...Photosynthesis and aerobic cellular respiration Aerobic cellular respiration is the process of creating energy in the form of ATP. Aerobic cellular respiration happens in eukaryotic organisms (plants, animal). It occurs in the mitochondria. There are three stages glycolysis, Krebs cycle, and electron transport chain (ETC). There are two equations of aerobic cellular respiration. The first one is glucose (C6 H12 O6) plus oxygen (O2) produce carbon dioxide(CO2) and water (H2O). The second one is adenosine diphosphate (ADP) plus phosphate (Pi) produce adenosine triphosphate (ATP). Glycolysis is the first stage of aerobic cellular respiration. Glycolysis occurs in the cytoplasm of the cell. Glycolysis purpose is to break down glucose. The reactants...
Words: 520 - Pages: 3
...Introduction. a. Background Information. Cellular respiration is the oxidation of organic compounds through cellular metabolism to release energy in a form that is usable by a cell. There are two basic types of cellular respiration aerobic cellular respiration and anaerobic cellular respiration. Aerobic respiration requires the use of oxygen and anaerobic respiration which does not use oxygen. There are several types of anaerobic respiration, most familiar is a process called fermentation. Aerobic respiration is the process by which ATP is produced by cells by the complete oxidation of organic compounds using oxygen . In aerobic respiration oxygen serves as the final electron acceptor, accepting electrons that ultimately come from the energy rich organic compounds we consume. Aerobic Respiration takes place in three stages. Glycolysis, Kreb's Cycle and electron transport chain. Glycolysis is the first step in cellular respiration and all cells regardless of the type of cellular respiration they do are able to carry out glycolysis. Because of this we believe that glycolysis probably arose very early in the evolution of life on the planet. In glycolysis glucose is partially oxidized and broken down into two 3 carbon molecules called pyruvic acid. In the process, glycolysis produced 4 ATP for a net gain of two ATP and two molecules of NADH. Each NADH is carrying two energy rich electrons away from the glucose and these electrons can be used by the cell to do work. After glycolysis...
Words: 809 - Pages: 4
...CELLULAR RESPIRATION • or energy metabolism refers to the chemical breakdown of nutrients by the cell to produce energy needed by the body • the energy released from the breakdown of nutrients is not directly used by the body but used to synthesize ATP • an opposite process of photosynthesis • breaking down of carbohydrates in order to produce ATP molecules, represented as: C6H12O6 + 6O2 6CO2 + 6H2O + ATP • divided into four individual sub-pathways: - anaerobic stage, Glycolysis - a transition reaction connecting glycolysis with the krebs cycle - an electron transport chain Structure of Mithochondrion • double membranes organelle found in almost all living cells • the inner membrane is folded to form little shelves called cristae • the inner space filled with gel-like fluid is called the matrix, containing numerous enzymes • the transition reaction and the krebs cycle occur in the matrix while electron transport chain occurs in the cristae Glycolysis • takes place in the cytoplasm of every living cells • anaerobic stage of cellular respiration • breakdown of glucose to two molecules of 3-carbon compound, pyruvic acid with net gain of ATP molecules and 2 NADH • begins with energy investment step that requires two separate reactions and uses two ATP resulting to two C3 molecules • ends in energy harvesting steps wherein oxidation occurs by the removal of electrons which are accepted by NAD, and the generation of four ATP by substrate-level phosphorylation ...
Words: 636 - Pages: 3
...Cellular respiration is the set of the metabolic reactions and processes that take place in the cells of organisms to convert biochemical energy from nutrients intoadenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions that involve the redox reaction (oxidation of one molecule and the reduction of another). Respiration is one of the key ways a cell gains useful energy to fuel cellular changes. Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and a common oxidizing agent (electron acceptor) is molecular oxygen (O2). Bacteria and archaea can also be lithotrophsand these organisms may respire using a broad range of inorganic molecules as electron donors and acceptors, such as sulfur, metal ions, methane or hydrogen. Organisms that use oxygen as a final electron acceptor in respiration are described as aerobic, while those that do not are referred to as anaerobic.[1] ------------------------------------------------- Aerobic respiration Aerobic respiration (red arrows) is the main means by which both plants and animals utilize energy in the form of organic compounds that were previously created through photosynthesis (green arrow). Aerobic respiration requires oxygen in order to generate energy (ATP). Although carbohydrates,fats, and proteins can all be processed and consumed as reactant, it is the preferred method ofpyruvate breakdown...
