Free Essay

Potencial Flow Theory

In:

Submitted By Condor
Words 2737
Pages 11
2.016 Hydrodynamics

Reading #4

2.016 Hydrodynamics
Prof. A.H. Techet

Potential Flow Theory
“When a flow is both frictionless and irrotational, pleasant things happen.” –F.M.
White, Fluid Mechanics 4th ed.

We can treat external flows around bodies as invicid (i.e. frictionless) and irrotational (i.e. the fluid particles are not rotating). This is because the viscous effects are limited to a thin layer next to the body called the boundary layer. In graduate classes like 2.25, you’ll learn how to solve for the invicid flow and then correct this within the boundary layer by considering viscosity. For now, let’s just learn how to solve for the invicid flow. We can define a potential function, ! ( x, z, t ) , as a continuous function that satisfies the basic laws of fluid mechanics: conservation of mass and momentum, assuming incompressible, inviscid and irrotational flow. There is a vector identity (prove it for yourself!) that states for any scalar, " ,
" # "$ = 0

By definition, for irrotational flow, Therefore
! !

r " #V = 0

!

r V = "#

where ! = ! ( x, y, z , t ) is the velocity potential function. Such that the components of velocity in Cartesian coordinates, as functions of space and time, are ! u= "! "! "! , v= and w = dy dx dz

(4.1)

version 1.0

updated 9/22/2005

-1-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Laplace Equation
The velocity must still satisfy the conservation of mass equation. We can substitute in the relationship between potential and velocity and arrive at the Laplace Equation, which we will revisit in our discussion on linear waves.

!u + !v + !w = 0 !x !y !z

(4.2)

" 2! " 2! " 2! + + =0 "x 2 "y 2 "z 2
LaplaceEquation " # 2! = 0

(4.3)

For your reference given below is the Laplace equation in different coordinate systems: Cartesian, cylindrical and spherical. Cartesian Coordinates (x, y, z) r ˆ "# ˆ "# ˆ + "# k = $# ˆ ˆ j V = ui + vˆ + wk = i + j "x "y "z

!

$ 2# $ 2# $ 2# " #= 2 + 2 + 2 =0 $x $y $z
2

! Cylindrical Coordinates (r, θ, z) r 2 = x 2 + y 2 , ! = tan "1 (y x )

r #$ 1 #$ #$ ˆ ˆ ˆ ˆ ˆ ˆ V = ur er + u" e" + u z ez = er + e" + ez = %$ #r r #" #z
" 2# =

!

$ 2# 1 $# 1 $ 2# $ 2# + + + =0 2 $r4 r $r r 2 $+ 2 $z 2 1 24 3
1 $ % $# ( 'r * r $r & $r )

! version 1.0 updated 9/22/2005 -2©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Spherical Coordinates (r, θ, ϕ ) r 2 = x 2 + y 2 + z 2 , ! = cos "1 (x r ), or x = r cos ! , ! = tan "1 ( z y )

r $% 1 $% 1 $% ˆ ˆ ˆ ˆ ˆ ˆ V = ur er + u" e" + u# e# = er + e" + e# = &% $r r $" r sin " $#

" 2# =
!

$ 2# 2 $# 1 $ % $# ( 1 $ 2# + + 2 =0 'sin + * + 2 2 $r 2 24 $+ ) r sin + $, 2 14 r $r r sin + $+ & 3
1 $ % 2 $# ( 'r * r 2 $r & $r )

! Potential Lines

Lines of constant ! are called potential lines of the flow. In two dimensions

#" #" dx + dy #x #y d" = udx + vdy d" =

Since d" = 0 along a potential line, we have !

!

dy u =" dx v

(4.4)

dy v = , so potential dx u lines are perpendicular to the streamlines. For inviscid and irrotational flow is indeed quite pleasant to use potential function, ! , to represent the velocity field, as it reduced the problem from having three unknowns (u, v, w) to only one unknown ( ! ). !
Recall that streamlines are lines everywhere tangent to the velocity, ! As a point to note here, many texts use stream function instead of potential function as it is slightly more intuitive to consider a line that is everywhere tangent to the velocity. Streamline function is represented by ! . Lines of constant ! are perpendicular to lines of constant ! , except at a stagnation point.

version 1.0

updated 9/22/2005

-3-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Luckily ! and ! are related mathematically through the velocity components:

#! #" = #x #y #! #" v= =$ #y #x u=

(4.5) (4.6)

Equations (4.5) and (4.6) are known as the Cauchy-Riemann equations which appear in complex variable math (such as 18.075).

