...PRODUCTION OF BIODIESEL FROM VEGETABLE OIL USING LYE CERTIFICATE This is to certify that Ishu Bala Thakur bearing Registration no. 10804787 has completed her capstone project titled, “Production of Biodiesel from Vegetable Oil using Lye ” under my guidance and supervision. To the best of my knowledge, the present work is the result of her original investigation and study. No part of the dissertation has ever been submitted for any other degree at any University. The dissertation is fit for submission and the partial fulfillment of the conditions for the award of ......................... Signature and Name of the Research Supervisor: Miss Sugandha Bhatia Designation: School: Lovely Professional University Phagwara, Punjab. Date : DECLARATION I, Ishu Bala Thakur , student of B.Tech (Hons.) Biotech under Department of Lovely Faculty Of Technology and Sciences of Lovely Professional University, Punjab, hereby declare that all the information furnished in this capstone project report is based on my own intensive research and is genuine. This report does not, to the best of my knowledge, contain part of my work which has been submitted for the award of my degree either of this university or any other university without proper citation. Date : ...
Words: 3521 - Pages: 15
...Journals Review Biodiesel production from Jatropha curcas: A review Wilson Parawira Department of Applied Biology, Kigali Institute of Science and Technology (KIST), Avenue de I' Armee, B. P. 3900 Kigali, Rwanda, E-mail: aparawira@yahoo.co.uk. Tel: +250785561670. Accepted 2 July, 2010 Biodiesel has attracted considerable attention during the past decade as a renewable, biodegradable and non-toxic fuel alternative to fossil fuels. Biodiesel can be obtained from vegetable oils (both edible and non-edible) and from animal fat. Jatropha curcas Linnaeus, a multipurpose plant, contains high amount of oil in its seeds which can be converted to biodiesel. J. curcas is probably the most highly promoted oilseed crop at present in the world. The availability and sustainability of sufficient supplies of less expensive feedstock in the form of vegetable oils, particularly J. curcas and efficient processing technology to biodiesel will be crucial determinants of delivering a competitive biodiesel. Oil contents, physicochemical properties, fatty acid composition of J. curcas reported in literature are provided in this review. The fuel properties of Jatropha biodiesel are comparable to those of fossil diesel and confirm to the American and European standards. The objective of this review is to give an update on the J. curcas L. plant, the production of biodiesel from the seed oil and research attempts to improve the technology of converting vegetable oil to biodiesel and the fuel properties...
Words: 6846 - Pages: 28
...Employing Microalgae Feedstock for the Production Biodiesel Name: Musfiq Islam UW ID: 20300084 Course: BIOL 443 Professor: Dr. Owen Ward Introduction Global interests in biofuel production as a substitute for liquid transport fuel have grown substantially in recent years, mainly due to concerns over energy security and climate change (Yahya et al, 2012). The most common used biofuels are biodiesel and bio-ethanol, which can replace diesel and gasoline, respectively, with limited or no modifications of vehicle engines (Karthikeya, 2012). These first generation biofuels are typically extracted from food and oil crops including rapeseed oil, sugarcane, sugar beet and corn as well as vegetable oil and animal fats using traditional technologies (Brennan and Owende, 2009). However, the use of first generation biofuels have generated wide-scale criticisms, primarily due to raising competition with food production, increased water consumption, soil degradation, biodiversity loss, their low energy potential and their role in greenhouse gas emissions (Barbosa et al., 2011). A particular concern is that the demand for biofuels could place substantial additional pressure on the natural resources such as arable land. Currently, about 1% (14 million hectares) of the world’s available arable land is used for the production of biofuels, providing 1% of global transport fuels (Beal et al., 2012). However, with a fixed and possibly reducing amount to arable land, increasing the share...
Words: 2798 - Pages: 12
...from processing of tilapia as a way of adding value to this raw material for biodiesel production. Thus, this study aimed to evaluate the yield and acid number of tilapia oil according to the type of waste used as well as to estimate its potential for biodiesel production as a function of the oil obtained. The waste consisted of fish viscera, fins, heads, skin, scales and mix of all residues mentioned. Such residues were provided by COPACOL’s (Consolata Agro industrial Cooperative) fish refrigerator and kept refrigerated for 24 h. Then oil was obtained by means of cooking and waste pressing. It was not possible to obtain oil from the scales and skin of tilapia by the method used. Fish viscera presented oil content of 22% and the mix of residues had a content of 6.12%. The oil obtained from the viscera showed unsuitable acidity for the production of biodiesel by transesterification, requiring a process of neutralization in order to be processed into biodiesel. The remaining residues, except waste mix, were suitable for the acid transesterification and biodiesel production. Fish oil has potential for biodiesel production from tilapia processing waste. The oil obtained from the viscera presented the highest potential to produce biodiesel per ton of waste processed (217 l), followed by the oil obtained from fish heads (91 l) and mixed waste (60 l), showing that it is possible to convert waste into biodiesel, which can totally or partially replace the use of...