Words: 1124 - Pages: 5
...CELLULAR RESPIRATION • or energy metabolism refers to the chemical breakdown of nutrients by the cell to produce energy needed by the body • the energy released from the breakdown of nutrients is not directly used by the body but used to synthesize ATP • an opposite process of photosynthesis • breaking down of carbohydrates in order to produce ATP molecules, represented as: C6H12O6 + 6O2 6CO2 + 6H2O + ATP • divided into four individual sub-pathways: - anaerobic stage, Glycolysis - a transition reaction connecting glycolysis with the krebs cycle - an electron transport chain Structure of Mithochondrion • double membranes organelle found in almost all living cells • the inner membrane is folded to form little shelves called cristae • the inner space filled with gel-like fluid is called the matrix, containing numerous enzymes • the transition reaction and the krebs cycle occur in the matrix while electron transport chain occurs in the cristae Glycolysis • takes place in the cytoplasm of every living cells • anaerobic stage of cellular respiration • breakdown of glucose to two molecules of 3-carbon compound, pyruvic acid with net gain of ATP molecules and 2 NADH • begins with energy investment step that requires two separate reactions and uses two ATP resulting to two C3 molecules • ends in energy harvesting steps wherein oxidation occurs by the removal of electrons which are accepted by NAD, and the generation of four ATP by substrate-level phosphorylation ...
Words: 636 - Pages: 3
...Cellular Respiration What is Cellular Respiration? Is the process of taking Oxygen and glucose and turning them into ATP, is energy to the body. The glucose is obtained from the food and food is breaking down to glucose to make ATP. Cellular respiration is 40% to efficient with 60% of the energy going to heat. This process happen in three stages the first one is Glycolysis, than Krebs cycle or Citric Acid cycle and the third one is Electron Transport Chain (ETC) Glycolysis is a series of chemical reactions in the cytoplasm of cells that breakdown glucose into two or more molecules of Pyruvic acid 4ATP molecules are proceed 2ATP molecules are used in the process, the net gain is 2ATP molecules,2NADH molecules are proceed. After Glycolysis there is an intermediate stage Pyruvic acid moves into mitochondria where it undergoes a series of chemical reactions that causes it to lose one CO2 molecule. This product combines with coenzymes A to form acetyl-CoA than is ready for the next step Krebs cycle. Krebs cycle is a series of reactions that breaks down Acetyl-CoA to form ATP, NADH and FADH2. One molecule of ATP is proceed, 3 molecules of NADH are proceed,1FADH2 molecules is proceed and the CO2 is by-product of the Krebs Cycle. The final stage is Electron Transport chain (ETC) is a series of proteins embedded in the mitochondria membrane. FADH2 and NADH carry electrons to the electron chain those electrons move down the chain and goes down to the final electron...
Words: 300 - Pages: 2
...Cellular Respiration Class, today we are going to be talking about a really cool way your body breaks down food molecules into carbon dioxide and water! First, let’s understand what exactly this means. This process is called Cellular Respiration. This happens when food molecules, such as glucose (sugar in your body) breaks down into carbon dioxide, which is an odorless gas in the air, and water. And I’m sure you all know what water is, correct? (Giggle) That’s what I thought! Now that we all understand what that means, we are going to find out what happens next! Oh boy, who’s excited? Me too! Here we go! Once the molecules are oxidized into carbon dioxide and water, the energy released is trapped in a form ATP (which I’ll be discussing in just a few minutes) so it can be used by all the energy-consuming activities of the cell! We all know what a cell is correct? We all have cells in our body that help us function and stay alive! Well, when this happens, it occurs in two parts! First, the glucose breaks down to pyruvic acid. And everyone remembers what glucose is, right? That’s right, the sugar in our bodies! So let’s figure out of pyruvic acid is! It is a yellowish acid that occurs in metabolic processes, which is necessary for life! So it is very important for this part to happen, correct? There is another part of this we are going to be discussing next. The next step is when it completely oxidizes the pyruvic acid into the carbon dioxide and water! What color is the pyruvic...