Bernoulli Equation
The Bernoulli equation is the most widely used equation in fluid mechanics, and assumes frictionless flow with no work or heat transfer. However, flow may or may not be irrotational. When flow is irrotational it reduces nicely using the potential function in place of the velocity vector. The potential function can be substituted into equation 3.32 resulting in the unsteady Bernoulli Equation.

! # $" + 1 ($" )2 + $p + ! g $z = 0 #t 2 or {

}

(4.7)

$ "

{

#! 1 + "V 2 + p + " gz = 0 . #t 2
#! 1 + "V 2 + p + " gz = c(t ) #t 2

}

(4.8)

UnsteadyBernoulli $ "

(4.9)

version 1.0

updated 9/22/2005

-4-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Summary
Definition Continuity (! " V = 0 ) Irrotationality (! " V = 0 ) Potential V = "!
" 2! = 0

Stream Function v V = " #! Automatically Satisfied v v v " # (" #! ) = " (" $! ) % " 2! = 0

Automatically Satisfied
! =0 !z " 2! = 0 for continuity

In 2D : w = 0,

v ! " ! z # 2! = 0 for irrotationality Cauchy-Riemann Equations for ! and ! from complex analysis: # = ! + i" , where ! is real part and ! is the imaginary part Cartesian (x, y) "! "! u= u= "x "y "! "! v= v=# "y "x Polar (r, θ) "! 1 #! u= u= "r r #" 1 #! "! v= v=# r #" "r

For irrotational flow use: ! For incompressible flow use: ! For incompressible and irrotational flow use: ! and !

version 1.0

updated 9/22/2005

-5-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Potential flows
Potential functions ! (and stream functions,! ) can be defined for various simple flows. These potential functions can also be superimposed with other potential functions to create more complex flows. Uniform, Free Stream Flow (1D)

r ˆ ˆ V = Ui + 0 ˆ + 0 k j

(4.10) (4.11)

u =U =
!

#! #" = #x #y

v=0=

#! #" =$ #y #x

(4.12)

We can integrate these expressions, ignoring the constant of integration which ultimately does not affect the velocity field, resulting in ! and !

! = Ux

and

! = Uy

(4.13)

Therefore we see that streamlines are horizontal straight lines for all values of y (tangent everywhere to the velocity!) and that equipotential lines are vertical straight lines perpendicular to the streamlines (and the velocity!) as anticipated. • • 2D Uniform Flow: V = (U , V , 0) ; ! = Ux + Vy ; ! = Uy " Vx 3D Uniform Flow: V = (U , V , W ) ; ! = Ux + Vy + Wz ; no stream function in 3D

version 1.0

updated 9/22/2005

-6-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Line Source or Sink Consider the z-axis (into the page) as a porous hose with fluid radiating outwards or being drawn in through the pores. Fluid is flowing at a rate Q (positive or outwards for a source, negative or inwards for a sink) for the entire length of hose, b. For simplicity take a unit length into the page (b = 1) essentially considering this as 2D flow.

Polar coordinates come in quite handy here. The source is located at the origin of the coordinate system. From the sketch above you can see that there is no circumferential velocity, but only radial velocity. Thus the velocity vector is

r ˆ ˆ ˆ ˆ ˆ ˆ V = ur er + u" e" + u z ez = ur er + 0 e" + 0 ez ur = Q m #$ 1 #% = = = 2 "r r #r r #& 1 #$ #& =% r #" #r

(4.14) (4.15)

! and !

u" = 0 =

(4.16)

Integrating the velocity we can solve for ! and !

! where m =

! = m ln r and ! = m"

(4.17)

Q . Note that ! satisfies the Laplace equation except at the origin: 2!

r = x 2 + y 2 = 0 , so we consider the origin a singularity (mathematically speaking) and exclude it from the flow.
• The net outward volume flux can be found by integrating in a closed contour around the origin of the source (sink):

C

ˆ % V # n dS = %% $ # V dS = %
S

2!

o

ur r d" = Q

version 1.0

updated 9/22/2005

-7-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Irrotational Vortex (Free Vortex) A free or potential vortex is a flow with circular paths around a central point such that the velocity distribution still satisfies the irrotational condition (i.e. the fluid particles do not themselves rotate but instead simply move on a circular path). See figure 2.

