)Radiation (C)Energy (D)Temperature Ans: (D) Explanation: First is an instrument used to measure the second . 7. Muslim : Mosque : : Sikhs : ? (A)Golden Temple (B)Medina (C)Fire Temple (D)Gurudwara Ans: (D) Explanation: Second is the pace of worship for the first . 8. Paw : Cat : : Hoof : ? (A)Horse (B)Lion (C)Lamb (D)Elephant Ans: (A) Explanation: First...
Words: 44982 - Pages: 180
...Higher Engineering Mathematics In memory of Elizabeth Higher Engineering Mathematics Sixth Edition John Bird, BSc (Hons), CMath, CEng, CSci, FIMA, FIET, MIEE, FIIE, FCollT AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier Newnes is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 2010 Copyright © 2010, John Bird, Published by Elsevier Ltd. All rights reserved. The right of John Bird to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material. Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products...
Words: 203239 - Pages: 813