Words: 721 - Pages: 3
...CELLULAR RESPIRATION • or energy metabolism refers to the chemical breakdown of nutrients by the cell to produce energy needed by the body • the energy released from the breakdown of nutrients is not directly used by the body but used to synthesize ATP • an opposite process of photosynthesis • breaking down of carbohydrates in order to produce ATP molecules, represented as: C6H12O6 + 6O2 6CO2 + 6H2O + ATP • divided into four individual sub-pathways: - anaerobic stage, Glycolysis - a transition reaction connecting glycolysis with the krebs cycle - an electron transport chain Structure of Mithochondrion • double membranes organelle found in almost all living cells • the inner membrane is folded to form little shelves called cristae • the inner space filled with gel-like fluid is called the matrix, containing numerous enzymes • the transition reaction and the krebs cycle occur in the matrix while electron transport chain occurs in the cristae Glycolysis • takes place in the cytoplasm of every living cells • anaerobic stage of cellular respiration • breakdown of glucose to two molecules of 3-carbon compound, pyruvic acid with net gain of ATP molecules and 2 NADH • begins with energy investment step that requires two separate reactions and uses two ATP resulting to two C3 molecules • ends in energy harvesting steps wherein oxidation occurs by the removal of electrons which are accepted by NAD, and the generation of four ATP by substrate-level phosphorylation ...
Words: 636 - Pages: 3
...Thermodynamics 3. Endergonic 4. Exergonic 5. Aerobic respiration 6. Substrate level phosphorylation 7. Glycolysis 8. Krebs cycle 9. Electron transport 10. Glycolysis 11. Pyruvate 12. Oxidative phosphorylation 13. Proteins and fate 14. Glucose 15. Hexose bisphosphate 16. 2 triose phosphate 17. 2 pyruvate molecules 18. Oxaloacetate 19. Decarbonisation 20. Decarboxylation 21. Aerobic 22. Anaerobic WHEEL OF BIO 1. Metabolism: what is metabolism? What is the step by step sequence called? the sum of all chemical reactions that occur in the cell. Metabolic pathway. 2. Thermodynamics: what is thermodynamics? Explain both laws in a few sentences. The science that studies the transfer and transformation of thermal energy....
Words: 649 - Pages: 3
...Chapter 9 Cellular Respiration — Objectives — Equation for Cellular Respiration — Electron Carriers and Redox Reactions — Process of Cell Respiration — Glycolysis — Prep Reaction — Krebs Cycle (Citric Acid Cycle) — Electron Transport Chain — Fermentation — The Ingredients — You already know what is needed for Cellular Respiration Food + Oxygen Carbon Dioxide+ Water +ENERGY! C6H12O6 + O2 CO2 +H2O + ATP — Redox Reactions (the shuffling of electrons) • Most of the reactions involved in the process are possible because of the redox reaction of NAD, an electron carrier • Oxidation – a reaction in which a substance loses electrons C6H1206 CO2 • Reduction – a reaction in which a substance gains electrons O2 H2O • Oxidation always occurs with reduction = Redox Reaction — NAD: An Electron Carrier — NAD+ gains an electron to become NAD — NAD gains a hydrogen to become NADH — This can also occur with the electron carrier FAD — Cellular Respiration — The means in which the cell produces energy — Often consists of 4 Steps: — Glycolysis — Prep Reaction — Krebs Cycle (Citric Acid Cycle) — Electron Transport Chain — Glycolysis • Occurs in the cytosol • Begins with a molecule of glucose (a 6 carbon sugar) • Uses the energy of 2 ATP to split the stable glucose into 2 unstable molecules each containing 3 carbons • Now all processes...