Figure 2: Potential vortex with flow in circular patterns around the center. Here there is no radial velocity and the individual particles do not rotate about their own centers.

It is easier to consider a cylindrical coordinate system than a Cartesian coordinate system with velocity vector V = (ur , u! , u z ) when discussing point vortices in a local reference frame. For a 2D vortex, u z = 0 . Referring to figure 2, it is clear that there is also no radial velocity. Thus,

r ˆ ˆ ˆ ˆ ˆ ˆ V = ur er + u" e" + u z ez = 0 er + u" e" + 0 ez where (4.18)

! and ur = 0 =

"# 1 "$ = "r r "%

(4.19)

!

u" = ? =

1 #$ #& . =% r #" #r

(4.20)

Let us derive u" . Since the flow is considered irrotational, all components of the vorticity vector must be zero. The vorticity in cylindrical coordinates is !
!

# 1 "u z "u! $ # 1 "ru! 1 "ur $ # "ur "u z $ %&V = ( ' ) e r + ( "z ' "r ) e! + ( r "r ' r "! ) e z = 0 , "z + * + * r "! * +

(4.21)

where version 1.0 updated 9/22/2005 -8©2005 A. Techet

2.016 Hydrodynamics

Reading #4

2 2 ur2 = u x + u y ,

(4.22) (4.23)

u! = u x cos ! ,

and u z = 0 (for 2D flow).

Since the vortex is 2D, the z-component of velocity and all derivatives with respect to z are zero. Thus to satisfy irrotationality for a 2D potential vortex we are only left with the z-component of vorticity ( e z )
"ru! "ur # =0 "r "!

(4.24)

Since the vortex is axially symmetric all derivatives with respect θ must be zero. Thus,

" (ru# ) "ur = =0 "r "#

(4.25)

From this equation it follows that ru! must be a constant and the velocity distribution for a potential vortex is ! u! = K , ur = 0 , u z = 0 r

(4.26)

By convention we set the constant equal to

" , where Γ is the circulation,. Therefore 2! # 2" r

u! =

(4.27)

Uθ r

Figure 3: Plot of velocity as a function of radius from the vortex center. At the core of the potential vortex the velocity blows up to infinity and is thus considered a singularity. version 1.0 updated 9/22/2005 -9©2005 A. Techet

2.016 Hydrodynamics

Reading #4

You will notice (see figure 3) that the velocity at the center of the vortex goes to infinity (as r ! 0 ) indicating that the potential vortex core represents a singularity point. This is not true in a real, or viscous, fluid. Viscosity prevents the fluid velocity from becoming infinite at the vortex core and causes the core rotate as a solid body. The flow in this core region is no longer considered irrotational. Outside of the viscous core potential flow can be considered acceptable. Integrating the velocity we can solve for ! and !

! = K" and ! = " K ln r

(4.28)

where K is the strength of the vortex. By convention we consider a vortex in terms of its circulation, ! , where " = 2! K is positive in the clockwise direction and represents the strength of the vortex, such that

!=

$ # " and ! = $ ln r . 2# 2"

(4.29)

Note that, using the potential or stream function, we can confirm that the velocity field resulting from these functions has no radial component and only a circumferential velocity component. The circulation can be found mathematically as the line integral of the tangential component of velocity taken about a closed curve, C, in the flow field. The equation for circulation is expressed as

!=

#

C

V " ds

where the integral is taken in a counterclockwise direction about the contour, C, and ds is a differential length along the contour. No singularities can lie directly on the contour. The origin (center) of the potential vortex is considered as a singularity point in the flow since the velocity goes to infinity at this point. If the contour encircles the potential vortex origin, the circulation will be non-zero. If the contour does not encircle any singularities, however, the circulation will be zero.

version 1.0

updated 9/22/2005

-10-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

To determine the velocity at some point P away from a point vortex (figure 4), we need to first know the velocity field due to the individual vortex, in the reference frame of the vortex. Equation Error! Reference source not found. can be used to determine the tangential velocity at some distance ro from the vortex. It was given up front that ur = 0 everywhere. Since the velocity at some distance ro from the body is constant on a circle, centered on the vortex origin, the angle θo is not crucial for determining the magnitude of the tangential velocity. It is necessary, however, to know θo in order to resolve the direction of the velocity vector at point P. The velocity vector can then be transformed into Cartesian coordinates at point P using equations (4.22) and (4.23).