Words: 258 - Pages: 2
...Biodiesel is a form of diesel fuel manufactured from vegetable oils, animal fats, or recycled restaurant greases. It is safe, biodegradable, and produces less air pollutants than petroleum-based diesel. Biodiesel can be used in its pure form (B100) or blended with petroleum diesel. Common blends include B2 (2% biodiesel), B5, and B20. Most vehicle manufacturers approve blends up to B5, and some approve blends up to B20. Check with your owner’s manual or vehicle manufacturer to determine the right blend for your vehicle, since using the wrong blend could damage your engine and/or void the manufacturer's warranty. Biodiesel Compared to Petroleum Diesel | Advantages | Disadvantages | * Domestically produced from non-petroluem, renewable resources * Can be used in most diesel engines, especially newer ones * Less air pollutants (other than nitrogen oxides) * Less greenhouse gas emissions (e.g., B20 reduces CO2 by 15%) * Biodegradable * Non-toxic * Safer to handle | * Use of blends above B5 not yet approved by many auto makers * Lower fuel economy and power (10% lower for B100, 2% for B20) * Currently more expensive * B100 generally not suitable for use in low temperatures * Concerns about B100's impact on engine durability * Slight increase in nitrogen oxide emissions possible in some circumstances | BLENDS Blends of biodiesel and conventional hydrocarbon-based diesel are products most commonly distributed for use in the retail diesel fuel marketplace...
Words: 2053 - Pages: 9
...The use of biodiesel is being promoted by EU countries to partly replace petroleum diesel fuel consumption in order to reduce greenhouse effect and dependency on foreign oil. Meeting the targets established by the European Parliament for 2010 and 2020 would lead to a biofuel market share of 5.75% and 10%, respectively. However, many voices have claimed that the associated agricultural development would bring considerable rise of food and water prices, unless biodiesel is made from waste materials or second-generation biofuels are developed. Waste cooking oil is one of the most promising feedstock in the Mediterranean countries, and in fact, many of the biodiesel production plants are currently using it. In a wide majority of cases these plants use methanol for their transesterification processes, which makes biodiesel (mainly composed by methyl esters) only 90% renewable. By the contrary, the use of bioethanol in the production process would provide a fully renewable fuel (ethyl esters), which would further contribute to reduce life-cycle greenhouse emissions from vehicles. Different studies have shown that biodiesel from waste cooking oil can be used in different types of diesel engines with no loss of efficiency [1–5] and significant reductions in particulate matter – PM– emissions [5–9], carbon monoxide –CO– emissions [3,6–9] and total hydrocarbon –THC– emissions [8–10] with respect to those obtained with conventional petroleum diesel fuel. Many of them...
Words: 399 - Pages: 2
...Practical Biodiesel Abstract During the biodiesel practical in the labaratorium we used the following materials: an erlenmeyer, a spatula, a funnel, a heater, a graduated cylinder, a reflux condenser, a beaker, a lab lift, a round bottem flask and a stirring bullet. All these materials were placed in a fume hood. The most appropiate testresult that we could get from this experiment, is a biodiesel with a flashpoint above 130 °C and a cloud point as low as possible. We would recommend the production of biodiesel in this form, because it is a very easy, convenient and eco friendly way to produce fuel. Introduction The main goal of this practical was to find out how hard it is to make biodiesel out of soja oil and if the biodiesel we produced is convenient for usage. The production site was a fume hood in a labatory at the university. Methods We took a couple of research steps to produce the biodiesel. At first we made the pre-practical exercises to get familiar with te process of making biodiesel. The second thing we did was reading the laboratory manual in which we learned how to cope with the instruments in the laboratory. After this we got the read the instructions on the paper we got so we knew what to do. The first thing that stood on this paper was to get an oil, we got 200 ml of sojaoil...