Words: 2533 - Pages: 11
...Cellular respiration There are three stages in cellular respiration: Glycolysis, the Krebs cycle and the electron transport chain. The equation for cellular respiration is: C6H12O6 + 6O2 → 6CO2 + 6H2O + ATP Glycolysis Glycolysis is multiple reactions that gain energy from glucose by splitting the glucose into 3 carbon molecules (Pyruvates). (Mason et al., 2016) Glycolysis is anaerobic meaning it doesn’t require any oxygen to be carried out. This is because energy can be made through fermentation; therefore it needs NAD+ in order for the process of Glycolysis to keep working. The anaerobic process of fermentation causes the creation of lactic acid as a by product. Glycolysis takes place in the cytoplasm of a cell To begin the...
Words: 744 - Pages: 3
...the photons. Chlorophyll absorbs the red and blue light and reflects the green light. This is why most plants we see are green. Once chlorophyll absorbs enough energy, it releases two electrons. To replace the electrons chlorophyll uses light to split water into Oxygen and Electrons. The Oxygen is then released as a byproduct and the chlorophyll keeps the electrons. The kept electrons are stored in the Primary Electron Acceptor. Once the electron is released it moves down the Electron Transport Chain. The movement of the electrons through the Electron Transport Chain result in the creation of Adenosine Tri-phosphate (ATP), which is a form of energy. This activates the proton pump-to-pump hydrogen ions into the lumen of the thylakoid. At this time two different situations happen simultaneously. Either there is a continuation of the hydrogen or the electron moved down the Electron Transport Chain end up in Photosystem 1. In the hydrogen continuation, hydrogen has just been pumped into the lumen of the thylakoid, which results in everything moving from a high concentration to a low concentration. This causes hydrogen ions to flow throw a channel protein called ATPase. This yields a large amount of ATP needed for light independent reaction. The electron that has moved down the Electron Transport Chain ends up in the second process. This is caused when chlorophyll does not need to split...
Words: 886 - Pages: 4
...the following terms: Cellular respiration (aerobic respiration) (2 points) Cellular respiration is the process by which cells get their energy in the form of ATP. There are two types of cellular respiration, aerobic and anaerobic. Aerobic respiration is more efficient and can be used in the presence of oxygen. Aerobic respiration, or cell respiration using oxygen, uses the end product of glycolysis in the TCA cycle to produce more energy currency in the form of ATP than can be obtained from an anaerobic pathway. Fermentation (anaerobic respiration) (2 points) Fermentation is a metabolic process converting sugar to acids, gases or alcohol. It occurs in yeast and bacteria, but also in oxygen-starved human muscle cells. Fermentation is used by humans to make beer and food, like kimchi. Fermentation is a form of anaerobic digestion that generates ATP by the process of substrate-level phosphorylation. Summarize what occurs during the three steps of cellular respiration and indicate where each process takes place in the cell. (6 points) Glycolysis: It is a process that occurs in the cytoplasm. It converts each molecule of glucose to two molecules of pyruvic acid. It refers to an anaerobic process that proceeds whether or not oxygen is present or not. The pyruvic acid diffuses into the inner compartment of the mitochondrion where a transition reaction occurs that starts to prepare pyruvic acid for the next stage of respiration. Krebs cycle-This is the second step...
Words: 964 - Pages: 4
...Cellular respiration is a catabolic reaction that takes place cytosol and inside of both outer and inner membranes of mitochondria. Cellular respiration consists of multiple stages that aim to break down glucose into water and carbon dioxide to generate ATP for energy use. Glycolysis in the cytosol, Krebs cycle in the mitochondrial matrix, and oxidative phosphorylation on inner mitochondrial membrane take place in a consecutive order for cellular respiration. The glucose provides as the energy source when electrons mainly come from carbon and received by oxygen molecule in the end of chemiosmosis. The electrons are carried by NADH and FADH2 and finally transferred to the oxygen molecule. ATPs are made both in three stages of cellular respiration. And...
Words: 469 - Pages: 2
...and Cellular Respiration yes , John the carbon atom is almost done with the photosynthesis . Cellular Respiration Cellular Respiration takes place in the Mitochondria.Here John will enter his final process. The Journey of a Carbon Atom named John What is photosynthesis ? Photosynthesis converts water and carbon dioxide gas into oxygen gas and carbohydrates. Now we will begin our journey of a Carbon Atom named John in which we start inside a carbon dioxide molecule and travel a far way to get to the air....
Words: 490 - Pages: 2