Figure 4: Velocity vector at point P due to a potential vortex, with strength Γ, located some distance ro away.

version 1.0

updated 9/22/2005

-11-

©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Linear Superposition All three of the simple potential functions, presented above, satisfy the Laplace equation. Since Laplace equation is a linear equation we are able to superimpose two potential functions together to describe a complex flow field. Laplace’s equation is

# 2! =

" 2! " 2! " 2! + + = 0. "x 2 "y 2 "z 2

(4.30)

Let ! = !1 + !2 where " 2!1 = 0 and " 2!2 = 0 . Laplace’s equation for the total potential is
" 2 (!1 + !2 ) " 2 (!1 + !2 ) " 2 (!1 + !2 ) #!= + + . "x 2 "y 2 "z 2
2

(4.31)

" $ 2! $ 2! # " $ 2! $ 2! # " $ 2! $ 2! # % 2! = & 21 + 22 ' + & 21 + 22 ' + & 21 + 22 ' $x ) ( $y $y ) ( $z $z ) ( $x " $ 2! $ 2! $ 2! # " $ 2! $ 2! $ 2! # % 2! = & 21 + 21 + 21 ' + & 22 + 22 + 22 ' $y $z ) ( $x $y $z ) ( $x
# 2! = # 2!1 + # 2!2 = 0 + 0 = 0

(4.32)

(4.33)

"

(4.34)

Therefore the combined potential also satisfies continuity (Laplace’s Equation)! Example: Combined source and sink Take a source, strength +m, located at (x,y) = (-a,0) and a sink, strength –m, located at (x,y) = (+a,0).
1 2 2 ! = !source + !sink = m "ln (x + a ) + y 2 $ ln (x $ a ) + y 2 # (4.35) & 2 % This is presented in cartesian coordinates for simplicity. Recall r 2 = x 2 + y 2 so that 1 1 2 m ln r = m ln !(x 2 + y 2 ) " = m ln (x 2 + y 2 ) (4.36) # $ 2 % &

(

) (

)

(x + a ) + y 2 1 ! = m ln 2 2 (x " a ) + y 2

2

(4.37)

This is analogous to the electro-potential patterns of a magnet with poles at (± a, 0 ) . version 1.0 updated 9/22/2005 -12©2005 A. Techet

2.016 Hydrodynamics

Reading #4

Example: Multiple Point Vortices Since we are able to represent a vortex with a simple potential velocity function, we can readily investigate the effect of multiple vortices in close proximity to each other. This can be done simply by a linear superposition of potential functions. Take for example two vortices, with circulation !1 and ! 2 , placed at ± a along the x-axis (see figure 5). The velocity at point P can be found as the vector sum of the two velocity components V1 and V2, corresponding to the velocity generated independently at point P by vortex 1 and vortex 2, respectively.

Figure 5: Formulation of the combined velocity field from two vortices in close proximity to each other. Vortex 1 is located at point (x, y) = (-a, 0) and vortex 2 at point (x, y) = (+a, 0). The total velocity potential function is simply a sum of the potentials for the two individual vortices

!T = !v1 + !v 2 = !1 + !2 =

$1 $ "1 + 2 " 2 2# 2#

with !1 and ! 2 taken as shown in figure 5. One vortex in close proximity to another vortex tends to induce a velocity on its neighbor, causing the free vortex to move.

version 1.0

updated 9/22/2005

-13-

©2005 A. Techet

Similar Documents

Free Essay

Planeación Estratégica de Tecnología de Información En Entornos Dinámicos E Inciertos