Words: 896 - Pages: 4
...could be that market ready alternative. In the article, “Biodiesel from algae: challenges and prospects”, Scott (2010) discussed biofuels ability to be used with the current infrastructure; Scott states: With the need to reduce carbon emissions, and the dwindling reserves of crude oil, liquid fuels derived from plant material – biofuels – are an attractive source of energy. Moreover, in comparison with other forms of renewable energy such as wind, tidal, and solar, liquid biofuels allow solar energy to be stored, and also to be used directly in existing engines and transport infrastructure. (Scott, 2010, p. 277) Most individuals are familiar with biofuels, such as ethanol, produced from corn, sugar cane and beets. Less known, but with numerous benefits over land-based sources are algae-based fuels. Some of the more notable benefits of algae-based fuels are; alga can increase in mass fourfold in just a single day; help remove Carbon Dioxide (CO2) from the atmosphere; just two acres of algae can produce almost 13,000 gallons of biodiesel a year. (Herro, 2008) Best of all, unlike other land-based biofuel sources algae do not compete for lands used to produce food for humans and animals. The notion of using algae as a source for energy goes back more than 50 years. The inventor of the diesel engine, Rudolf Diesel, first demonstrated his engine at the Paris World’s Exhibition in 1900; the fuel he used was the first biodiesel, peanut oil. This was the fuel used in his engine until...
Words: 1742 - Pages: 7
...Learning from the Indian experience and the BioFuels industry in India Rajan K. Paradkar Sr. General Manager Armaco Consultant Pvt. Ltd., Mumbai, India NOT AN OFFICIAL UNCTAD DOCUMENT Financing BioFuels and Jatropha Plantation Projects Accra, Ghana-November 13, 2006 EXPRESSES THANKS TO YOU, HONOURABLE CHAIRPERSON, FOR THE KIND INVITATION EXTENDED TO DELIVER THIS PRESENTATION AND WELCOMES THE PARTICIPANTS TO THIS WORKSHOP Financing BioFuels and Jatropha Plantation Projects Accra, Ghana-November 13, 2006 Financing BioFuels and Jatropha Plantation Projects Accra, Ghana-November 13, 2006 Financing BioFuels and Jatropha Plantation Projects Accra, Ghana-November 13, 2006 •CDM is a mechanism to monetize environmental value of proenvironmental projects established in response to global climate change. •CDM enables developed countries with high CO2 reduction costs, to meet the shortfall of allowed emissions at a lower cost than achieving the reduction domestically. •To Developing countries, the CDM presents an opportunity to attract investment from developed countries to environmentally sound projects assisting in sustainable development. •Optimum size of the project for CDM financing to be analyzed. This is in terms of CER’s per year (I.e. Certified Emission Reductions OR Tons of CO2 per year). Financing BioFuels and Jatropha Plantation Projects Accra, Ghana-November 13, 2006 Financing BioFuels and Jatropha Plantation Projects Accra, Ghana-November 13...
Words: 1829 - Pages: 8
...Biodiesel Incorporated Teaching Notes The Biodiesel Incorporated case describes the process of one group’s efforts to effectively identify a business opportunity. Individual analysis and group discussion of this case are well-suited for illustrating and applying the terms and issues covered in Chapter 2 “Opportunity and the Business Summary.” Naturally, the case also allows for the discussion of additional concepts and topics, including material covered in Chapters 4, 8, 10, 17, and 18. Discussion Questions 1) What are the key factors in determining if this is a viable business opportunity for Josh, Hannah, and Matthew? 2) What market drivers should they research and be aware of? 3) What are the flaws in the current business strategy? 4) What type of financing should they use if they choose to go forward with this? 5) What types of distribution channels should they go into? 6) How can they improve their chances for success? 7) What is the next step? Answer Guide 1) What are the key factors in determining if this is a viable business opportunity for Josh, Hannah, and Matthew? Josh, Hanna, and Matthew have to determine if this is a viable opportunity for them. In particular, they need to decide if the expected income and level of independence (and other rewards of starting a new venture will outweigh the risk undertaken and significant amount of effort required. The case consists of little information regarding the leadership qualities of the three students...
Words: 1910 - Pages: 8
...Possible Effects of Implementing Jatropha Biodiesel as Alternative for Petroleum Diesel in the Philippines Introduction The Oil Problem: High increases of prices of different commodities and services can now be observed in the Philippines. These increases are due to different factors such as catastrophes and global economic crisis. The government’s job is to find a way to address these problems. The most constant of these two is global economic crisis which is affected by crude oil price increases. Crude oil price affect different things that are important to the lives of Filipinos. It affects the price of food, utilities, price and many more that rely on the energy and transportation that crude oil can provide. Crude oil basically comes from fossil fuel. Fossil fuels are formed through the decomposition without oxygen of dead organisms. Fossil fuels take millions of years to form but are being used fast. Most experts say that it will only take about 50 years for the fossil fuels to be depleted. As it becomes closer to depletion, its price will surely increase as the basic rule of economics states. The only way to cope with low supply but high demand is to increase its price. The Solution: There are many possible alternatives for fossil fuels as source of energy but the use of biofuels is the most favourable since it is cheaper, renewable and degradable or has use compared to other alternatives. Biofuels are fuels which energy is derived from biological objects...