...Planeación Estratégica de Tecnología de Información en Entornos Dinámicos e Inciertos Palabras Clave : Planeación Estratégica de Tecnología de Información (PETI), Internet, Portales de Información, Modelo Dinámico, . Resumen | Los modelos y técnicas tradicionales en Planeación Estratégica de Tecnología de Información -PETI-, consideran dominios de aplicación en los que el comportamiento del mundo real es descrito a través de conceptos estáticos. Las entidades son tratadas como perfectamente racionales. Interactúan solas en el entorno y no consideran experiencias anteriores. No obstante, el mundo real está representado por entornos dinámicos que no son predecibles. La ejecución de un plan no está garantizada, debido a que el entorno puede cambiar de manera impredecible. El propósito del entorno es promover cualquier tipo de interacción entre entidades. Nosotros estudiamos la dinámica que induce la aceptación o rechazo de cambios en las condiciones del entorno. Proponemos un modelo conceptuado bajo un dominio de aplicación dinámico, que integra las visiones estratégicas de negocio/organizacional, con la visión estratégica de Tecnología de Información (TI) en una visión única final. La construcción está basada en tres conceptos: interacción, adaptación y evolución. Estos conceptos tienen un significado diferente pero están íntimamente relacionados, alcanzando la sinergia necesaria para un proceso de planeación dinámico efectivo. [English] Artículo | Internet está generando...

Words: 4539 - Pages: 19

Free Essay

Estrategia

...MARKETING ESTRATÉGICO PARA PME’s # # # Formação Prática ESTRATÉGIAS DE MARKETING MARKETING MIX ANÁLISE DE MERCADO EXERCÍCIOS PRÁTICOS # 10 ## MANUAL DO FORMANDO MARKETING ESTRATÉGICO PARA PME’s Formação Prática ESTRATÉGIAS DE MARKETING MARKETING MIX ANÁLISE DE MERCADO EXERCÍCIOS PRÁTICOS 10 MANUAL DO FORMANDO MARKETING ESTRATÉGICO PARA PME’S FORMANDO Ficha Técnica Título l Marketing Estratégico para PME’s Autor l Future Trends Coordenação Técnica l Mónica Montenegro Coordenação Pedagógica l António Jorge Costa Mónica Montenegro Direcção Editorial l Future Trends Concepção Gráfica e Revisão l Central de Informação Composição e Acabamentos l Central de Informação Capa e Contracapa l Central de Informação Data de Edição l Abril de 2005 3 IDENTIFICAÇÃO Área profissional Este curso destina-se a gestores e outros quadros superiores que intervenham ou possam intervir no processo de tomada de decisões nas empresas em que se encontram integrados. Curso/Saída profissional O curso de Marketing estratégico para PME’s serve essencialmente para fornecer competências a indivíduos que exerçam ou pretendam exercer funções que impliquem tomada de decisões nas áreas de planeamento, bem como possibilitar o desenvolvimento de estratégias de marketing adequadas às PME’s. Nível de formação/qualificação Para a frequência deste curso, os formandos deverão possuir formação de nível IV ou nível V. Os formandos deverão ainda ter conhecimentos de inglês...

Words: 51786 - Pages: 208

Free Essay

Elionor Ostrom

...TRABAJAR JUNTOS Acción colectiva, bienes comunes y múltiples métodos en la práctica Traducción, Lili Buj con la colaboración de Leticia Merino. Revisión técnica, Sofya Dolutskaya, Leticia Merino y Arturo Lara. Amy R. Poteete, Marco A. Janssen, Elinor Ostrom Trabajar Juntos Acción colectiva, bienes comunes y múltiples métodos en la práctica Primera edicion en inglés, 2010 Working Together: Collective Action, the Commons, and Multiple Methods in Practice de Amy R. Poteete, Marco A. Janssen, Elinor Ostrom Princeton University Press HD1289 .P75 2012 Poteete, Amy R. Trabajar juntos: acción colectiva, bienes comunes y múltiples métodos en la práctica / Amy R. Poteete, Marco A. Janssen, Elinor Ostrom; traducción Lili Buj Niles con la colaboración de Leticia Merino. --México: UNAM, CEIICH, CRIM, FCPS, FE, IIEc, IIS, PUMA; IASC, CIDE, Colsan, CONABIO, CCMSS, FCE, UAM, 2012. Incluye referencias bibliográficas 572 p.; Ilustraciones, graficas y cuadros Traducción de: Working Together: Collective Action, the Commons, and Multiple Methods in Practice. ISBN 978-607-02-3577-1 1. Recursos naturales comunes – Administración – Metodología. 2. Organización y métodos. I. Janssen, Marco A. II. Ostrom, Elinor. III. Buj Niles, Lili. IV. Merino, Leticia. V. Titulo. Este libro fue sometido a un proceso de dictaminación por académicos externos al Instituto, de acuerdo con las normas establecidas por el Consejo Editorial de las Colecciones de Libros del Instituto de Investigaciones Sociales...

Words: 156334 - Pages: 626

Free Essay

Mapas de Gestion Pragmatica Y Visionaria En Organizaciones

...el horizonte visionario de mañana. Es decir “el mañana” a largo plazo es cualitativamente diferente que “el mañana” a corto plazo. El mapa muestra el carácter revolucionario de mover a la organización de un espacio a otro y porque al no entender el carácter revolucionario de pasar de un horizonte a otro puede atraparla en un presente continuo con un futuro ilusorio. Prepararse para el largo plazo es un acto cualitativamente diferente que prepararse uno para el futuro a corto plazo, una distinción no generalmente tomada en cuenta en la literatura de planificación. Producto de múltiples conversaciones acerca de este Mapa, he considerado que su tiene un enorme potencial como una aproximación a fenómenos de Diagnostico y Diseño empresarial y que sin embargo este potencial no se ha desarrollado. Se evaluará, en base a la introducción y...

Words: 11761 - Pages: 48

Premium Essay

Ugodan

...Background to entrepreneurship Definition and interpretation The term enterpreneurship emerges from the french (literally between take or go between )and traceable to the eighteen century economiist Richard Cantillon ,Anne-Robert –jacques Turgot and Francios Quesnay ,The term was also denoted to an actor in charge of large –scale construction Project as cathedral, bearing no risk but simply carrying the task forward untill resoures were Exhausted ,the change in the use of term began in the seventeen century with a specific reference to risk bearing and enterpreneurship was tagged a person who entered into a contractual relationship with the government for the performance of a service or the supply of good ;The assumption was the price of a contract had been valued and fixed and the enterpreneur bore the risk of profit and loss from the bargain. In the eighteen century ,the term was applied in france in several way ; cantillon in 1725 referred to entrepreneurs as risk bearing .But he tried to differentiate the entrepreneurs who provide capital or funds from those who relied on their own labour and resources. That showed an entrepreneurial role as independent of the capitalist role Quesnay considered an enterpreneur as a tenant farmer who rent property at a fixed rent and produces a given price’s like cantillon bandeau ( 1797) and Turgot...

Words: 15789 - Pages: 64

Free Essay

Analysis of Speculative Bubbles

...Analýza špekulatívnych bublín na kapitálovom trhu Obsah 1. Vymedzenie pojmov a rozdelenie špekulatívnych bublín 6 1.1 Kapitálový trh a jeho účastníci 6 1.1.1 Investor a špekulant 6 1.2 Definícia špekulatívnych bublín 7 2. Prehľad najznámejších bublín v histórii 8 2.1 Tulipánové šialenstvo (1634-1637) 8 2.2 Tichomorská bublina (1711-1720) 9 2.3 Pád do veľkej depresie (1929) 10 2.4 Technologický boom (Dot-com bubble) 12 2.5 "Dokonalá" Islandská bublina 14 2.6 Bublina na trhu nehnuteľností a finančná kríza 2008 16 2.7 Fenomén BitCoins 19 3. Analýza akciových inštrumentov a možnosti jej využitia pri tvorbe bublín 22 3.1 Fundamentálna analýza 22 3.2 Technická analýza 23 3.3 Psychologická analýza 24 3.3.1 Le Bon a správanie davu 24 3.3.2 Kostolanyho investičná stratégia 25 3.3.3 George Soros - krotiteľ trhov 29 4. Behaviorálne financie 32 4.1 Teória (ne)efektívnych trhov 32 4.2 Teória hlučného obchodovania 35 5. Ďalšie príčiny špekulatívnych bublín 36 5.1 Anatómia krízy 36 5.2 Rôzne pohľady na tematiku 38 5.2.1 Vplyv masmédií 38 5.2.2 Vplyv monetárnej politiky centrálnej banky 39 Vymedzenie pojmov a rozdelenie špekulatívnych bublín Pre pochopenie ďalších súvislostí týkajúcich sa špekulatívnych bublín je dôležité poznať základné pojmy, s ktorými sa stretávame na kapitálovom trhu. Preto v prvej kapitole v krátkosti vysvetlím, ako taký kapitálový trh funguje, s akými účastníkmi sa na ňom stretávame a čo vlastne môžeme...