Words: 2909 - Pages: 12
...BUSINESS PLAN MISSION STATEMENT: Project offers immense scope for rural employment and education to farmers. The project intends to churn the vast potential of Pongamia Pinnata oil with regard to its value as an eternal source of energy. The plan is to market the methyl ester of Pongamia Pinnata oil as a bio diesel, to be used without any changes to the existing diesel oil engines and hence solve the brunt of the huge energy crunch that India is facing today. This biodiesel is a cheaper, indigenous and “eco friendly” alternative to diesel that will shake the roots of India’s energy shortage. The vision, by this long term economic and energy planning, is to ameliorate the economic condition of the rural poor. INDUSTRY ANALYSIS: [pic] PRODUCT DETAILS: The product offering is a bio-diesel called PPME (Pongamia Pinnata Methyl Ester) which is extracted from the seeds of Pongamia Pinnata Milletia. The plant can be cultivated in any region or weather condition; it does not need fertile soil thereby leaving agricultural land unaffected. Eco-Friendly: Pongamia adheres to all international standards of emission especially in terms of carbon residue. It does not produce sulphur oxides, which lead to acid rain. Carbon monoxide and un-burnt hydrocarbons in the exhaust is reduced by 50%. FINANCIAL PLAN: An initial investment of Rs 10 Million is required for building up the required infrastructure, procuring seeds, storage and transportation infrastructure...
Words: 1084 - Pages: 5
...motor fuel blends of 85% ethanol and just 15% gasoline. The problem is there are not enough corn crops to supply the gasoline demands. Other technologies are needed if bio-energy is going to expand its role in the national energy scene. Biomass processing could become profitable in the future with improvement in technology. The most important benefit of renewable energy systems is the decrease of environmental pollution and using up our current resources. However the role of biomass-ethanol in natural energy supply depends upon the success of fuel processing technologies and the energy price increase. Is there enough public knowledge to help promote and fund the need of modern technology that is needed to supply us with ethanol and biodiesel? “Biomass is a generic term for all vegetable material. It is generally a term for material derived from growing plants or from animal manure. The term modern biomass is generally used to describe the traditional biomass use through the efficient and clean combustion technologies and sustained supply of biomass resources using modern conversion technologies”(Demirbas,2010,para.3). There has been rapid progress with technology with converted biomass into fuel; the problem is the high cost. Biomass is renewable matter such as crops, forest wood, plant wastes, manure, and a variety of...
Words: 950 - Pages: 4
...TO SAVE THE DIESEL FUEL AND ENVIRONMENT POLLUTION BY USING JATROPHA OIL Mohd Zaheen Khan Department of Mechanical Engineering Faculty of Engineering & Technology Jamia Millia Islamia, Jamia Nagar New Delhi- 110025 (India) E-mail: zhnkhan4@gmail.com Tel: 8802198381(M) Abstract The aim of present study is to analyze the performance and emission characteristics of C.I. engine using a suitable bio diesel as a fuel. The bio diesel selected to conduct this experimental investigation is Jatropha biodiesel. The performance of single cylinder water-cooled diesel engine and methyl-ester of Jatropha oil as the fuel is evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value,...
Words: 941 - Pages: 4
...emission in certain is receiving control catalytic converters in order to future ultra-low exhaust way These are finite reserves which are highly concentrated standards. Three catalytic converter is an effective technique to reduce NOx emissions from diesel engines because of Rh being used as catalyst helps to release the oxygen atoms stored in NOx in the reduction reaction. After these studies succeeded in reducing the NOx emissions from biodiesel by regions of the world. Currently Jatropha biodiesel attention as an alternative fuel for diesel engine. The subject of the research presented in this thesis was the development new strategies for automotive three way www.ijert.org 1 International Journal of Engineering Research & Technology (IJERT) Vol. 2 IssueISSN: 2278-0181 2, February- 2013 three way catalytic converter without a significant change of BTE, BSFC and smoke opacity. The main focus of this dissertation is on finding out the best or the most suitable blend of biodiesel which when used gives out least Keywords: JB , 3way catalytic converter, NOx emissions. Introduction : The increasing focus on the environmental impacts of fossil fuel based power generation has led to increased research with the aim of reducing emissions and...
Words: 3321 - Pages: 14