Words: 11284 - Pages: 46

Free Essay

Colombian

...Territorios de diferencia: Lugar, movimientos, vida, redes Arturo Escobar Departamento de Antropología Universidad de Carolina del Norte, Chapel Hill Territorios de diferencia: Lugar, movimientos, vida, redes Arturo Escobar Departamento de Antropología Universidad de Carolina del Norte, Chapel Hill © Envión Editores 2010. © Del autor Primera edición en ingles: Duke University Press. 2008 Titulo original: Territories of Difference. Place, Movements, Life, Redes. Primera edición en español Envión editores octubre de 2010 Traducción: Eduardo Restrepo Arte de la cubierta: Parte superior basada en un grabado producido por el programa Gente Entintada y Parlante, Tumaco, a comienzos de los noventa. Parte inferior, basada en una ilustración tomada de Los sistemas productivos de la comunidad negra del río Valle, Bahía Solano, Chocó, por Carlos Tapia, Rocío Polanco, y Claudia Leal, 1997. Mapas: Claudia Leal y Santiago Muñoz, Departamento de Historia, Universidad de Los Andes, Bogotá Diseño y Digramación: Enrique Ocampo C. © Copy Left. Esta publicación puede ser reproducida total o parcialmente, siempre y cuando se cite fuente y sea utilizada con fines académicos y no lucrativos. Las opiniones expresadas son responsabilidad de los autores. ISBN: 978-958-99438-3-0 Impreso por Samava Impresiones, Popayán, Colombia. Contenido Prefacio Agradecimientos Introducción: regiones y lugares en la era global Lugares y regiones en la era de...

Words: 192989 - Pages: 772

Free Essay

Case de Inovaçao

...Manual de Oslo Proposta de Diretrizes para Coleta e Interpretação de Dados sobre Inovação Tecnológica  Presidente da República Luiz Inácio Lula da Silva Ministro de Estado da Ciência e Tecnologia Eduardo Campos Secretário Executivo Luis Manuel Rebelo Fernandes Presidente da FINEP Sergio Machado Rezende Diretores Antônio Cândido Daguer Moreira Michel Chebel Labaki Odilon Antônio Marcuzzo do Canto Coordenação editorial: Palmira Moriconi Tradução: Paulo Garchet Revisão técnica: Worldmagic Revisão ortográfica: Léa Maria Cardoso Alves Projeto gráfico e editoração: Fernando Leite Ilustração da capa: acervo do Arquivo Nacional  Mensuração das Atividades Científicas e Tecnológicas Manual de Oslo Proposta de Diretrizes para Coleta e Interpretação de Dados sobre Inovação Tecnológica Organização para Cooperação Econômica e Desenvolvimento Departamento Estatístico da Comunidade Européia Financiadora de Estudos e Projetos  Organização para Cooperação e Desenvolvimento Econômico Em conformidade com o Artigo 1o da Convenção firmada em Paris em 14 de dezembro de 1960, que entrou em vigor em 30 de setembro de 1961, a Organização para a Cooperação e o Desenvolvimento Econômico (OCDE) promoverá políticas que busquem: — alcançar o mais alto nível de desenvolvimento econômico sustentável e de emprego e um padrão de vida progressivamente melhor nos países membros, mantendo ao mesmo tempo a estabilidade financeira e contribuindo, por conseguinte...

Words: 43333 - Pages: 174

Free Essay

1000 Words in English

...a bit a couple a few a little adj, pron a lot (of) (tb lots (of)) a, an art indet a.m. (USA tb A.M.) abrev abandon v abandoned adj ability n able adj about adv, prep un poco un par unos cuantos algo / un poco mucho un/a Ante meridiam abandonar abandonado habilidad poder hacer algo affect v más o menos, hacia, por aquí / affection n prep: sobre algo above prep, adv por encima, más arriba / adv: afford v arriba afraid adj abroad adv en el extranjero after adv, prep, absence n ausencia conj absent adj ausente afternoon n absolute adj absoluto afterwards (USA absolutely adv absolutamente tb afterward) adv absorb v absorber again adv abuse n, v abusar, abuso against prep academic adj académico age n accent n acento aged adj accept v aceptar agency n acceptable adj aceptable agent n access n acceso aggressive adj accident n accidente ago adv accidental adj accidental agree v accidentally adv accidentalmente accommodation alojamiento, espacio, plazas agreement n ahead adv n accompany v acompañar aid n, v according to según algo aim n, v prep account n, v cuenta, relato / considerar air n aircraft n accurate adj preciso airport n accurately adv con precisión alarm n, v accuse v acusar a alguien alarmed adj achieve v lograr alarming adj achievement n logro alcohol n acid n acido alcoholic adj, n acknowledge v reconocer/agradecer/enterarse alive adj all adj, pron, acquire v adquirir adv across adv, a través de / all right adj, prep adv, interj act n, v acto, ley / actuar allied adj...

Words: 14391 - Pages: 58

Premium Essay

Kotler

...Ingredient Branding Philip Kotler· Waldemar Pfoertsch Ingredient Branding Making the Invisible Visible Professor Philip Kotler Kellogg Graduate School of Management Northwestern University Evanston, IL 60208, USA p-kotler@kellogg.northwestern.edu Professor Waldemar Pfoertsch China Europe International Business School 699 Hongfeng Rd. Shanghai 201206, China wap@ceibs.edu e-ISBN 978-3-642-04214-0 ISBN 978-3-642-04213-3 DOI 10.1007/978-3-642-04214-0 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010926489 © Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Germany Printed...

Words: 106805 - Pages: 428

Free Essay

Ingenieria Del Software

...GUÍA AL CUERPO DE CONOCIMIENTO DE LA INGENIERÍA DEL SOFTWARE VERSIÓN 2004 do r SWEBOK UN PROYECTO DEL COMITÉ DE LA PRÁCTICA PROFESIONAL DEL IEEE COMPUTER SOCIETY Bo rra BORRADOR - ESPAÑOL GUÍA AL CUERPO DE CONOCIMIENTO DE LA INGENIERÍA DEL SOFTWARE VERSIÓN 2004 do r SWEBOK Directores ejecutivos Alain Abran, École de Technologie Superieure James W. Moore, The Mitre Corp. rra Directores Pierre Bourque, École De Technologie Superieure Robert Dupuis, Universite Du Quebec A Montreal Bo Jefe de proyecto Leonard L. Tripp, Chair, Professional Practices Committee, IEEE Computer Society (2001-2003) Copyright © 2004 por The Institute of Electrical and Electronics Engineers, Inc. Todos los derechos reservados. Copyright y permisos de impresión: Este documento puede ser copiado, completo o parcialmente, de cualquier forma o para cualquier propósito, y con alteraciones, siempre que (1) dichas alteraciones son claramente indicadas como alteraciones y (2) que esta nota de copyright esté incluida sin modificación en cualquier copia. Cualquier uso o distribución de este documento está prohibido sin el consentimiento expreso de la IEEE. Use este documento bajo la condición de que asegure y mantenga fuera de toda ofensa a IEEE de cualquier y toda responsabilidad o daño a usted o su hardware o software, o terceras partes, incluyendo las cuotas de abogados, costes del juicio, y otros costes y gastos relacionados que surjan del...

Words: 99648 - Pages: 399

Free Essay

Contabilidad

...cyan magenta amarillo negro Contabilidad 1 es una obra concebida y desarrollada para la enseñanza y el aprendizaje de la contabilidad, que describe la parte operativa de esta disciplina, con orientación a la toma de decisiones. Cada tema del libro se desarrolla a través de una estructura muy clara: al principio se establecen los objetivos, y luego se ofrece una explicación acerca de los orígenes del tema, posteriormente se definen los conceptos más importantes, y por último, se proporcionan ejercicios de diversa complejidad. Cada tema presenta cuatro tipos de ejercicios (resueltos, individuales, colectivos y optativos); algunos de ellos pueden ser resueltos con el software incluido en el libro. Entre los temas más importantes que desarrolla esta obra se encuentran: • Normas de Información Financiera • Cuentas de resultados, deudoras y acreedoras • Inventarios • El estado de resultados • Registro de operaciones en diario y en paquetes de cómputo • Ajustes y la nueva elaboración de estados financieros • Estado de cambios en la situación financiera • Análisis de estados financieros Para obtener más información, visite: www.pearsoneducacion.net/calleja www.FreeLibros.me www.FreeLibros.me Contabilidad 1 Francisco Javier Calleja Bernal Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus ciudad de México Revisión técnica Miguel Ángel Rodríguez Gutiérrez Universidad Iberoamericana Prentice Hall www.FreeLibros.me Datos de...

Words: 166193 - Pages: 665